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Abstract 

Investigating engine performance and emissions under varying 

conditions and for different fuels is a costly and time-

consuming exercise. This may also require sophisticated 

equipment which may not be readily available. In this study, 

two Analytical Neural Network (ANN) models were developed 

to predict diesel engine performance and emissions 

respectively, when fuelled by Distilled Tyre Pyrolysis Oil 

(DTPO). The models were based on back propagation learning 

algorithm. The data used to train and test the ANN was 

experimentally collected from a single cylinder four stroke 

diesel engine operated at speed ranging from 800 to 3500 rpm. 

The fuel blends contained 0 – 80% Distilled Tyre Pyrolysis Oil 

(DTPO) in diesel fuel. The fuel blends and engine speed were 

the input variables for each network. The performance of the 

model was evaluated by comparing experimental and ANN 

predicted results.  The coefficient of determination (R2) was 

found to be 0.9831, 0.9977, 0.9852, 0.9836, 0.9961, 0.9921 and 

0.997 for Torque, Power, Brake Specific Fuel Consumption, 

Peak pressure, HC, NOx and CO respectively. The Mean 

Square Error between the measured and simulated values was 

0.00396 for the engine performance model and 0.000163 for 

the emissions model.  It can be concluded that the engine 

performance and emissions of a Diesel Engine running on 

DTPO and its blends with diesel fuel can be reliably predicted 

using Artificial Neural Network.  

Key words: tyre pyrolysis oil, diesel engine, emission, 

performance, Analytical Neural network 

 

1 INTRODUCTION  

Due to industrialisation and growth in the transport sector, the 

demand for petroleum products such as diesel fuel has been on 

the increase. Most countries depend on imported oil and as a 

result they are vulnerable to fuel price fluctuations which can 

have a negative impact on their economies. To cope, 

investment in research for alternative fuels has been on the 

increase with the aim of getting a fuel that is compatible with 

the engines and meets the stringent emission norms. Fuels like 

alcohols and biodiesel have been considered as alternatives to 

power diesel engines. Conversion of waste to energy is also 

under investigation. One of these wastes is scrap tyres, which 

can be taken through the pyrolysis process to produce three 

products: gas, liquid and char. This liquid is referred to as Tyre 

Pyrolysis Oil (TPO) which has similarities with diesel fuel. 

However, for a fuel to be considered acceptable for use in the 

diesel engine, apart from fuel properties, several tests have to 

be performed in a diesel engine under different operating 

conditions to established its suitability in terms of performance 

and emissions. Testing the diesel engine under different 

operating conditions is a time consuming and expensive 

process that also requires the use of specialised equipment. 

These equipment may not be readily available. As a result, it 

may be necessary to develop a predictive model for engine 

performance.   

Engine modelling is carried out for two main purposes, to 

predict engine performance without performing tests and to 

determine the parameters that cannot be evaluated 

experimentally (Richard, 1992). The complexity of the 

processes in the diesel engine make it difficult to model from 

first principles, thus engine models rely a lot on experimental 

data and empirical correlations (Richard, 1992). Estimation of 

engine performance at given speeds and loads is normally done 

using engine performance maps, these maps are experimentally 

generated (Celik & Arcaklioğlu, 2005, Richard, 1992). The 

maps mainly display contours of BMEP and BSFC but can also 

contain plots for emissions, ignition timing and air fuel mixture 

strength (Richard, 1992). These parameters are plotted 

graphically against speed. Generating this engine maps is a 

long and tedious process besides the requirement of skilled 

personnel and specialised instruments. For example, 400 – 600 

engine test runs as different combination of speed and load may 

be required to generate a fuel consumption map for a particular 

engine (Rawlins, 2005). Due to the lengthy and tedious 

experimental work involved in the generation of engine maps, 

machine learning methods such as Artificial Neural Network 

(ANN) has become an attractive modelling tool.  

ANN models are developed from experimental data and have 

been found suitable in predicting various aspects of the diesel 

engines performance with acceptable level of accuracy. 

Ghobadian et al., (2009) found that ANN was satisfactory in 

predicting Torque, Specific Fuel consumption, HC and CO 

emissions of a diesel engine running on waste cooking oil 

biodiesel using the backpropagation algorithm. The prediction 

was done based on blend concentration and engine speed. An 

analysis performed showed a good relationship between 

independent experimental data and predicted data with 

correlation coefficient close to one and a mean square error of 
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0.0004. Oğuz et al., (2010) developed an ANN model to 

estimate the Brake Power, torque, fuel consumption and 

Specific Fuel Consumption of an engine running on blends of 

diesel, biodiesel and bioethanol. A statistical t-test analysis 

between the predicted and experimental results showed no 

significant difference at 95% reliability.  Nikzadfar & 

Shamekhi, (2014) employed an ANN model to investigate the 

contributive effect of 10 operational parameters on the 

performance of a common rail diesel engine. A 6% error was 

noted between predicted and experimental results. Spray 

quality as a function of engine variant parameters has been 

investigated using the Levenburge-Marquardt training 

Algorithm of ANN by Taghavifar et al., (2014). The spray 

quality parameters; sauter mean diameter and penetration were 

predicted with R2 values closer to 1. Diagnosis of misfiring of 

one or more cylinders is usually done by measuring cylinder 

pressure, this requires the installation of a pressure sensor 

which is a taxing process. Jianmin et al., (2011) use the back-

propagation algorithm to diagnose the diesel engine misfire. 

ANN was able to accurately locate a misfiring cylinder based 

on cylinder vibration signal. From data of exhaust gas 

temperature and engine speed, Bietresato et al., (2015) was able 

to estimate torque and BSFC of a farm tractor engine using 

ANN. Rawlins, (2005) developed an ANN model to aid in 

monitoring the performance f the diesel engine operation in 

industrial set up. Therefore, ANN can be considered a powerful 

modelling tool to study complex interactions from input output 

data and make accurate predictions.  

In spite of the modelling ability artificial neural network, no 

investigation to predict engine performance and emissions of a 

Diesel engine fuelled by DTPO using ANN approach could be 

found in literature. Therefore, in the present work, experimental 

data from a previous study was used to train and test ANN 

models for predicting diesel engine performance (Torque, 

power, Peak Pressure and BSFC) and emissions (HC, NOx and 

CO). The input parameters were engine speed and blend 

concentration.  

 

2 METHODOLOGY  

2.1 Engine performance tests 

The tyre pyrolysis oil used in this work was obtained from local 

dealers. Blends of diesel and DTPO were prepared containing 

0, 20, 40, 60 and 80% by mass with diesel were used. The 

process of preparation and properties can be found in a previous 

publication (Obadiah et al., 2017). The engine tests were 

performed on a naturally aspirated, direct injection four stroke, 

single cylinder TD 302 diesel engine test set with the following 

characteristics: Continuous rated power of 6.5 kW at 3600 

rev/min; Compression ratio 20.5:1; Engine capacity 462 cm3; 

Stroke/crank radius 79 mm/38 mm; Connecting rod length 124 

mm. The exhaust gaseous emissions were measured using an 

IMR 2800P gas analyser. The tests were done at speeds of 800, 

1200, 1600, 2000, 2400 2800, 3200 and 3500 rev/s under 

SteadyState conditions. At each speed, torque, power fuel 

consumption, peak pressure and emissions were recorded. 

 

 

2.2 Analytical neural topology 

Selection of optimal network topology is the most important 

thing in ANN modelling, i.e. number of hidden layers, neurons 

and activation function (Omidvarborna et al., 2016, Roy et al., 
2014, Rao et al., 2016). The ANN model in this work was 

developed on MATLAB 2009a platform, the training 

parameters are presented on Table 2.2-1. A three-layer 

network; input, one hidden and output layer was used. The feed 

forward backpropagation architect was used for modelling.   

Table 2.2-1 Training parameters of the proposed ANN model 

on MATLAB 2009a platform 

Training algorithm Levenberg-Marquardt algorithm  

Data partitioning  Training 70%; Validation 15%; 

Test Subset 15% 

Hidden layer activation 

function 

Logsig 

Output layer activation 

function 

Purelin 

Performance function Minimum MSE  

Normalising range  0 to -1 

 

Two independent models were developed, one for predicting 

engine performance and the other for predicting engine 

emissions. Both models had two input variables which are 

engine speed and blend. For the first model on engine 

performance, there were four outputs which included power, 

torque, BSFC and Peak pressure. Therefore, the engine 

performance network had two input nodes and four output 

nodes. The emissions model had three output nodes 

corresponding to HC, CO and NOx. with two input nodes.  

Data obtained from experiments was used to train the network. 

38 experimental data sets were used for training and testing. 

70% was randomly selected for training, 15% for testing and 

15% for validation. Other researchers have used this 

partitioning ratio with satisfactory results (Roy et al., 2014, 

Omidvarborna et al., 2016). The data was pre-processed and 

scaled to a range of 0 – 1 according to Equation 2.2.1, in 

compliance with logsig transfer function. 

𝑋𝑛 =
𝑋𝑟−𝑋𝑟,𝑚𝑖𝑛

𝑋𝑟,𝑚𝑎𝑥−𝑋𝑟,𝑚𝑖𝑛
∗  (𝑋ℎ − 𝑋𝑙) + 𝑋𝑙        Equation 2.2.1 

Where 𝑋𝑛 is the normalised variable input, 𝑋𝑟 raw input 

variable, 𝑋𝑟,𝑚𝑖𝑛 and 𝑋𝑟,𝑚𝑎𝑥  are maximum and minimum of 

input variable, and 𝑋ℎ and 𝑋𝑙 are set to 0 and 1.  

The activation functions and training and learning algorithms 

selected play significant roles in the network modelling. The 

feed forward back-propagation neural networks with 

Levenberg-Marquardt training algorithm is popular and has 

been successfully used to make accurate estimates (Ghobadian 
et al., 2009, Omidvarborna et al., 2016, Taghavifar et al., 2015, 
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Sharma et al., 2016, Rao et al., 2016, Tosun et al., 2016). So 

Levenberg-Marquardt was chosen as the training algorithm for 

this study. The purelin transfer function was used in the output 

layer while the logsig transfer functions were used in the hidden 

layer. This is a frequently used arrangement of activation 

functions in  ANN modeling and has produced satisfactory 

results elsewhere (Sharma et al., 2016, Tosun et al., 2016). 

There is no general criteria for deciding the number of neurons 

in the hidden layer, it’s done by trial and error (Oğuz et al., 
2010, Uzun, 2012, Rao et al., 2016). Networks are very 

sensitive to the number of neurons, too many neurons in the 

hidden layer can lead to overfitting while too few neurons can 

lead to under fitting (Hagan, 1995). In this work the number of 

neurons was adjusted in steps of two from six till the highest 

correlation coefficient was achieved. The maximum number of 

epochs was set at 1000 and the correlation coefficient was 

selected as the function to be maximised. 

The training data set was presented to the network and used for 

training, the gradient is computed and weights and biases are 

adjusted according to its error. During the training process, the 

error on the validation set is monitored and training is stopped 

when generalisation stops improving. The network weights and 

biases are saved at the minimum of the validation set error. The 

test data is used to independently check the overall performance 

of the network.  Finally, to evaluate the model prediction 

ability, a regression analysis of networks output values and the 

desired target values was performed to investigate the networks 

generalisation.  

 

3 RESULTS AND DISCUSSION 

3.1 Prediction of engine performance using ANN 

An ANN model was created with the aim of predicting Power, 

torque, sfc and peak pressure based on DTPO blend 

concentration and engine speed. As mentioned previously, the 

goal was to maximize the correlation coefficient (R). The 

optimum number of neurons was found to be 10 with a MSE of 

0.00396 for the network. The correlation coefficient for the 

training, validation and testing data sets was 0.99476, 0.99606 

and 0.99699. That for the whole network was 0.99519. The 

high correlation and low MSE by the model indicate that the 

model can predict the engine performance adequately. 

To analyze the model further, a regression analysis of the 

predicted Power, torque, sfc and peak pressure, with the 

measured experimental values was carried out and are shown 

in Figure 3.1.1 to Figure 3.1.4. From these figures, it is 

important to note that the predicted values are very close to 

experimental values, all with R2 higher than 0.98. The highest 

accuracy was noted in prediction of power with an R2 value of 

0.9977, then followed by sfc (0.9852) then peak pressure 

(0.98).  

 

 

Figure 3.1.1. Predicted and the measured values for engine torque 
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Figure 3.1.2. Predicted and measured values for engine power 

 

 
 

Figure 3.1.3. Predicted vs measured values for SFC 
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Figure 3.1.4. Predicted and measured values of peak pressure 

 

Additionally, equations for Torque, Power, SFC and Peak 

pressure were developed and given by Equation 3.1.1 to 

Equation 3.1.4 . Where FR and nR are defined by equations 

Equation 3.1.5 and Equation 3.1.6. the weight values are 

presented in Table 3.1-1 . 

 

 

 

 

𝑇𝑜𝑟𝑞𝑢𝑒 = −0.62824 𝐹1 − 2.27774𝐹2 − 4.95962𝐹3 − 3.15835𝐹4 + 2.396874𝐹5−0.68893𝐹6 −

0.66841𝐹7 + 1.148365𝐹8 + 0.94004𝐹9 − 0.77478 𝐹10 +3.11982 

Equation 3.1.1 

𝑃𝑜𝑤𝑒𝑟 = −0.39857𝐹_1 − 0.99469𝐹_2 − 1.74611𝐹_3 − 1.15229𝐹_4 + 0.664703𝐹_5 − 0.17873𝐹_6 −

2.29807𝐹_7 + 0.389097𝐹_8 + 0.29911𝐹_9 − 0.39475𝐹_10 +2.459376 

Equation 3.1.2 

𝑠𝑓𝑐 = 0.687379𝐹1 + 1.158229𝐹2 + 4.013523𝐹3 + 2.364102𝐹4+0.544825𝐹5 + 0.128098𝐹6 +

0.39712𝐹7 + 0.503372𝐹8 ± 0.31545𝐹9 + 0.410813𝐹10-4.34864 

Equation 3.1.3 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = −4.87243𝐹1−6.89962𝐹2 + 0.40131𝐹3 + 0.791098𝐹4 + 2.109962𝐹5 − 0.00679𝐹6 +

0.602341𝐹7 + 1.305551𝐹8 + 0.71885𝐹9 − 0.42125𝐹10 +2.429029 

Equation 3.1.4 

𝐹𝑅 =
1

1 − 𝑒−𝑛𝑅
 

Equation 3.1.5 

𝑛𝑅 = (%𝐷𝑇𝑃𝑂)𝑊1𝑅 + (𝑅𝑃𝑀)𝑊2𝑅 + 𝑏𝑅 Equation 3.1.6 
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Table 3.1-1 weights between input and hidden layer for 

engine performance network 

R W1R W2R bR 

1 -9.76025 -12.4795 14.54184 

2 6.648437 7.144041 -9.16342 

3 1.979585 -2.15947 -2.53553 

4 -3.49731 1.656516 2.546858 

5 2.986831 -0.98879 2.189052 

6 6.245957 4.506771 -0.95217 

7 0.01654 -2.35417 -0.17246 

8 -9.31786 0.50364 -5.47606 

9 -0.14736 10.10856 -8.31487 

10 -5.19179 -7.23604 -10.3794 

3.2 Prediction of engine emissions using ANN 

A network with one hidden layer was developed to predict HC, 

CO and NOx. A network with 10 neurons was considered 

satisfactory. The proposed ANN model for predicting HC, CO 

and NOx had correlation coefficients of 0.99761, 0.9991 and 

0.99552 for training, test and validation data sets respectively. 

That for the whole network was 0.9975. Additionally, the MSE 

was 0.000163, this shows that the network was able to learn the 

relationship between the input and output parameters 

reasonably well.   

To further evaluate the prediction ability of the of the ANN, 

regression curves were plotted for the predicted vs measured 

HC, CO and NOx values as shown in Figure 3.2.1 to Figure 

3.2.3. It was found that the R2 values for HC, NOx and CO and 

were 0.9961, 0.9921 and 0.997 respectively. Based on the high 

R2 values it can be concluded that the model was able to 

generalize between the input parameters of engine speed and 

DTPO blend concentration and the emissions satisfactorily.  

 

 
Figure 3.2.1 Predicted and measured values for HC 

 

 
Figure 3.2.2 Predicted and measured values for NOx 

R² = 0.9961

0

5

10

15

20

25

0 5 10 15 20 25

P
re

d
ic

te
d

 H
C

measured HC

R² = 0.9921

75

125

175

225

275

325

375

75 125 175 225 275 325 375

P
re

d
ic

te
d

 N
O

x

measured Nox



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 9 (2020), pp. 2124-2131 

© International Research Publication House.  https://dx.doi.org/10.37624/IJERT/13.9.2020.2124-2131 

2130 

 
Figure 3.2.3 Predicted and measured values for CO 

 

Using the weights and biases of the trained ANN model 

presented on Table 3.2-1, Equation 3.2.1  to Equation 3.2.3 

were developed for predicting HC, CO and NOx respectively. 

Where FR and nR are defined by equations Equation 3.2.4 and 

Equation 3.2.5 respectively. 

Table 3.2-1 Weights between input and hidden layer for 

engine performance network 

r W1r W2r br 

1 -1.79787 7.87059 7.152767 

2 -7.22874 2.27573 6.371598 

3 -6.97209 -5.94619 5.622027 

4 -8.89691 -1.8935 0.869408 

5 -4.63349 -6.23566 -1.68392 

6 -0.57759 4.088858 2.202833 

7 -3.61501 3.704252 -1.93043 

8 -9.88563 1.215642 -1.97992 

9 -4.59867 -5.96368 -5.77231 

10 9.964487 -4.79473 10.47497 

 

𝐻𝐶 = −0.36519𝐹1+0.065603𝐹2+0.071209𝐹3 + 0.032547F4 + 0.154972F5 − 1.48203F6 − 0.23816F7

+ 0.112772F8 + 0.058713F9 + 0.165329F10 + 0.754924 

 

Equation 3.2.1 

CO = −0.34459F1 + 0.237247F2−0.55315F3+0.059885F4−0.44424F5 + 0.698149F6 + 0.751985F7

− 0.11371F8−0.03451F9 − 0.30068F10 + 0180492 
 

Equation 3.2.2 

NOx = −0.26591F1−0.23792F2 + 0.091302F3−0.1377F4+0.126094F5 − 0.15905F6−0.26941F7

− 0.71392F8 − 0.02062F9 + 0.190374F10 + 0.68119 

 

Equation 3.2.3 

Fr =
1

1 − e−nr
 

 

Equation 3.2.4 

nr = (%DTPO)W1r + (RPM)W2r + br 

 

Equation 3.2.5 
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4 CONCLUSION 

Two Models based on ANN were developed and tested, the first 

one for predicting engine performance and the second for 

predicting engine emissions when the engine is fuelled by 

DTPO/Diesel blends. The input parameters were engine speed 

and blend concentration for both models. The predicted 

parameters were Power, Brake Specific Fuel Consumption and 

Peak pressure for the ANN engine performance model while, 

HC, NOx and CO were predicted parameters for the engine 

emissions model. Both networks were trained with the use of 

70% of the experimental results, 15% for validation and the 

remaining 15% was used for testing the model. A strong 

correlation between ANN predicted and expected values was 

noted with a low MSE for the two models. The first model had 

a correlation coefficient of 0.99519 with MSE of 0.00396 while 

the second model had a correlation coefficient of 0.9975 and 

MSE of 0.000163. Additionally, the coefficient of 

determination (R2) between the predicted and desired values for 

the seven parameters of both models was above 0.98. It is 

therefore concluded that the ANN models can reliably predict 

four engine performance outputs and three exhaust emission 

parameters of an engine running on DTPO.  Thus, the 

developed ANN model can be a valuable tool for future 

research aimed at predicting the engine performance and 

emission of a diesel engine running on various blends of DTPO 

and diesel at different speeds. Further research may be carried 

out in future for predicting other engine parameters such as 

injection timing and pressure.  
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