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Abstract  

In this article, we analyze 4 probability distribution functions 

to characterize the wind resource at northeast zone of Colombia, 

based on data of taken from existing meteorological stations in 

three towns in the zone of Norte de Santander, Colombia. The 

data is sampled each 10 minutes, obtaining average values per 

hour every day, for each month of the year. The probability 

distributions studied are Weibull, Rayleigh, Log-Logistics and 

Gamma. In the case of the Weibull distribution, 5 methods were 

used to estimate two principal parameters of the distribution; 

shape and scale. For other distributions only was used one. The 

distributions for each data set were determined, exposing the 

best fit for each zone according to the 3 performance indices 

considered (RMSE, 𝝌𝟐, R2). The main result obtained is the 

identification of the probability distribution that presents a 

better adjustment to the existing wind speed data in the zone 

where the meteorological stations are located. Specifically, it 

was identified that the probability distributions that best fit the 

data, for each month of the year, are Log-Logistics and Gamma. 

Further, the identification of the probability distribution that 

best fits to the wind speed data, allows to characterize with a 

greater degree of accuracy the wind potential of a zone. 

 Keywords: Wind energy, probability distributions, wind 

speed, Colombia, wind resource. 

 

I. INTRODUCTION  

Given the serious effects that the environment suffers, there is 

a growing interest in venturing into the generation of electricity 

from renewable energy sources (RE), whose main virtue is the 

minimum or zero emission of carbon dioxide, ideal for 

achieving sustainable development in populations. Given the 

range of ER resources, the vast majority of countries focus on 

the development and optimization of solar and wind technology 

[1]. 

For the particular case of wind energy (WE), a measure of 

energy flow per unit area [2] and, according to [3], the interest 

in developing wind farms, focuses on methods to assess 

resource potential wind and how to increase the efficiency of 

wind turbines (and with it wind farms), so that this leads to 

greater profitability of the project, by reducing operation and 

capital costs, taking into account their generation capacity, 

annual growth of installed capacity, efficiency and long-term 

competitive cost [4], [5], [6], [7], [8], [9]. Proof of this is how 

the WE covers 4% of the generation of electricity in the world, 

which for 2017 was 539 GW [9] and an estimate of installed 

wind capacity close to 10,800,000 MW, which could cover all 

global electricity demand [10], ideal for large cities as for 

remote areas [11]. 

One of the main problems of the RE is the randomness of the 

resource [4], situation that leads to fluctuations in voltage and 

frequency, resulting in unbalanced and unstable systems [12]. 

Based on the research carried out by [13], wind energy 

forecasts are the most uncertain due to spatial and temporal 

variability [2] and predictability of the wind field. To address 

the randomness of the resource, research has been carried out 

on the analysis and application of probability distribution 

functions (PDF) that allow characterizing the wind resource [1], 

[3], [11], [14], [15], in order to study the feasibility and 

development of wind generation projects [3], [8], [9], [16]; and, 

therefore, to reduce the probability that the energy market is 

characterized by volatile and irregular prices between supply 

and demand [13] 

Of the PDF, the Weibull distribution (of two parameters) has 

been the most used [1], [2], [4], [6], [7], [8], [10], [14], for the 

estimation (characterization) of the resource and the production 

of wind power, due to its simplicity and flexibility in the 

analysis of a wide range of data, however, according to the cited 

by [16], this distribution does not It is recommended for calm 

wind regimes (low wind speeds). These probability distribution 

studies in WE have been carried out in different countries in 

Asia, North America, Europe and North Africa, covering 

different time series, locations, temporal resolution, height at 

which the data is collected, among others [10]. However, 

probability distributions such as Rayleigh, log-normal, two-

parameter gamma distribution, inverse Gaussian, 3-parameter 

generalized gamma distribution, kappa, generalized normal, 

Gumbel, three-log normal have been used parameters, beta 

distribution of 3 parameters, Pearson type III, log-Pearson type 

III, Burr, Erlang, Wakeby and the square root of the normal 

distribution, taking into account the cited by [9], [11], [16]. 

In the particular case of Colombia, there are few investigations 

and projects aimed at directing the country's electricity supply 

by ER sources, however, by 2017, 80.3% of the energy 

generated, approximately 11725 MW, came from hydraulic 

generation [17]. In Colombia, 52% of the territory is considered 

off-grid, represented in 2 million inhabitants, and to supply the 

demand for this type of areas, diesel-based systems and pass-

through hydroelectric systems are used, expensive alternatives, 

with partial service and unreliable [18]. In Colombia, the wind 

farm located in the department of La Guajira stands out, which 
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represents 6% of the 304.42 MW in installed capacity of said 

department, for December 2017 [17]. 

In order to solve the intermittency of the resource in Colombia, 

hybrid systems that operate with storage systems (batteries that, 

if not given a correct post-use, can be a source of contamination, 

can continue to be designed and implemented) and diesel 

generation as a source of support, as developed by [18]. his is 

how interest arises because this research serves as a basis for 

future and eventual wind projects in the region and throughout 

Colombia, taking into account that it is the energy projects from 

ER that are being seen as an alternative to energize the areas 

without electric power [19]. 

For the present investigation, the focus of study is how to 

characterize wind speed from PDF. But, since not all 

distributions conform to the same data sets, the objective is, in 

addition, to give some guidelines to determine which 

distribution, of the ones discussed below, fits more to the set of 

analyzed data, taking into account the statistics descriptive 

calculated in the first instance. 

 

II. METHOD 

The knowledge of the wind regime of a particular place is the 

essence in the determination of wind energy potential. The 

determination of this potential comprises two main aspects: the 

first is to measure the wind speed and a second aspect 

corresponds to the statistical analysis of these records. A more 

recently technique used to estimate the wind energy potential 

in a zone is the artificial intelligence [20], [21]. In this 

investigation we will focus on the use of different continuous 

probability distributions to assess wind power potential [22], 

[23]. 

 

Interest Zone 

The area under study is the Catatumbo region of the department 

of Norte de Santander, Colombia. The interest of this area is 

because (in addition to the lack of electrical energy in the area) 

according to the Colombian Wind Atlas [20], developed by the 

Colombia Institute of Hydrology, Meteorology and 

Environmental Studies (IDEAM) and the Mining and Energy 

Planning Unit (UPME), the average annual wind speed for the 

department of Norte de Santander (see Figure. 1), have a range 

between 1 and 5 m/s, being the highest records for Colombia, 

exceeded only for the wind speeds registered in the Colombian 

Caribbean (Guajira). The exact location of the weather stations 

consider are shown in Error! Reference source not found.. 

 

Probability Distribution 

probability distributions widely for the analysis of wind speed 

data are the Weibull distribution and the Rayleigh distribution 

[25]. The Lindley distribution has also been used recently [26]. 

The Rayleigh distribution uses the average speed as a parameter, 

while the Weibull distribution uses two characteristic 

parameters, shape and scale [11]. In this work, 4 probability 

density distributions are used to describe the wind probability 

distribution. 

 

 

Figure. 1 Map of average annual wind speed at 10 m altitude of 

Colombia. Norte de Santander Extension - Source: Taken and 

modified from [24]. Location of the meteorological stations 

considered for the study. a) Aguas Claras Airport; b) Abrego 

Administrative Center; c) Tibú. 

 

1. Weibull distribution 

The Weibull distribution is a function characterized by two 

parameters and can represent a broad wind regime The 

probability density function of the Weibull distribution is given 

by the following expression [1], [2], [4], [7], [15]: 

 

𝑓(𝑣) =
𝑘

𝑐
(

𝑣

𝑐
)

𝑘−1

𝑒𝑥𝑝 [− (
𝑣

𝑐
)

𝑘

] (1) 

The probability density function indicates the percentage of 

time by which the wind flows at certain speed [14]. And the 

cumulative distribution function represented by [8]: 

𝐹(𝑣) = 1 − 𝑒𝑥𝑝 [− (
𝑣

𝑐
)

𝑘

] (2) 

Where k is the [dimensionless] form factor and 𝑐 (≥ 1) is the 

scale factor in [m/s], therefore, calm conditions should be 

excluded from the analysis. These two parameters depend 

mainly on the average velocity 𝑣̅ and 𝜎, which is the standard 
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deviation. Weibull parameters can be estimated using various 

statistical methods applied in different works that seek to 

determine wind potential [7], [27], [28], [29], [30], [31], Some 

of these methods are: 

 Maximum Probability Method (MPM) 

 Maximum Modified Probability Method (MMP) 

 Moments Method (MM) 

 Minimum Square Method or Graphic Method (MSM) 

 Empirical Method (EM) 

 

2. Rayleigh distribution 

The Rayleigh distribution is the simplest probability 

distribution used to represent the wind regime of a place. The 

Rayleigh distribution is a simplification of the Weibull 

distribution by approximating the scale factor k = 2. The 

probability density function of the Rayleigh distribution f(v) is 

given by [14]: 

 

𝑓(𝑣) =
𝜋

2
(

𝑣

𝑣̅2
) 𝑒𝑥𝑝 [−

𝜋

4
(

𝑣

𝑣̅
)

2

] (14) 

And the cumulative distribution function F(v), as: 

 

𝐹(𝑣) = 1 − 𝑒𝑥𝑝 [−
𝜋

4
(

𝑣

𝑣̅
)

2

] (15) 

 

3. Log-Logistic Distribution 

The Log-logistics distribution recently used by [10] in WE 

analysis, which is frequently used in analyzes whose events 

suffer an increase rate at the beginning and subsequently 

decline (similar to what happens with the wind resource). It has 

a similar shape to the log-normal distribution, but it has lower 

kurtosis [32]. The PDF of the log-logistics distribution is given 

by: 

 

𝑓(𝑣) =
(𝛽 𝛼⁄ )(𝑣 𝛼⁄ )𝛽−1

(1 + (𝑣 𝛼⁄ )𝛽)2
 (16) 

And the cumulative distribution function F(v), as: 

𝐹(𝑣) =
1

1 + (𝑣 𝛼⁄ )−𝛽
 (17) 

The parameters can be determined using the mean and median 

value with the following expressions: 

𝑣̅ =
𝛼𝜋/𝛽

sin(𝜋 𝛽⁄ )
                    𝑣̃ = 𝛼 (18) 

 

 

4. Gamma distribution 

The Gamma distribution is another of the PDF used in the 

evaluation of wind energy potential [23]. Like the Weibull 

distribution, the Gamma distribution has a scale parameter, , 

and a shape parameter, r.  The PDF of the Gamma distribution 

is given by [11]: 

𝑓(𝑣) =
𝜆𝑟𝑣𝑟−1𝑒𝑥𝑝−𝜆𝑣

Γ(𝑟)
,          𝑣 > 0 (19) 

 

The parameters of scale and shape can be determined by using 

the mean and variance, with the following expressions: 

 

𝑣̅ =
𝑟

𝜆
                    𝜎2 =

𝑟

𝜆2
 (20) 

 

Evaluation Criteria of the distributions 

To evaluate the performance of the probability distributions, 

three indices serve as criteria to reflect the best adjustment of 

the distributions to the average wind speed records [14]. Chi-

square 𝜒2, square root of the mean square error RMSE (Root 

Mean Square Error) and the square multiple correlation 

coefficient 𝑅2  (analysis of variance) [3], [7], [9], [31], [22]; 

which can be determined by the following expressions: 

𝜒2 =
∑ (𝑦𝑖 − 𝑥𝑖)

2𝑁
𝑖=1

𝑁 − 𝑛
 (20) 

𝑅𝑀𝑆𝐸 = [
1

𝑁
∑(𝑦𝑖 − 𝑥𝑖)

2

𝑁

𝑖=1

]

1
2⁄

 (20) 

𝑅2 =
∑ (𝑦𝑖 − 𝑧)2 − ∑ (𝑥𝑖 − 𝑦𝑖)2𝑁

𝑖=1
𝑁
𝑖=1

∑ (𝑦𝑖 − 𝑧)2𝑁
𝑖=1

 (20) 

 

Where yi is the value of the probability of the recorded data, Z 

is the average value of the recorded data and xi is the  value of 

the estimated data with the probability distribution N is the 

number of observations and n is the number of constants (one 

for the distribution of Rayleigh and two for the other 

distributions). The distribution that best fits the records 

corresponds to the highest value of R2 and the lowest values of 

𝜒2 and RMSE. 

 

III. RESULTS 

As stated in [3], [16], the analysis of the resource was carried 

out by time of day and by month for each year, according to the 

season in question. 

 

Collection of information 

The wind speed information analyzed in this work was obtained 

from the IDEAM database. Table 1 shows the names and codes 
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of the stations, the height at which the data were collected, their 

location and the period analyzed. 

 

Table 1 - Meteorological stations considered for the collection 

of wind data from the Catatumbo region, Norte de Santander, 

Colombia 

Station Location Period analyzed 

Abrego Administrative 

Center (AAC) - 

[16055040] 

8.087; -

73.22 

1983, 1988, 1989, 

1991-1993 

Tibú (TI) - [16035010] 
8.638; -

72.73 
1980-1983, 1992 

Aguas Claras Airport 

(ACA) - [16055010] 

8.315; -

73.36 
2015-2018 

 

As usual, in the databases of meteorological stations there are 

usually ‘lost’ data, values that were not recorded by the 

measuring instruments due to different factors. From these 

stations wind data were found for more years, but several with 

no data not only for some hours, but for several days, and even 

for up to 6 months in the same year; in this case, these records 

were omitted because they were going to reduce the reliability 

of the results. 

With the aim of not leaving empty data spaces, a recovery of 

lost data was made with the help of the statistical software IBM 

SPSS Statistics with the multiple imputation procedure, since it 

is possible to complete the missing data taking into account the 

trend marked by the matrix of data, that is, taking into account 

the actual speeds recorded according to the day of the month 

and the hour. 

Once the wind speeds were collected for each season, and 

classified by time, day, month and year, frequency tables were 

made, and then with this information determine the average 

speeds for different periods. To better appreciate the trend of 

the data, the average speed per hour and month was plotted for 

each period of each station (see Figure. 2). 

 

 

Figure. 2. Average speeds per hour and per month, Abrego 

Administrative Center, year 1993. 

 

Descriptive statistics 

 

Considering the importance of the calculation of the main 

descriptive statistics to estimate the probability distributions 

function, and their respective parameters, the most relevant 

statistics and results of the information processing are recorded 

in Table 2. From the calculations recorded in this table it is 

noted that the higher speeds are recorded at the AAC station, 

followed by the TI station and finally the ACA station. 

 

 

Table 2 Descriptive statistics for each of the stations selected according to each period analyzed 

Station Year 

Vel. 

Maxim 

(m/s) 

Mean 

(m/s) 

Median 

(m/s) 

Stand. 

Deviation 

(m/s) 

Variance Asymmetry Kurtosis 

Aguas Claras 

Airport 

2015 4.5 1.42 1.3 0.64 0.41 1.28 1.49 

2016 4.8 1.43 1.2 0.69 0.48 1.28 1.26 

2017 4.4 1.42 1.2 0.67 0.46 1.26 1.13 

2018 4.4 1.40 1.2 0.69 0.47 1.30 1.25 

Abrego 

Administrative 

Center 

1983 11.3 2.70 1.8 1.85 3.43 1.09 0.14 

1988 9.4 2.39 1.6 1.67 2.80 1.25 0.54 

1989 10.5 2.44 1.6 1.81 3.28 1.27 0.60 

1991 9.7 2.43 1.5 1.83 3.34 1.29 0.60 

1992 9.9 2.67 1.8 1.86 3.49 1.08 0.10 

1993 9.1 2.60 1.7 1.81 3.27 1.01 -0.16 
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Tibú 

1980 8.3 1.87 1.6 0.86 0.75 1.84 5.71 

1981 8.8 1.87 1.6 0.85 0.72 1.70 5.46 

1982 9 1.70 1.6 0.78 0.60 1.13 3.74 

1983 9.9 1.39 1.3 0.94 0.89 1.35 5.19 

1992 9.8 1.70 1.5 0.89 0.80 1.17 2.41 

 

As the standard deviation is greater in the AAC station, the 

kurtosis for these data is between -0.16 and 0.6, very acceptable 

values to establish that these data have a normal concentration, 

which translates into saying that very surely 95% of The data is 

within the limits of ± 2 times the standard deviation. When 

considering the measure of distribution of asymmetry 

coefficient, it can be seen that the asymmetry in each year, of 

each station, is positive, which translates into saying that the 

vast majority of the data have lower average value. 

 

Probability distribution functions (PDF’s) 

In Figure. 3, you can see the distributions, described by the 

probability distribution functions, with the best fit for the data 

of each station. In the case of the Weibull distribution, the 

parameters of shape and scale were estimated with the 5 

methods, so that at first glance you can have a notion of which 

of the methods offers a greater approximation to the wind speed 

records. 

 

a) b) 

c) d) 
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e) f) 

Figure. 3. Probably adjusted probability distributions for the analyzed data. For AAC (1992), the (a) Log-

Logistics and (b) Gamma distributions; for ACA (2017) (c) Rayleigh and (d) Weibull MM; for TI (1981), the 

(e) Weibull MMP and (f) Rayleigh 

For each of the stations analyzed, the two distributions that best 

fit were the same for each data period. For the ACA station, the 

distributions with the best fit were Rayleigh and Weibull MM; 

for the AAC station, they were the Log-Logistics and Gamma 

distributions; and as for the IT station, they were Weibull MMP 

and Rayleigh. In Fig. 3 the adjustment of these distributions for 

one year of each season is observed. In addition, graphically, it 

was possible to verify the asymmetry coefficients (positive for 

each case) obtained for each data set (see Table 2), since the 

graphs of all the distributions are skewed to the left. In ACA, 

the distributions yield probability values higher than the 

relative frequencies, however, each probability distribution is 

proportional to each frequency, with the advantage that it also 

contains all the data. For IT, the best adjustments were obtained, 

each estimated probability distribution greatly approximates 

the actual relative frequencies and the distributions cover all 

velocity data. 

 

Statistical analysis 

Once all distributions with the 3 performance indices were 

evaluated, it was found that the two distributions that best fit 

for each zone were the same for each analyzed period of the 

station in question. Therefore, for practicality, the Table 3 

shows the results obtained for one year at each weather stations. 

 

Table 3 – Performance index for each distribution applied to the data of each station 

Station/ 

year 
Distribution 

Performance index 

𝑿𝟐 RMSE R2 

AAC/ 

1992 

Weibull PM 0.00943 0.08936 0.9997789 

Weibull MMP 0.00944 0.08940 0.9997787 

Weibull MM 0.00945 0.08944 0.9997785 

Weibull GM 0.00943 0.08937 0.9997789 

Weibull MSM 0.00942 0.08929 0.9997793 

Rayleigh 0.01094 0.10051 0.9997203 

Gamma 0.00809 0.08278 0.9998103 

Log-Logistic 0.00602 0.07139 0.9998588 

ACC/ 

2017 

Weibull PM 0.05120 0.21066 0.993464 

Weibull MMP 0.05119 0.21064 0.993465 

Weibull MM 0.05104 0.21032 0.993485 

Weibull MSM 0.06117 0.23128 0.992121 

Weibull EM 0.05151 0.21130 0.993424 

Rayleigh 0.04310 0.20057 0.994074 



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 4 (2021), pp. 347-354 

© International Research Publication House.  http://www.irphouse.com 

353 

Gamma 0.05505 0.21844 0.992972 

Log-Logistic 0.05930 0.22670 0.992430 

TI/ 

1981 

Weibull PM 0.003533 0.05426 0.998752 

Weibull MMP 0.003572 0.05456 0.999873 

Weibull MM 0.00336 0.05514 0.999871 

Weibull MSM 0.00633 0.07263 0.999776 

Weibull EM 0.00369 0.05550 0.999869 

Rayleigh 0.00323 0.05445 0.998743 

Gamma 0.00397 0.05755 0.999859 

Log-Logistic 0.00538 0.06696 0.999809 

 

 

Taking into account the information contained in Table 3, it can 

be observed that, the distributions that best fit the data for AAC 

records is the Log-Logistic distribution and followed by the 

Gamma; for the ACA station the Rayleigh distribution fits 

better and then the Weibull MM; and in the case of IT, Rayleigh 

was first half, followed by the Weibull MMP. These yields 

were the same for the rest of the data periods in each station. 

 

IV. CONCLUSION 

Taking into account the results obtained that are included in 

Table 2, and the estimation and evaluation of each distribution 

for each case, it was verified that when the asymmetry 

coefficient is > 0 for the set of data in question, but also higher 

that the kurtosis, the best fit distributions are Log-Logistics and 

Gamma. If the data is analyzed carefully, this applies to cases 

in which the highest frequencies are for the lowest speeds, with 

a small range of speeds prevailing with a tendency to 1 m/s. 

This clarifies the importance of calculating descriptive statistics 

first, since this can save time by discarding distributions that do 

not fit very well. Having this line of action, it can be seen that, 

at the outset, when the average and the median are very similar 

(disagree in less than one unit), the Log-Logistic distribution 

cannot be estimated, so this could be considered as a 

convergence factor. 

Although in some studies it has been emphasized not to 

consider the Weibull distribution for datasets with calm speeds, 

it is this research that has been concluded that, if the asymmetry 

and kurtosis are approximately equal, the distribution can cover 

all the data, although with f(v) higher than the relative 

frequencies, but directly proportional to those frequencies. But 

when the kurtosis is much greater than the asymmetry, the 

adjustment of the Weibull and Rayleigh distribution is much 

more precise. 
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