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Abstract 
 

Numerical technique is employed to derive a solution to the transient natural 
convection flow of an incompressible viscous fluid past an impulsively started 
infinite vertical plate with uniform heat and mass flux in the presence of 
thermal radiation. Heat and mass transfer effects are taken into account and 
the governing equations are solved using implicit finite-difference method. 
The effect of velocity and temperature for different parameters like thermal 
radiation, thermal Grashof number and mass Grashof number are studied. It is 
observed that the velocity decreases in the presence of thermal radiation.  
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Nomenclature 
a*- absorption coefficient 

'C - concentration  

C - dimensionless concentration 

 D- mass diffusion coefficient 

g- accelaration due to gravity 
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Gr- thermal Grashof number 
Gc- mass Grashof number 

"j - mass flux per unit area at the plate 

k- thermal conductivity of the fluid 
Pr- Prandtl number 

q- heat flux per unit area at the plate 
 R- radiation parameter 

Sc- Schmidt number 
'T - temperature 

T- dimensionless temperature 
't - time 

t- dimensionless time 

u0- velocity of the plate 
u- velocity components in x-directions respectively 

U- dimensionless velocity components in X-directions respectively 
x- spatial coordinate along the plate 

X- dimensionless spatial coordinate along the plate 
y- spatial coordinate normal to the plate 

Y- dimensionless spatial coordinate normal to the plate 
 

Greek symbols 

- thermal diffusivity 

- coefficient of volume expansion 

- volumetric coefficient of expansion with concentration 

- coefficient of viscosity 

- kinematic viscosity 

- Stefan-Boltzmann constant 

 

Subscripts 
w- conditions at the wall 

- conditions in the free stream 
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i- grid point along the X-direction 
j- grid point along the Y-direction  
 
 
1. INTRODUCTION 
Processes involving coupled heat and mass transfer occur frequently in nature. It 
occurs not only due to temperature difference, but also due to concentration difference 
or the combination of these two. The influence of magnetic field on viscous 
incompressible flow of electrically conducting fluid has its importance in many 
applications such as extrusion of plastics in the manufacture of Rayon and Nylon, 
purification of crude oil, pulp, paper industry, textile industry and in different 
geophysical cases etc. In many process industries, the cooling of threads or sheets of 
some polymer materials is of importance in the production line. The rate of cooling 
can be controlled effectively to achieve final products of desired characteristics by 
drawing threads, etc. in the presence of an electrically conducting fluid subject to a 
magnetic field. 
 Radiative convective flows are encountered in countless industrial and 
Environment processes e.g. heating and cooling chambers, fossil fuel combustion 
Energy processes, evaporation from large open water reservoirs, astrophysical Flows, 
solar power technology and space vehicle re-entry. Radiative heat and Mass transfer 
play an important role in manufacturing industries for the design of reliable 
equipment. Nuclear power plants, gas turbines and various propulsion device for 
aircraft, missiles, satellites and space vehicles are examples of such engineering 
applications. 
 England and Emery [2] have studied the thermal radiation effects of a optically 
thin gray gas bounded by a stationary vertical plate. Soundalgekar and Takhar [7] 
have considered the radiative free convective flow of an optically thin gray-gas past a 
semi-infinite vertical plate. Radiation effect on mixed convection along a isothermal 
vertical plate were studied by Hossain and Takhar [3]. In all above studies, the 
stationary vertical plate is considered. Raptis and Perdikis [5] have studied the effects 
of thermal radiation and free convection flow past a moving infinite vertical plate.  
 Boundary layer flow on moving horizontal surfaces was studied by Sakiadis [6]. 
Kumari and Nath [4] studied the development of the asymmetric flow of a viscous 
electrically conducting fluid in the forward stagnation point region of a two-
dimensional body and over a stretching surface was set into impulsive motion from 
the rest. 
 The problem of unsteady natural convection flow past an impulsively started 
infinite vertical plate in the presence of thermal radiation has not received attention of 
any researcher. Hence, the present study is to investigate the unsteady flow past an 
impulsively started infinite vertical plate with uniform heat and mass flux in the 
presence of thermal radiation by an implicit finite-difference scheme of Crank-
Nicolson type. 
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2. MATHEMATICAL FORMULATION  
A transient, laminar, unsteady natural convection flow of a viscous incom-pressible 
fluid past an impulsively started infinite vertical plate with uniform heat and mass 
flux is considered. Here, the x-axis is taken along the plate in the vertically upward 
direction and the y-axis is taken normal to the plate. Initially, it is assumed that the 

plate and the fluid are of the same temperature and concentration. At time 't 0 , the 
plate starts moving impulsively in the vertical direction with constant velocity u0 
against gravitational filed. At the same time, the heat is supplied from the plate to the 
fluid at a uniform rate and the concentration level near the plate is also raised at an 
uniform rate. Then, under the usual Boussinesq’s approximation, the unsteady flow is 
governed by the following equations: 
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 For the case of an optically thin gray gas the local radiant absorption is 
expressed by 
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 We assume that the temperature differences within the flow are sufficiently 
small such that T may be expressed as a linear function of the temperature. This is 
accomplished by expanding T4 in a Taylor series about T and neglecting higher-
order terms, thus 

 ' 4 ' 3 ' ' 44 3T T T T    (6) 

 
 By using equations (5) and (6), equation (2) reduces to 
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 On introducing the following non-dimensional quantities  
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 Equations (1) to (3) are reduced to the following non-dimensional form  
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 The corresponding initial and boundary conditions in non-dimensional 
quantities are 
 t  0: U = 0, T = 0, C=0  
 

 t > 0: U = 1, 1T
Y


 


, 1C
Y


 


 at Y = 0 (12) 

 
 U = 0, T = 0, C = 0 at X = 0 
 
 U  0, T  0, C  0 as Y   
 
3. NUMERICAL TECHNIQUE 



78  P. Chandrakala 
 

 

In order to solve the unsteady, non-linear coupled equations (9) to (11) under the 
conditions (12), an implicit finite difference scheme of Crank-Nicolson type has been 
employed. The finite difference equations corresponding to equations (9) to (11) are 
as follows. 
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 The thermal boundary condition at Y = 0 in the finite difference form is  
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 At Y = 0 (i.e., j = 0), equation (14) becomes  
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 The boundary condition at Y = 0 for the concentration in the finite difference 
form is  
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 At Y = 0 ( i.e., j = 0 ), Equation (18) becomes  
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 Here the region of integration is considered as a rectangle with sides Xmax ( = 1) 
and Ymax (=14), where Ymax corresponds to Y =   which lies very well outside both 
the momentum and energy boundary layers. The maximum of Y was chosen as 14 
after some preliminary investigations so that the last two of the boundary conditions 
(14) are satisfied with in the tolerance limit 10-5.  
 After experimenting with a few set of mesh sizes have been fixed at the level 
X = 0.05, Y = 0.25, with time step  t = 0.01. In this case, the spatial mesh sizes are 
reduced by 50% in one direction, and later in both directions, and the results are 
compared. It is observed that, when the mesh size is reduced by 50% in the Y-
direction, the results differ in the fifth decimal place while the mesh sizes are reduced 
by 50% in X-direction or in both directions, the results are comparable to three 
decimal places. Hence, the above mesh sizes have been considered as appropriate for 
calculation. The coefficient ,

n
i jU  appearing in the finite difference equation are treated 

as constants at any one time step. Here i-designates the grid point along the X-
direction, j along the Y-direction and k to the t-time. The values of U, and T are known 
at all grid points at t = 0 from the initial conditions. 
 The computations of U, T and C at time level (n +1) using the values at previous 
time level (n) are carried out as follows: The finite-difference equations (17) at every 
internal nodal point on a particular i-level constitute a tridiagonal system of equations. 
Such a system of equations are solved by using Thomas algorithm as discusses in 
Carnahan et al [1]. Thus, the values of T are found at every nodal point for a 
particular i at (n+1)th time level. Similarly, the values of C are calculated from 
equation (21).Using the values of C and T at (n+1)th time level in the equation (13), 
the values of U at (n+1)th time level are found in a similar manner. Thus, the values of 
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C, T and U are known on a particular i-level. This process is repeated for various i-
levels. Thus the values of C, T and U are known, at all grid points in the rectangle 
region at (n+1)th time level. 
 
 
4. RESULTS AND DISCUSSION  
The effect of velocity for different radiation parameter ( R = 0, 2, 5), Gr = 2, Gc = 5, 
Pr = 0.71 and Sc = 0.6 are shown in figure 1. It is observed that the velocity increases 
with decreasing radiation parameter. This shows that velocity decreases in the 
presence of high thermal radiation. 
 In figure 2, the velocity profiles for different thermal Grashof number and mass 
Grashof number are shown graphically. This shows that the velocity increases with 
increasing thermal Grashof number or mass Grashof number. As thermal Grashof 
number or mass Grashof number increases, the buoyancy effect becomes more 
significant, as expected, it implies that, more fluid is entrained from the free stream 
due to the strong buoyancy effects as Gr or Gc incrases.  
 The temperature profiles for different values of the thermal radiation parameter 
are shown in figure 3. It is observed that the temperature increases with decreasing R. 
This shows that the buoyancy effect on the temperature distribution is very significant 
in air (Pr = 0.71). It is known that the radiation parameter and Prandtl number plays 
an important role in flow phenomena because, it is a measure of the relative 
magnitude of viscous boundary layer thickness to the thermal boundary layer 
thickness. 
 The effect of the Schmidt number is very important for concentration profiles. 
The concentration profiles for different values of Schmidt number are shown in figure 
4. There is a fall in concentration due to increasing the values of the Schmidt number.  
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Fig.1. Velocity profiles for different R 
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Fig.2. Velocity profiles for different Gr and Gc 
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Fig.3. Temperature profiles for different R 
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Fig.4. Concentration profiles for different Sc 
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5. CONCLUSIONS 
Finite difference study has been carried out for unsteady flow past an impulsively 
started infinite vertical plate with uniform heat and mass flux in the presence of 
thermal radiation. The dimensionless governing equations are solved by an implicit 
scheme of Crank-Nicolson type. The effect of velocity, temperature and concentration 
for different parameters are studied. It is observed that the velocity decreases in the 
presence of thermal radiation.  
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