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Abstract 

Spectral occupation modeling is a key aspect for an adequate 

prediction of spectral opportunities, which results in a more 

efficient use of the radio spectrum. The objective of this work 

is to present a comparative evaluation of the performance of 

four time series models: AR, MA, ARMA and SARIMA, in the 

modeling of spectral occupation for cognitive radio networks. 

The results achieved show that the MA model presents the best 

relationship between a high precision in the modeling of 

spectral occupation and a low level of computational cost. 

Keywords: Time series, spectral occupation, wireless 
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I. INTRODUCTION  

Cognitive radio networks (CRN) allow a more efficient use of 

radio spectrum through dynamic spectrum allocation (DSA) in 

wireless communication networks [1]. This is materialized 

through the opportunistic use of the licensed spectrum by 

cognitive radio users or secondary users (SU). Achieving an 

adequate selection of the available frequencies or spectral 

opportunities is possible from an adequate modeling of the 

spectral occupation pattern of the frequency band of interest [2], 

[3]. 

Making an adequate selection of spectral opportunities by 

secondary users is key to obtaining excellent performance in 

quality of service parameters in SU communications. To 

achieve the above, it is necessary to have an adjusted modeling 

of the spectral occupation in the corresponding frequency band, 

however, obtaining high levels of precision in the respective 

modeling may imply a high level of processing, which 

ultimately affects the levels of delay in the transmission of data 

by the SU. The problem then consists in being able to obtain an 

adequate level of precision in the modeling of the spectral 

occupation with a low level of computational processing. 

One of the models with an excellent trade-off between 

precision and processing levels is the time series. The three 

fundamental models based on time series are: Autoregressive 

(AR), Moving Averages (MA) and Autoregressive of Moving 

Averages (ARMA). These time series have shown excellent 

performance in various publications in the current literature [4]. 

In accordance with the above, the objective of this article is to 

present a comparative evaluation between four time series 

models, in the modeling of spectral occupation and the 

prediction of spectral opportunities for wireless networks: 

Autoregressive (AR), Moving Averages ( MA), Autoregressive 

of Moving Averages (ARMA) and Integrated Autoregressive 

of Seasonal Moving Averages (SARIMA), given the seasonal 

behavior of spectral occupation in wireless networks. The 

performance evaluation of the time series models will be 

contrasted from six evaluation metrics: total handoff, handoff 

with interference, anticipated handoff, perfect handoff, average 

bandwidth and average delay. 

 

II. METHODOLOGY 

Despite the fact that there are currently several prediction 

models, it was decided to select the time series, due to their 

good results evidenced in publications and their low 

computational level, given that they are linear models [4]. Time 

series are ideal models for correlated series such as mobile 

network traffic [4]. In order to analyze the performance of 

different types of time series, the AR, MA, ARMA and 

SARIMA models were selected to make predictions about the 

behavior of the PU, as they are the models with the best 

relationship between performance and computational cost. 

To develop the four time series models, the Box-Jenkins 

methodology [5] was followed, as it is the most widely used 

and recognized. This methodology consists of building a time 

series model in four stages: (1) Identification, (2) Estimation of 

parameters, (3) Verification of the model, and (4) Forecasting 

the model [5]. The four iterative steps of the Box-Jenkins 

methodology are described below [6], [7]. 

Step 1: Identification. This step focuses on the selection of 

parameters d, D, p, P, q and Q. The order number can be 

identified by looking at the autocorrelation diagram (ACF) and 

the partial autocorrelation diagram (PACF). 

Step 2: Estimation of parameters. Historical data is used to 

estimate the parameters of the model identified in step 1. 

Step 3: Verification of the model. Through a correlation test 

between the residuals of the estimated model, it is verified 
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whether this is correct, if it is, proceed to step 4, otherwise, 

return to step 1. 

Step 4: Model forecast. The model verified in step 3 is used to 

forecast future values. 

Given that there is an AR, MA, ARMA and SARIMA model, 

for each of the 461 observed Wi-Fi channels, and each of these 

has the ability to be updated, there is no point in presenting such 

models. However, Equations (1) to (6) describe the general 

mathematical models of the AR, MA and ARMA time series. 

 

II.I AR Model 

The AR model is based on the observations of the time series. 

AR (p) indicates the current value of the series, which depends 

on the past p values, where p establishes the number of lags 

necessary to make the predictions. The order of p is given by 

Eq. (1). 

 

 0 1 1t t p t p tX X X       
                  (1) 

 

II.II MA Model 

MA model applies to function to smooth the original time series 

through average elements subset; this model assumes linearity 

and the current value of series is given by the smoothing 

function. 

Order q MA is given by Equation (2). 

The MA model applies a function to smooth the original time 

series across the subset of average elements; This model 

assumes linearity and the current value of the series is given by 

the smoothing function. The order of q is given by Eq. (2). 

 

                0 1 1t t q t q tX          
               (2) 

 

II.III ARMA Model 

The ARMA model is the hybrid between the AR and MA 

models, and is given by Eq. (3). 

 

0 1 1 0 1 1t t p t p t t q t q tX X X                   
 

(3) 

 

II.IV SARIMA Model 

In general, if a time series presents a potential seasonality 

indexed by s, then it is advantageous to use a seasonal ARIMA 

model (p, d, q) (P, D, Q) s, where d is the level of non-seasonal 

differentiation, p is the autoregressive non-seasonal order (AR), 

q is the non-seasonal moving average (MA) order, P is the 

number of seasonal autoregressive terms, D is the number of 

seasonal differences, and Q is the number of seasonal moving 

averages. Box and Jenkins' seasonal autoregressive integrated 

moving average model [8] is presented in Eq. (4) [9]. 

 

             
     ( ) s d D s

p P s t q Q tB B x B B e     
              (4) 

 

Where B is the backward shift operator, xt is the observed load 

time series at time t, et is the identical, normally distributed 

independent error (random shock) in period t;  1
DD S

S tB x   ,  S
P B  

and  S
Q B  are the seasonal ones, AR (p) and MA (q) are the 

operators, respectively, which are defined in Eq. (5) and (6). 

 

  2

1 21 ...S s s Ps
p pB B B B       

 
(5) 

 

  2

1 21 ...S s s Qs
Q QB B B B     

 
(6) 

 

Where ɸ 1, ɸ 2,…, ɸ p are parameters of the seasonal model 

AR (p), Θ1, Θ2,…, ΘQ are the parameters of the seasonal 

model MA (q). 

 

II.V Evaluation Matrices 

To evaluate the performance of the selected time series models, 

six evaluation metrics described in Table 1 are used. 

Tabla 1. Evaluation Metrics 

Name Description Type 

Total 

number of 

handoffs 

Corresponds to the total number 

of handoffs during the 9 minutes 

of the transmission. 

Cost 

Interference 

handoff 

number 

Corresponds to the number of 

reactive handoffs made after the 

arrival of the PU, during the 9 

minutes of transmission. 

Cost 

Number of 

anticipated 

handoffs 

Corresponds to the number of 

anticipated handoffs, made well 

in advance of the arrival of the 

PU, during the 9 minutes of 

transmission. 

Cost 

Perfect 

handoff 

number 

It corresponds to the number of 

perfect handoffs, which were 

made exactly before the arrival of 

the PU, during the 9 minutes of 

the transmission. 

Benefit 

Average 

bandwidth 

It is the average bandwidth of the 

communication during the 9 

minutes of transmission of the 

SU. 

Benefit 
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Name Description Type 

Average 

delay 

It is the average communication 

delay during which a 9MB 

packet of information is 

transmitted. 

Cost 

 

To evaluate the performance of each handoff, a simulation 

environment progressively reconstructs the behavior of the 

spectrum occupation using the traces of data captured in the 

Wi-Fi frequency band. This allows to accurately evaluate the 

behavior of the PU and also, to evaluate and validate the 

performance of each handoff. The spectral occupation data 

correspond to a one-week observation captured in the city of 

Bogotá, Colombia [10]. 

 

III. RESULTS 

Figures 1 to 6 present the performance of each of the metrics 

described in Table 1, for each of the time series models: AR, 

MA, ARMA and SARIMA. 

The figures present the results obtained during a nine-minute 

transmission in the Wi-Fi frequency band, with a high level of 

traffic, that is, for few spectral opportunities.  

Figure 1 shows the total number of handoffs, here the ARMA 

model has the worst performance with 7% more handoff than 

the other models, which have a very similar behavior. 

Figure 2 presents the number of handoffs with interference 

being the MA model, the one that shows the best performance 

with 21% less handoff with interference than the ARMA model 

that has the highest level of interference. 

 

Fig. 1. Total number of handoffs 

 

 

Fig. 2. Interference handoff number 
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Fig. 3. Number of anticipated handoffs 

 

Fig. 4. Perfect handoff number 

 

Fig. 5. Average bandwidth 
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Fig. 6. Average delay 

 

Figure 3 describes the number of anticipated handoffs, here the 

algorithm with the worst performance is SARIMA, while the 

others exhibit very similar behavior. 

Figure 4 shows the number of perfect handoffs, with the 

ARMA model having the highest number of perfect handoffs, 

closely followed by the AR and MA algorithms. 

Figures 5 and 6 describe the average bandwidth and average 

delay, respectively. In both, the SARIMA model shows the best 

performance, however, its poor performance in the other 

metrics does not make it a viable candidate, also taking into 

account that it is the model with the highest level of 

computational cost. The other time series models show similar 

behavior, making the MA model the best candidate for 

modeling spectral occupancy in Wi-Fi wireless networks with 

high traffic levels. 

 

IV. CONCLUSIONS 

This document highlights the importance of measuring not only 

the interference generated based on predictive capacity, but 

also presents the possibility of validating its effectiveness given 

the characteristics of traffic and QoS for communication. Data 

processing for prediction plays an important role; therefore, 

data smoothing techniques need to be established to insert a 

higher correlation that improves prediction. Similarly, traffic 

behavior affects the quality of the prediction, especially if it is 

of the ON-OFF type. 
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