
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 4 (2021), pp. 323-332 

© International Research Publication House.  http://www.irphouse.com 

323 

The problem of tangency to three non-homothetic conics 

H. Isawi* a, S. Dahabreh a, D. Altarawneh a, H. Alsawalqa a 

a Department of Architecture – School of Engineering, The University of Jordan 

 
Abstract 

The aim of this research is to formulate a procedure for 

determining the four copies of conics tangents to three 

established conics, both homothetic and generic, and to 

illustrate and justify in space the elements that originated the 

geometric constructions carried out in the plan. In the process 

of modeling a tangential connection between two (or three) 

conic surfaces, we often feel disoriented when we face the 

problem of tangency between non-homothetic conics. To solve 

the problem, topics such as involution between coincident 

conics were treated; the inversion of a quadric cone; the pole 

line and the corresponding polar plane; the cyclic 

transformations defined by three coplanar conics; and the polar 

cone as the locus of the pole lines of three conjugated cones. 
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I.  Introduction  

The described geometric procedure obtained as a result of this 

research allows not only to determine the possible conics 

tangent to three assigned homothetic conics but also to three 

established conics different from each other, provided that they 

are coplanar and corresponding to each other two by two.  

The research problem can be considered as an extension of the 

so-called "Apollonius problem" [1], particularly concerned 

with the determination of all possible tangent circles to three 

given circles, including the point and the line as particular cases 

of circumference [2]. Euclid solved this particular problem in 

which these circles degenerate into points or lines. As for the 

more general case, of the three circles, the problem was solved 

by the Belgian mathematician Adrian van Roomen [3] through 

the determination of the points common to the geometric loci 

of the centers of the circumferences tangent to those assigned. 

The Roomen procedure can be adopted, much more easily 

today, not only in cases of tangency between circumferences 

but also in all those cases in which three homothetic conics are 

given. 

 For example, three homothetic conics Δ, θ, and Φ are assigned 

(fig. 1), belonging to a horizontal plane π1, and we want to 

determine the eight conics tangent to them. Δ, θ, and Φ are 

considered the bases of three cones u, v, and w, conjugated to 

each other, two by two [4]. Between each copy of these bases, 

there is a homothetic correspondence, in which the 

corresponding lines are parallel to each other and pass through 

the already known corresponding points that are the centers of 

the same bases. 

The geometric locus of the centers of the conics are tangents of 

two of the three given conics, for example, Δ and θ is 

determined, in this case (fig. 1), as the horizontal orthographic 

projection (top view) of the intersection between the cones v 

and w, which have Δ and θ as bases. 

Similarly, once the other geometric loci of the other two pairs 

Δ, Φ and θ, Φ are determined, the centers of the eight conics 

are easily found as common points to the same loci (Fig. 1). 

Regarding this particular case, it is important to check the more 

general procedure formulated in the last pages of this research 

(fig. 13). 

It should be noted that this research concentrates on the study 

of the general problem of tangency between non-homothetic 

conics. For a more detailed discussion of listing and classifying 

the various cases of tangency between homothetic conics, 

Riccardo Migliari’s article [5] covered adequately those 

particular cases.  

 

Figure 1: The determination of the centers of the eight tangent conics 

to three assigned homothetic conics. 

 

II. Methodology 

Faced with the immediacy of the operations designed to 

determine the elements of correspondence between two 

assigned homothetic conics, due to the fact that the centers are 

already corresponding points, it is impossible to find these 

elements when the assigned conics are generic. To overcome 

this non-existence and to be able to analyze the possible 

differences between the two cases, we have established that the 

three conics ΔU, ΔV, and ΔW are the bases of three cones u, v, and 

w, which, in addition to being conjugated to each other [6] two 

by two, also have in common the same conic Δ, belonging to 

the generic plane α (Fig.2, 3). This way, by determining the 

intersection of the three cones u, v, and w, two by two, we will 
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have, in addition to Δ three other conics, Φ, Χ, and Ψ. For 

example, Φ is involutory of Δ with respect to the vertices of the 

two cones v and w, which produced this involution. 

In order to verify this involution, just imagine projecting, 

respectively, one of the two conics, for example, Δ on the plane 

of Φ, from the vertices v and w, to notice that the projection of 

Δ coincides with Φ and vice versa. Therefore, the 

corresponding points of Δ and Φ correspond in a double way. 

The center of this involution is the point of intersection of the 

line passing through the vertices of v and w, with the plane of 

Φ. 

 

 

Figure 2: the determination of the first copy of conics tangent to the 

established three generic conics 

 

Figure 3: 3D modeling of the situation present in figure 2 

 

I.III Intersections between cones having a conic in 

common 

The intersection curve between two quadric cones [7] is a skew 

curve [8] that, in most cases, can be formed by a single branch 

(monogrammic) or by two branches (diagrammatic) [9]. This is 

determined through the use of a sheaf of auxiliary planes that 

have in common the line joining the vertices of the same cones. 

Each of these planes can dissect these cones according to two 

generatrices. Any points common to the generatrices of each 

section plane are the points of the intersection curve.  

In the case discussed in this research, the three established 

cones already have the same conic in common, so the second 

branch of the intersection of each copy of these cones is also a 

conic. In this regard, it should be noted that between the infinite 

auxiliary planes of the mentioned sheaf, there are two planes 

that are tangents to both cones considered. It follows that the 

straight line passing through the two points common to these 

generators, of each tangency plane, identifies the axis of the 

mentioned involution between the coincident projections of 

two conics considered [10, 11] 

The axis of the homological correspondence that exists, two by 

two, between the bases of the three established cones, for 

example between v and w (Fig. 2), is the horizontal trace of the 

plane α where the objective conic Δ lies. The center of this 

homology is the horizontal trace of the line joining the vertices 

of the two cones considered (v and w). 

 

I.IV The condition of tangency between the bases of 

five cones with a conic in common 

Once we have determined the three conics; Φ, Χ, and Ψ, 

common, two by two, to the three established cones; u, v, and 

w, we proceed to identify their two common points P and Q. 

As these two points are the vertices of the two other cones; p 

and q, which have, in turn, the conic Δ in common, we can 

conclude that their bases ΔP and ΔQ are tangent to the bases ΔU, 

ΔV, and ΔW of the cones u, v, and w. 

The justification of this tangency is due to the fact that the 

vertices P and Q of the cones p and q have been determined, 

respectively, as points common to three generatrices of the 

established cones; u, v, and w. In addition, by sectioning all 

five cones: u, v, w, p, and q with any plane, we find that the 

sections of p and q are tangents to those of the three cones u, v, 

and w. By assuming that the section plane coincides with γ -

identified by the vertices of u, v, and w- we have, in addition to 

the three degenerate conics, which are these vertices, also a 

conic Ω, which represents the two coincident sections of the 

two cones p and q. In other words, Ω is obtained as coincident 

projections of Δ from the vertices of p and q on the γ plane. 

The points of tangency, such as WP and WQ, in the intercurrent 

homology, two by two, between the bases of p and q and those 

of u, v, and w, are aligned with the same center PQ, which is 

determined, in this case, as the horizontal trace of the line r (fig. 

2), which is common to the Sheaf of the three planes where the 

aforementioned three conics Φ, Χ, and Ψ lie respectively. 

Instead, the axis, as already stated, is the horizontal trace of the 

plane α where the established conic Δ lies. Furthermore, among 

the planes of that Sheaf, there are also those that have as their 

first traces the straight lines passing through the sought points 

of tangency, between the bases of p and q and those of u, v, 

and w. 

In this way, we have partially described and justified a spatial 

situation (fig.3) that produced one of the four copies of the 

researched conics. These act as bases of the two cones p and q, 
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which in addition to having the same conic Δ in common; also 

have the vertices as common points, respectively, to the three 

established cones u, v, and w. Furthermore; their bases, ΔP and 

ΔQ, are tangents to those of u, v, and w. 

In order to facilitate the following reasons, we have used, 

respectively, the terms: main cone and branched cone, in order 

to be able to quickly distinguish between the three established 

cones, such as u, v, and w, and those determined subsequently, 

such as p and q (which have, respectively, a common generator 

with such established cones). We have also used the terms: 

direct cone and inverse cone, in order to distinguish between 

the cone that has by sections two conics that corresponded in a 

direct way and the one that corresponded inversely. 

 

Figure 4: the schemes of the eight combinations of the vertices of three 

established cones, u, v, w with respect to their common conic Δ. 

I.V The direct and inverse correspondences between 

the sections of a cone 

Considering that the vertex of each of the three main cones can 

be combined between two positions: direct or inverse, with 

respect to two distinct sections of the same cone, the total 

number of combinations of such cones is eight, which have 

been divided into two groups (Fig. 4). The reason for this 

division arises from the fact that by adopting one of the four 

provisions present in the first row or its relative inverse, in the 

second row, the same identical results are obtained in both 

cases. For example, by adopting both the combination number 

2 and number 6, we have two copies of coincident and tangent 

conics, respectively to the three established conics. 

The basic concept to which the various procedures refer, 

depends in particular on the fact that by sectioning, for example, 

two cones v and p (Fig. 5-1), having in common a section Δ, 

and also a generatrix g, with the same plane, π1, we will have 

as section, two conics ΔV, and ΔP that are tangents to each other 

at the point of intersection VP of g with π1. Following, the 

homology between ΔV ΔP has the point of tangency VP as its 

center, between ΔV and ΔP, and has its axis as the intersection 

line of α, where Δ lies with π1. 

The justification for this coincidence arises from the fact that 

the five cones obtained both from a given combination and 

from its relative inverse, all have the same conic section in 

common. For example (fig. 5-2), the inverse v ' and p' of the 

two cones v and p, which have in common both the conical 

section Δ and the generatrix g, are two cones which have, in 

turn, in common over Δ, also a generatrix g', which is the 

inverse of g. By dissecting both the cones v and p, and the 

relative inverses v' and p', we conclude that the sections of v 

and v’ in addition to being coincident with each other, are also 

tangents to the coincident sections of p and p'. 

 

Figure 5: The drawing on the left (1) there are the projections of two 

cones v and p, in which the vertex of one of which belongs to the 

generatrix of the other. The drawing on the right (2) illustrates the 

determination of both the inverse v' of the main cone v and the inverse 

p' of the branched p of v. 

There are various homologies that exist, two by two, between 

the same bases of the three main cones and between the same 

bases of those of the two branched cones (revise fig. 2). Since 

all these five cones have in common the same conic Δ, the axis 

of the various homologies is always the horizontal trace tα of 

the plane α where Δ lies. Instead, the center varies according to 

the mutual positions of the vertices of these cones with respect 

to the plane of homology π1, it is determined as the horizontal 

trace of the line joining the vertices of the two cones considered. 

For example (fig. 5-1), the homology between the bases of the 

cones v and p, has its axis as t'α and its center as the point of 

tangency VP between the bases ΔV and ΔP of v and p. 

 

I.VI The inversion of a quadric cone 

The operations designed to determine both the inverse v’ of the 

main cone v and the inverse p' of the branched p of v (fig. 5-2) 

are the following: 

- The vertex V’ of v’ is determined as the intersection point 

of the two generatrices b’ and c’, which are obtained by 

inverting the correspondence between the projections of 

the two sections ΔV and Δ of v. To this end, the pole VV’ of 

t’α with respect to ΔV is determined; and is joined with V, 

thus, obtaining the line l, for which plane β is passes, which 

section v according to the two generatrices b c. The 

intersection which with ΔV and Δ identifies a copy of 

corresponding points A, AV and B, BV. The center and axis 

of this correspondence are respectively V and tα.  

Since the center V is on the same side with respect to the 
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corresponding points, the correspondence is said to be 

direct, otherwise, it is inverse when V is in an intermediate 

position. 

 
- Figure 6: the determination of the second copy of the 

conics tangent to the established three generic conics Δu, 

Δv, and Δw 

 

- The sought vertex V’ of the cone v' is determined as the 

intersection point of the lines b' c', which are the inverse 

generatrices of b c. The determination of these generatrices 

b’ c' occurs by reversing the alignment between the copies 

A_AV and B_BV of corresponding points. That is one of 

the corresponding points, for example, AV is joined with 

the corresponding B of the other point BV and vice versa. 

- Finally, the vertex P’ of the inverse p' of the cone p is 

determined as the intersection point of the inverse 

generatrix g’ of g with the line joining the vertex P of the 

branched cone p with the center of the inversion R of the 

two cones v and v'. This center is determined as the 

intersection point of l with α. 

 

 

Figure 7: the determination of the third copy of the conics tangent to 

the three established generic conics Δu, Δv, and Δw 

 

Figure 8: the determination of the fourth copy of the conics tangent to 

the three established generic conics Δu, Δv,and Δw 

 

I.V1I The difference between direct and inverse 

tangency 

It should be noted that in the various solutions (Fig.2, 6, 7, 8) 

the bases of the branched cones include one or more bases of 

the three main cones, or exclude them. This fact depends on the 

reciprocal position of three elements which are the vertex of a 

branched cone and that of the main cone and their common 

section Δ. According to the type of perspectivity, direct or 

inverse, which occurs, respectively, between Δ and the bases of 

these cones, two cases can generally arise: when the vertices of 

these cones act as centers of two direct perspectives, or inverse, 

the base of the branched cone includes that of the main cone; 

otherwise it excludes it when one of the two perspectives is 

direct and the other is inverse. For example (fig. 11), the basis 

ΔQ of q includes ΔW of w because they are obtained 

respectively from two direct perspectives. Instead, the two 

bases ΔW and ΔP are mutually exclusive because they have been 

obtained from two different perspectives. 

 

Figure 9: According to the type of perspectives that produced two 

projections of the same conic, it can happen that when both 

perspectives are direct (or inverse), one projection includes the other; 

otherwise, they are mutually exclusive when one perspective is direct 

and the other is inverse. 



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 4 (2021), pp. 323-332 

© International Research Publication House.  http://www.irphouse.com 

327 

In each of the cases dealt with seen in fig. (11,12), it can be 

noted that the poles RU, RV, and RW of t'α, with respect to the 

three established conics; ΔU, ΔV, and ΔW, are projections of the 

same point R from vertices of the main cones; u, v, and w on 

π1. Hence, R acts as the objective pole of these projections. 

Furthermore, point R is the pole of the polar obtained as a 

common line to the α and γ planes with respect to the conic Δ. 

Where α is the plane where Δ lies and γ is the one identified by 

the vertices of u, v, and w. For example, by joining R with the 

pole VP of the base ΔV of v we have d as the pole line [12] of 

the cone v with respect to the horizontal trace (or the first trace) 

of γ. The pole line d has the property of being the locus of the 

poles [13] of the polar obtained, respectively, as lines of 

intersection of the planes sectioning the cone v, with respect to 

the conic sections of these planes. In other words, by sectioning 

both; γ according to line r, and the cone v according to conic Δ, 

with any plane, α, we have in any case that the pole R of r with 

respect to Δ belongs to the pole line d. In this regard, the 

coincident projections in PQ of the objective pole R from the 

vertices of the two branched cones p q on π1 is the center of the 

cyclic transformation that not only envelops the bases of u, v, 

and w, but also includes all the bases of those cones which have, 

respectively, as vertices, the points belonging to γ, and as a 

common section the same conic Δ. 

 

Figure 10: 3D modeling of the situation present in figure 9 

 

Figure 11: The cyclic transformation of the three established conics; 

ΔU, ΔV, and ΔW, has the point PQ as its center, the conic ΩP as its 

director axis, and ΔP, ΔQ as the envelope lines. 

In this case, specifically, the bases are horizontal cross-sections 

of three cones (fig. 13), the pole lines of these cones are parallel 

to each other, and therefore, the place of these pole lines is a 

cylinder and not a cone, unlike the previous cases. 

In conclusion, it can be stated that the invariant in each of the 

four cyclic transformations is not the locus of the centers of the 

enveloped conics; ΔU, ΔV, and ΔW and their transformed conics 

as it occurs in the case of homothetic ones; but it is that of the 

poles of t’γ (the first trace of the plane γ identified by the 

vertices of the three main cones; u, v, and w) with respect to 

the mentioned conics. 

I.VIII Results 

In all four transformations, there are 24 points of tangency 

between the assigned conics ΔU, ΔV, and ΔW and the four copies 

of the determined ones (fig. 14). These points of tangency are 

aligned, two by two, with the same point PQ, which acts as the 

center of a star of four sheaves of planes, which act respectively 

as support of the lines passing through the vertices of four 

copies of the branched cones. 

 

Figure 12: 3D modeling of the situation in figure 11 

 

Figure 13: the polar cylinder of the three cones u, v, and w, has as 

generatrix the pole lines of these cones with respect to the 

corresponding plane γ identified by the vertices U, V, and W of u, v, 

and w. So the section of this cylinder with π1 is a conic that acts as a 

locus of the poles of the first trace of γ with respect to the bases ΔU, ΔV, 

and ΔW of u, v, and w. 
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From the section of such a star with π1, a sheaf of lines is 

obtained, which has the point PQ as its center. 12 straight lines 

of this sheaf are respectively the traces of the planes that pass 

through the vertices of 20 cones which include 12 main cones 

(9 direct and 3 inverse) in the four combinations and 4 copies 

of the branched cones. 

The other lines of the same sheaf, with reference to the said 

transformations, are respectively the traces of the planes that 

pass through the vertices of both a copy of branched cones and 

of other cones conjugated to the main ones. 

The other straight lines of the sheaf are the traces of the planes 

that pass, respectively, through the vertices of the branched 

cones and through those of the conjugated cones to the main 

ones. All these conjugated cones have the vertices belonging to 

the same γ plane (identified by the vertices of the three main 

cones), and also have the same conic in common. Therefore, 

their bases are enveloped, respectively, by those of the four 

copies of branched cones. 

 In consideration of the fact that the four transformations are 

defined, respectively, by the three established conics, it is 

possible to pass from one transformation to another, without 

interruption, through one of these conics. 

 

Figure 14: the grouping of the four determined copies of conics 

tangent to the three established conics ΔU, ΔV, ΔW. In which we see 

that the 24 points of tangency are aligned, two by two, with the same 

point PQ 

III. The classification of cyclic transformations 

In order to classify the cyclic transformation G (fig. 15) 

between coplanar conics, the following considerations should 

be kept in mind: 

- A cyclic transformation G is identified whether three 

enveloped conics; ΔU ΔV and ΔW, or two enveloping conics;  

ΔP and ΔQ, are known 

- These five conics are considered as bases of as many cones, 

that have the same conic Δ in common, as possible, In 

which ΔU, ΔV, and ΔW indicate the bases of the three 

enveloped cones v, u, and w and ΔP, ΔQ of the two 

enveloping cones p and q. Hence, ΔP and ΔQ are tangents 

to ΔU, ΔV, and ΔW. 

- The vertices P Q of the enveloping cones p and q are 

determined as common points of the enveloped cones v, u, 

and w. 

- The two cones p and q which have in common a conic Δ 

intersect according to another conic Ω, which represents 

the locus of the vertices of the enveloped cones and is 

determined using a sheaf with an axis d (that passes 

through the vertices P, Q of p, q). Furthermore, it should 

be noted that Ω is the locus of the poles of degenerate 

conics, which are the vertices of the enveloped cones. 

- Between the two conics Δ and Ω, common to two envelope 

cones P and Q, there is an involutive correspondence. Its 

axis is the intersection line of the two planes α and γ, where 

Δ and Ω lie, respectively. Instead, the center of this 

involution is the point of intersection R of the plane of Δ 

with the pole line d. 

- The director axis ΩR of G is the geometric locus of the 

poles; UR1, VR1, and WR1 of the polar line (t'γ) with respect 

to the enveloped conics ΔU, ΔV, and ΔW. These poles are 

determined as projections, on π1, of the vertices U, V, and 

W, of the enveloped cones from the vertex R of the polar 

cone ρ. 

- The vertex R of the polar cone ρ is determined as the 

intersection of the line d with the plane α, where the 

objective conic Δ lies. 

- The axis ΩR is determined as a section of ρ with the π1 

plane, where the enveloped conics lie. 

 

Figure 15: an elliptic cyclic transformations 

Therefore, according to the position of the frontal plane π1
0 

passing through R, with respect to the conic Ω, a cyclic 

transformation G can be classified as follows: 

- Elliptic, when the plane π1
0, is external with respect to Ω. 

In this case, the base ΩR of the polar cone ρ is formed by 

all proper points 

- Parabolic, when π1
0 is tangent Ω. In this case ΩR has an 

improper point (a single point at infinity). 

- Hyperbolic, when π1
0 is secant Ω. For which ΩR has two 

improper points (two points at infinity). 

The previous classification can also be applied to cyclids that 

envelop conjugated surfaces. 
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IV. A construction's modality of a cyclide with 

conjugated enveloped surfaces 

A cyclic transformation in given (fig. 16), identified by three 

conics, ΔU, ΔV, and ΔW, coplanar and non-homothetic, and by a 

copy of conics; ΔP and ΔQ, tangent to the first ones. We want to 

model a cyclide K in which the given conics act, respectively, 

as bases of enveloped and enveloping surfaces. 

It is established that the pole lines of all these surfaces are 

parallel to each other. It is decided that the corresponding plane 

γ of these pole lines passes through the line tγ and the point U, 

which can be decided on a pole line of the enveloped surfaces. 

For example, on b of u. The first trace tγ of the γ plane 

represents the polar of the poles with respect to the enveloped 

conics; ΔU, ΔV, and ΔW. 

 

Figure 16: the orthogonal projections of significant elements of a 

Cyclide enveloped conjugated surfaces 

Since the bases of the enveloped surfaces are non-homothetic 

conic, therefore, also the meridian generatrices of such surfaces 

are not homothetic. For example, if we decide that the 

generatrix g of u is an arc of the circumference, the other 

generatrices of u are not arcs of circles, but arcs of ellipses, 

which are determined, respectively, as, projections of g from 

centers belonging to tγ, on a sheaf of planes passing through b. 

For example, to determine the UV center of the correspondence 

between two generatrices, g h, of u, we join two corresponding 

points, UP H, of ΔU, with a line that meets t'γ in the sought UV 

center. Similarly, the meridian generatrices of the other 

enveloped surfaces are determined. For example, using the UV 

center that we have just determined, we can project g onto the 

meridian plane of v, which passes through UP. 

Instead, the directrices of the enveloped surfaces are 

determined as common sections of the consecutive series of 

auxiliary cones. These directrices are obtained as sections, of 

the auxiliary cones, with a sheaf of planes passing through t'γ. 

To determine, for example, the directrices of u, proceed as 

follows: Divide the arc g into equal parts, and the division 

segments are prolonged until meeting the straight pole b. Thus, 

they identify the vertices of as many cones. The first cone m 

has the conic ΔU as its base and the point M as its vertex, which 

is determined as the intersection point of b with the extension 

of the UP-UM segment, where UP is the point that belongs to ΔU, 

and the other point UM belongs to the sought second directrix 

of u. The determination of which is obtained by sectioning the 

first cone m with the plane passing through the point UM and 

the line t'γ. The third directrix of u is obtained by sectioning 

the third cone n with the plane passing through UM and t'γ. The 

vertex N of n is the intersection point of b with the extension of 

the segment UM-UN, where point UN refers to the mentioned 

division of g. Similarly to the previous steps, the other 

directrices of u are determined. 

Keep in mind that the sheaf of planes that pass through tγ 

sections the surfaces, both enveloping and enveloped, 

according to a series of cyclical transformations. The centers of 

which are determined, respectively, as the intersection points 

of the pole line d with the planes of the same sheaf. 

Furthermore, the straight pole d of the envelope surface, which 

in addition to representing the locus of the poles of tγ with 

respect to the various directrices of the cyclide K, is also the 

locus of the vertices of the auxiliary cones that approximate the 

surface of k.  

The line d, in this case, represents the axis of a rotation, but 

with reference to all cases of surface of revolution, whether 

circular, elliptical, parabolic, or hyperbolic; the meridian 

generatrices of the enveloped surfaces coincide, respectively, 

with those of the enveloping ones. 

For the construction of a cyclide, in general, it should be noted 

that there are two types of sheaves of planes on which lie the 

main generatrices and directrices of both the enveloping and 

enveloped surfaces. The first type is represented by a set of 

sheaves of meridian planes that pass respectively through the 

pole lines of these surfaces; the second type passes through the 

polar line of the poles with respect to the directrices of the same 

surfaces. 

 

V.  Results and Discussions 

At this point, and after having solved the problem proposed by 

this research: the determination of all the possible conics 

tangent to three established coplanar and non-homothetic 

conics, it would be important to mention the possible 

applications of this solution in the field of architecture. 

Therefore, the descriptive geometric method formulated by this 

research can allow us to obtain new types of envelope surfaces 

[14]. 

Therefore, it is noted that the envelope of a planar cyclic 

transformation of a family R of corresponding conics is formed 

by a copy of conics tangent to each member of R in two 

corresponding points. It follows that for each pair of 

corresponding points of the envelope, only one conic passes; 

and that each point of the envelope has the same tangent to each 

conic of R. Similarly, the envelope of a cyclic transformation 
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of a family S of conjugated surfaces is a surface that touches 

each member of S in a curve. Each copy of envelope conics 

identifies infinite cyclids, such as S. Each point of the envelope 

has the same tangent plane to each member of S. 

 

Figure 17: on the left side there is a cichlid enveloped conjugated cone. 

On the right there is a cyclide that envelops surfaces with curved 

generatrices. 

Therefore, passing from a cyclic transformation between conics 

to that between surfaces we can identify different types of 

cyclids [15], in the condition in which the enveloped surfaces 

are conjugated, two by two to each other. 

For example, the surface located in the left part of figure 17 

there is a cyclide enveloping a sufficient number of cones 

which have, as their basis, the conics obtained in the first cyclic 

transformation (see figure 2). 

The surfaces obtained with this procedure can be considered as 

a possible extension of Dupin's cyclids. The difference is that 

Dupin's cyclids are obtained, respectively, as enveloping 

surfaces of the cyclic transformations of three spheres. Instead, 

in our case, the surfaces can envelop, respectively, different 

types of conjugated surfaces. It follows that by determining the 

four cyclical transformations of three established generic 

conics, we can have numerous and interesting types of surfaces 

for architecture (fig. 17, 18). 

As an alternative to assigning three coplanar conics that act as 

bases of the enveloped surfaces of a cyclide k, we can proceed 

with the sketch of a profile of the desired surface; to 

approximate it with conics obtained as projections of the same 

conic; and then to determine the various cyclical 

transformations between these conics. For example, in the 

attached case (fig.19), there are three cyclical transformations: 

the first is the cyclical defined by the conics Δ1 and Δ2 with the 

center in the point U; the second is between Δ3 and Δ4 with the 

center in point V, and the third is between Δ1 and Δ4, with the 

center in point W, and which acts as a connecting cyclic 

between the first two cyclics. The advantage of approximating 

free surfaces a priori using quadric cones (fig. 18) is to facilitate 

the process of constructive and, therefore, economic 

rationalization of the architectural project. 

 

 

Figure 18: the approximation of an elliptical cyclide using conical 

surfaces 

 

Figure 19: an example of non-homothetic cyclic tangential connection. 

Conclusions 

This research has generalized the problem of tangency between 

non-homothetic coplanar conics. We determined four copies of 

conics tangent to the established conics, which have been 

obtained as coplanar projections of the same conic. The points 

of tangency between the established conics and the determined 

ones are, respectively, the traces of the common generatrices of 

enveloped cones and those of enveloping ones. The vertices of 

the enveloped cones, in each case, belong to the same plane, 

which varies according to the combination of the three assigned 

cones (revise fig. 04). The points common to the three 

enveloped cones, in each case, are the vertices of the 

enveloping ones. 

The methodology for the generation of the various cyclic 

transformations is mainly based on the computerized 

applications of the concepts of descriptive geometry. Such as: 

involution, intersections between conjugated cones, polarity in 
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space, pole line, and polar cone. Like many geometric 

operations, even the cyclical transformations in the plane and 

space are identified by three enveloped conics or by two 

enveloping conics. 

We studied the classifications of plane cyclic transformations 

between conics and spatial between cyclids, which are 

determined as the envelope of a successive series of cyclical 

transformations, conjugated, two by two. The centers of each 

of these transformations are the points of intersection of the 

polar lines of the corresponding plane with respect to a 

considered cone. We illustrated how to identify various types 

of cyclids by passing from a cyclic transformation between 

conics, to that between surfaces, which can be considered as a 

possible extension of Dupin's cyclids. The difference is that 

Dupin's cyclids are obtained, respectively, as enveloping 

surfaces of the cyclic transformations of three spheres. Instead, 

in our case, the surfaces can envelop, respectively, different 

types of conjugated surfaces. It follows that by determining the 

four cyclical transformations of three established coplanar 

conics, it is possible to have numerous and interesting surfaces 

for architecture (revise Fig.17,18). 

This research offers the alternative to assigning three coplanar 

conics that act as bases of the enveloping surfaces, for example, 

by proceeding with a free sketch of the profile of the desired 

surface; to approximate it with conics obtained as projections 

of the same conic; and then to determine the various cyclical 

transformations between these conics. Therefore, the procedure 

allows us to obtain tangential continuity between conjugated 

cyclids, which are created as the envelope of a successive series 

of cyclic transformations of conics corresponding two by two, 

to each other.  

Curves and surfaces created with this method can be considered 

as a priori approximation of free surfaces. The advantage of 

building cyclids through the use of conical surfaces, due to their 

property of being developable, allows to facilitate the process 

of constructive and, therefore, economic rationalization of the 

architectural project. 

This research enriches the vocabulary of architectural forms 

with curves and surfaces that are more controllable as 

geometric locus. 

Furthermore, this research has also didactic utility: in 

emphasizing the ability of descriptive geometry in solving 

complex spatial problems. Because the processes of creating 

models in space, through drawing, not only allow the 

visualization of perceived ideas but constantly reveal, in a 

simple and direct way, unexpected problems and unknown 

geometric properties. Hence, "descriptive geometry provides 

continuous examples of the passage from the known to the 

unknown”. 

It, therefore, provides architects and designers with alternative 

ways of designing envelope surfaces, with easily 

understandable geometric notions. The ability to translate the 

descriptive processes of this research into algorithms can help 

designers automate repetitive tasks. 

 

 

 References 

[1]   Apollonius of Perga, 200 BC, Conics, books V to VII : 

the arabic translation of the lost Greek original in the 

version of the Banu Musa. 1. Arabic version of the Conics 

 .(أبلونيوس ;Ἀπολλώνιος) by (كتاب المخروطات)

[2] Given three geometric entities, each of which can be a 

point, a straight line or a circle, draw a circle (or 

circumferences) tangent all of them. There are a total of ten 

cases. The two easier ones include three points or three 

lines and the most difficult includes three circles. Cfr. 

Viete, F., 1600, Apollonius Gallus seu, Exsuscitata 

Apollonii Pergaei peri epafwn Geometria, Ad V. C. A. R. 

Paris. 

[3] Van Romeen, A., 1596, Problema Apolloniacum, 

Adrianum romanum constructum. Wirceburgi, Typis 

Georgij Fleifchmanni., pp.18. 

[4] Three cones are said to be conjugated to each other, when 

their coplanar sections are not only corresponding to each 

other two by two, but also have the centers of 

correspondence, both direct and inverse, belonging to the 

same line. That when the section. Cfr. Schiapparelli, G. V., 

1862, “Sulla trasformazione geometrica delle figure ed in 

particolare sulla trasformazione iperbolica, Stamperia 

reale, Torino. pp. 47-51. 

[5] Migliari, R., 2008, il problema di Apollonio e la geometria 

descrittiva- The apollonian problem and descriptive 

geometry, idee immagini- ideas image. pp. 22-33. 

[6] The vertices of three established cones having a section in 

common can identify any position, and in the case in which 

it is horizontal, we will have improper points as the centers 

of the correspondences that exist, two by two, between the 

bases of these cones. Cfr. Schiapparelli (1862), op. cit. 

[7] Enriques F., 1898, Lezioni di geometria proiettiva, Italian 

ed. pp. 208, 305. 

[8] Fiedler W., 1873. Trattato di geometria descrittiva, Le 

Monnier, Firenze. p. 260. 

[9] Bortolotti, E., 1942, Geometra Descrittiva: lezioni redatte 

per uso degli studenti,  Cedam, Padova. p. 529. 

[10] Pasi. C,. 1844, Sunto di lezioni di Geometria descrittiva, 

2nd ed., Volume 1. Bizzoni. p. 65. 

[11]  De Lagrange. F. A., 1872, Catalogue of a collection of 

models of ruled surfaces, with an appendix, containing an 

account of the application of analysis to their investigation 

an d classification, by C. W. Merrifield, principal op the 

Printed by George E. Eyre and William Spottiswoode. 

London. p.29 

[12]  If in the plane of the base ΔV of a quadric cone v, the line 

p is the polar of a point P with respect to ΔV, the line that 

passes through the vertex V of v and through P is the pole 

line. The plane γ passing through V and p is the 

corresponding polar plane with respect to the cone v. Cfr. 

Fiedler (1873), Op. cit. pp. 215-216.  



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 4 (2021), pp. 323-332 

© International Research Publication House.  http://www.irphouse.com 

332 

[13] Guglielmo, F., 1874. Trattato di geometria descrittiva, 

Sucessori le Monnierp. pp. 253-254. 

[14]  The polar planes of the points of a straight line r not 

passing through the vertex V of a cone v, form a Sheaf 

whose axis r 'passes through V. for which r' is called the 

polar line of r. Hence the straight line r' contains the poles 

of r with respect to the conic sections with the planes for 

it. CFR. Guglielmo (1874) Op. Cit. p. 377 

[15]  Sereni, C., 1826. Trattato di geometria descrittiva, 

Stamperia di Filippo e Nicola De Romanis. Roma. (1826), 

parte III: delle linee e delle superfici curve. pp. 37- 40. 

[16]  Loria. G., 1885, Ricerche intorno alla geometria della 

sfera, proprieta generali dello spazio di sfere, In: Memorie 

della Reale accademia delle scienze di Torino. Italy, 

Stamperia reale. pp. 256-295. 

[17]  Severi, F., 1879-1961, Geometria proiettiva, University of 

Michigan Historical Math Collection. 

 


