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Abstract 

This paper presents the single finite Fourier sine integral 

transform method for the flexural analysis of rectangular 

Kirchhoff plate with opposite edges simply supported, and the 

other edges clamped for the case of triangular load 

distribution on the plate domain. The finite sine transform 

method is adopted because the sinusoidal integral kernel 

function satisfies all the Dirichlet boundary conditions along 

the simply supported edges. The governing domain equation 

which is a nonhomogeneous  biharmonic  equation is 

converted by the transformation to an integral equation over 

the solution domain. The integral equation is reduced by the 

linearity properties of the transformation, Leibnitz rule and 

boundary conditions along the simply supported edges to 

ordinary differential equations (ODEs). Classical methods of 

solving ODEs in closed-form were used to obtain the 

solutions that satisfy the boundary conditions along the 

clamped edges. Thus exact solutions to the boundary value 

problem that satisfy the governing equation at all points in the 

solution domain as well as at all points along the four edges 

are obtained. The resulting expression for the deflection is a 

single infinite series with demonstrated rapidly convergent 

properties. The bending moments Mxx, Myy expressions were 

obtained using the bending moment-deflection relations as 

infinite series with demonstrated rapid convergence. The 

converged values of the maximum deflection and bending 

moments Mxx, Myy evaluated at the plate centre are in excellent 

agreement with the previous exact results to the problem 

obtained by researchers who used the Kantorovich-Vlasov 

method; Levy’s method; and the superposition method. 

 

Keyword: Single finite Fourier sine integral transform, method, 

Kirchhoff plate theory, Inhomogeneous biharmonic 

differential equation, Single infinite series, Deflection, 
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1. INTRODUCTION 

Plate problems of bending, stability and vibration are 

important themes in structural analysis due to the extensive 

applications of plates in the fields of structural, mechanical, 

naval, marine, aeronautical, and aerospace engineering. The 

problems have attracted intensive research interest leading to 

the development of several theories of plate behaviour and 

several methods for the analytical and numerical treatment of 

plate problems. 

Broadly, plates have been classified as thin, moderately thick 

and thick plates depending on the ratios of their transverse 

dimensions to the least inplane dimension. They have also 

been classified based on their material properties as 

anisotropic, isotropic, orthotropic or transversely isotropic or 

homogeneous, nonhomogeneous, linearly elastic or 

nonlinearly elastic [1 – 10]. 

Formulations of governing theories for each of those 

classifications of plates have been made in the literature. Plate 

governing theories have been developed for thin plates, 

moderately thick plates and thick plates. They have also been 

developed for anisotropic plates, isotropic plates, 

homogeneous and nonhomogeneous plates that are either thin, 

moderately thick or thick. 

Thin plate idealizations rely on the relative smallness of the 

transverse dimension of the plate compared to the lateral or 

inplane dimensions thus reducing the three-dimensional (3D) 

nature of plates to two-dimensional (2D) simplifications. This 

simplification has its attendant consequence of introduction of 

errors which become really insignificant when the ratio of the 

plate thickness to the least inplane dimension is less than 0.05, 

which is the threshold for the definition of thin plates. 

The following theories have been derived and formulated for 

plate problems: Kirchhoff plate theory, Mindlin plate theory, 

Reissner plate theory, Reddy plate theory, Levinson plate 

theory, shear deformation plate theories, and higher order 

shear deformation plate theories. 

Formulations, development and solutions of moderately thick 

plate problems have been presented by amongst others, by 

Ike, [11], Ike [12], Ike et al [13], Nwoji et al [14], Ike [15], 

Nwoji et al [16] and Ike et al [17]. 

Plate problems have been solved using numerical and 

analytical methods. Some of the numerical techniques used in 

presenting and solving plate problems include: Ordinary 

Finite Difference Method by Ezeh et al [18], Finite Element 

Methods and Energy methods by Shames and Dym [2].  

Some of the analytical methods that have been used for plate 

problems are (i) superposition methods; (ii) Navier double 
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Fourier series method; (iii) Levy’s single trigonometric series 

method; (iv) Galerkin-Vlasov method; (v) Ritz variational 

method; (vi) Kantorovich method and variants of the 

Kantorovich method and (vii) Fourier series methods:  

Superposition methods have been used by Timoshenko and 

Woinowsky-Krieger [1]. Navier’s double Fourier series 

(trigonometric series) method have been used for plate 

problems by Timoshenko and Woinowsky-Krieger, [1], and 

Szilard [7].  

Levy’s single trigonometric series method have been used for 

plate problems by Timoshenko and Woinowsky-Krieger [1], 

Shames and Dym [2].  

Galerkin-Vlasov method have been used for plate problems 

by Osadebe et al [19], Nwoji et al [20], Ike [21], Mama and 

Ike [22], Onyia et al [23], Mama et al [24]. 

Ritz variational method has been used for plate problems by 

Ike [25], Ike [26] and Nwoji et al [27]. 

Kantorovich variational method has been used for plate 

problems by Ike [28], Ike and Nwoji [29], Nwoji et al [30], 

Onah et al [31], Ike and Mama [32], Ike et al [33]. 

 Finite Fourier sine transform methods have been used to 

solve plate problems by Ike [34], Nwoji et al [35], Mama et al 

[36], Mama et al [37], Mama et al [38], Onah et al [39], Ike 

[40], Oguaghamba and Ike [41], and Onyia et al [42]. 

Other significant contributions to the formulation and 

solutions of plate problems include the following publications: 

Ghannadiasi and Noorzad [43], Bigdoli et al [44], Zargaripoor 

et al [45], Goodarzi et al [46], Javidi et al [47], Makvandi et al 

[48], Sayyad and Ghugal [49], Mirzapour et al [50], 

Shahabian et al [51], Abdollahzadeh and Ghobadi [52],  Cuba 

et al [53] and Jahanpour and Roozbabani [54]. 

In this paper, the single finite Fourier sine integral transform 

method is used for the flexural analysis of rectangular thin 

plates with two opposite clamped edges and the other two 

edges simply supported for the case where the plate is subject 

to triangular load distribution over the entire domain. Though 

the methodology adopted has been previously applied by the 

authors to plate stability and flexural problems, this is a first 

attempt  at applying the method to thin CSCS plate flexure 

problem under triangular load distribution. 

Justification for the use of the single finite Fourier sine 

integral transform method 

The single finite Fourier sine integral transform method is 

adopted for the study because the considered plate is simply 

supported along the two edges x = 0 and x = a and the 

sinusoidal kernel function in the transformation aproiri 

satisfies the Dirichlet boundary conditions along the edges, x 

= 0 and x = a. Thus, the method renders unnecessary prior 

selection of the shape function for solving the boundary value 

problem. Another justification, which is evident in past 

problems solved by the method is the great simplification 

offered by the use of the method in reducing the boundary 

value problem to ordinary differential equations and 

ultimately to algebraic problems [42]. 

 

2. THEORY 

Kirchhoff small deflection thin plate theory is used for the 

plate flexure problem. The governing domain equation is 

given by the inhomogeneous biharmonic equation: 
4 ( , ) ( , )zD u x y p x y         (1) 

where 
3

212 1( )

EhD 


       (2) 

D is the flexural rigidity of the plate, uz(x, y) is the transverse  

deflection of the plate, p(x, y) is the distributed transverse load 

over the plate domain. h is the plate thickness,  is the 

Poisson’s ratio of the plate material. x and y are the inplane 

Cartesian coordinates. E is the Young’s modulus of elasticity 

of the plate material. 

4 is the biharmonic operator given explicitly by: 
4 4 4

4

4 2 2 4
2

x x y y
  

   
   

      (3) 

The bending moments Mxx and Myy are given in terms of 

transverse deflections uz(x, y) as: 
2 2

2 2

z z
xx

u u
M D

x y
  

    
  

      (4) 

2 2

2 2

z z
yy

u u
M D

y x
  

    
  

      (5) 

The CSCS thin plate considered is shown in Figure 1, which 

also shows the definition of coordinates and the applied 

triangular load over the plate. 

 

 
 

Figure 1: Kirchhoff CSCS plate subjected to triangular load 

distribution p(x, y) = p0x/a 
 

The coordinates system are chosen to take advantage of the 

symmetrical nature of the problem about the x coordinate axis. 

The CSCS plate is simply supported at the edges x = 0 and x = 
a, and clamped at the edges y = 0 and y = b. The triangular 

load distribution is given by 

0( , )
p x

p x y
a

        (6) 

where p0 is the intensity of the triangular load distribution at x 
= a, as shown in Figure 1. 

The boundary conditions for the CSCS thin plate shown in 

Figure 1 are: 

Along the simply supported edges x = 0, x = a, 

0 0( , ) ( , )z zu x y u x a y         (7) 
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2 2

2 2
0 0( , ) ( , )z zu u

x y x a y
x x

 
   

 
    (8) 

Along the clamped edges /2,y b    

/2( , )zu x y b  = 0       (9) 

/2 0( , )zu
x y b

y


  


       (10) 

 

 

3. METHODOLOGY 

 

3.1 Definitions 

The single finite Fourier sine integral transform of a function 

vs(x) of the independent variable x denoted by Sn(v(x)) is 

defined as: [55, 56, 57, 58, 59] 

0

2
( ( )) ( )sin ( )

l

n s
n xS v x v x dx V n

l l


      (11) 

where 0 ,x l   and n = 1, 2, 3, …. 

n is the single finite Fourier sine integral transform parameter. 

Other scholarly publications on integral transformations are 

found in references listed as [60 – 63]. 

The transforms of the derivatives of v(x) are found using 

integration by parts and Leibnitz rule as follows: [55, 56, 57, 

58, 59] 

( )
( ( )) ( )sinn n

dv xS v x S v x l n
dx

       
 

 

 

0

2
0 0( )sin cos

l
n n xv x dx
l l l
 

      (12) 

0 0( ( )) ( ( )sin ( )sin )nS v x v x l n v x       

 ( ) ( ) ( )n n c
n n nC v x C v x V n
l l l
  

      13) 

( ( )) ( )n cC v x V n  is the single finite Fourier cosine transform 

of v(x) 
2

2
1

( )
( ( )) (( ) ( )n

n n
d v x nS v x S v x l

ldx
           

  
 

2

0

2
0( )) ( )sin

l
n n xv x v x dx
l l l
  

   
      (14) 

2

1 0( ( )) (( ) ( ) ( )) ( )n
n s

n nS v x v x l v x V n
l l
              

   

           ….(15) 

1 0( ( )) ( ) ( ) ( )n
n

n dv dvS v x x l x
l dx dx
           

  
 

  

3

0

2
( )cos

l
n n xv x dx
l l l
  

 
      (16) 

3

1 0( ( )) (( ) ( ) ( )) ( )n
n c

n nS v x v x l v x V n
l l
               

   
 

              …(17) 

44

4

0

2( )
( ( )) ( )sin

l
iv

n n
d v x n n xS v x S v x dx

l l ldx
  

   
    

  

3

1 0( ( )( ) ( ))nn v x l v x
l
 

     
 

 

  1 0(( ) ( ) ( ))nn v x l v x
l
       

 
   (18) 

When the function v is a function of two independent 

variables v(x, y), we have: 

0

2
( ( , )) ( , )sin ( , )

l

n s
n xS v x y v x y dx V n y

l l


     (19) 

2

2
1 0

( , )
(( ) ( , ) ( , ))n

n
v x y nS v x l y v x y

lx
   

        
  

 

   

2

( , )s
n V n y
l
 

 
 

    (20) 
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4

( , )
( , )n s

v nx yS V n y
lx

   
   
  

 

  

3

1 0(( ) ( ( , ) ( , ))nn v x l y v x y
l
 

     
 

 

  1 0(( ) ( , ) ( , ))nn v x l y v x y
l
       

 
  (21) 

For problems with Dirichlet boundary conditions,  

0 0( , ) ( , )v x l y v x y          (22) 

0 0( , ) ( , )v x l y v x y           (23) 

The single finite Fourier sine integral transforms of the second 

and fourth derivatives of v(x, y) with respect to x simplify 

greatly to: 
22

2

( , )
( , )n s

v nx yS V n y
lx

   
   

  
     (24) 

44

4

( , )
( , )n s

v x y nS V n y
lx

  
  
 

      (25) 

 

3.2 Single finite Fourier sine integral transformation of the 

governing domain equation 

The partial differential equation (PDE) for the domain for the 

problem considered is given explicitly by the fourth order 

inhomogeneous equation: 
4 4 4

0
4 2 2 4

2 ( , )z z zu u u p x
D p x y

ax x y y
   

    
    

   (26) 

or, 

4 4 4
0

4 2 2 4
2 0z z zu u u p x

Dax x y y
  

   
   

    (27) 

Application of the transformation gives the integral equation: 

4 4 4
0

4 2 2 4

0

22
0sin

a
z z zu u u p x n x dx

a Da ax x y y
    

    
       (28) 

From the linearity properties of the transformation and 

Leibnitz rule, the integral equation becomes the following 

inhomogeneous ordinary differential equation (ODE): 
4 2 2 4

2 4
2( , ) ( , ) ( , )z z z

n n d dU n y U n y U n y
a a dy dy
    

     
   

 

  0
2

0

2
0sin

a
p n xx dx

aDa


     (29) 
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where ( , )zU n y  is the single finite Fourier sine integral 

transform of ( , ),zu x y  and is given by: 

0

2
( , ) ( , )sin

a

z z
n xU n y u x y dx

a a


       (30) 

The ordinary differential equation (ODE) becomes upon 

evaluating the integral term: 
4 22

4 2
2

( , ) ( , )z zd U d Unn y n y
ady dy
 

  
 

  

  

4 1
02 1( )

( , )
n

z
pn U n y

a n D

 
 

  
   (31) 

The solution to Equation (31) is the sum of the homogeneous 

solution and the particular integral. 

 

 

4. RESULTS 
 

Homogeneous solution 

The homogeneous solution to Equation (31) is sought in 

exponential form. Thus, let 

( , ) expzhU n y y          (32) 

where  and  are parameters of the assumed (trial) 

homogeneous solution. 

For ( , )zhU n y  to be solution, the homogeneous differential 

equation becomes 
2 4

4 2 0yn n e
a a

     
         
     

     (33) 

For nontrivial solutions 0ye    

Hence, 
22 4 2

4 22 0
n n n
a a a

        
             

       
   (34) 

The solutions for  are: 

1 2,

n
a


    twice      (35) 

3 4,

n
a
 

   
 

 twice      (36) 

The homogeneous solution becomes: 

1 2( , ) cosh sinhzh n n
n y n y n yU n y c c
a a a
  

    

   3 4cosh sinhn n
n y n y n yc c
a a a
  

  (37) 

where c1n, c2n, c3n and c4n are integration constants. 

 The problem considered is symmetrical about the x 

axis. Hence, ( , )zhU n y  is expected to be a symmetrical 

function in y. 

The symmetry of ( , ),zhU n y demands that: 

3 4 0n nc c          (38) 

Hence the homogeneous solution becomes: 

1 2( , ) cosh sinhzh n n
n y n y n yU n y c c
a a a
  

     (39) 

Particular solution ( , )zpU n y   

The applied load 0 /( , )p x y p x a  does not depend upon y. 

Hence we expect that the derivatives of the particular solution 

( , )zpU n y  with respect to y would vanish. 

According: 

0( , ) ( , )iv
zp zpU n y U n y         (40) 

Then, Equation (23) becomes: 
4 1

02 1( )
( , )

n

zp
pn U n y

a n D

 
 

  
     (41) 

Solving, 
4 1

0
5

2 1( )
( , )

( )

n

zp
p a

U n y
n D





      (42) 

 

General solutions ( , )zU n y  

The general solution in the finite integral transform space is 

found as the superposition of the homogeneous solution and 

the particular solution. 

Then, 

( , ) ( , ) ( , )z zh zpU n y U n y U n y       (43) 

4 1
0

1 2 5

2 1( )
( , ) cosh sinh

( )

n

z n n
p an y n y n yU n y c c

a a a D n

   
  


 

              …(44) 

 

General solution for transverse deflection in the physical 

domain 

The general solution for transverse deflection in the problem 

domain is found by the inverse finite Fourier sine integral 

transform of ( , ).zU n y  By inversion,  

1

( , ) ( , )sinz z
n

n xu n y U n y
a






      (45) 

Then, substituting the expression for ( , )zU n y  from Equation 

(44), we obtain the single infinite series: 

1 2

1

( , ) cosh sinhz n n
n

n y n y n yu x y c c
a a a





  
  

  

   
4 1

0
5

2 1( )
sin

( )

np a n x
D an

  


 
   (46) 

The general solution for ( , )zu x y  is expressed in terms of 

constants of integration c1n and c2n which are found using the 

boundary conditions along the clamped edges /2( )y b   of 

the plate. 

 

Application of boundary conditions  

Substituting Equation (46) in Equation (9) we have the 

following boundary condition equation: 

  1 2

1
2 2 2 2

, cosh sinhz n n
n

b n b n b n bu x y c c
a a a





  
    

  
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4 1

0
5

2 1
0

( )
sin

( )

np a n x
D an

  


 
  (47) 

Substitution of Equation (46) in Equation (10) gives another 

boundary condition equation regarding slopes at the clamped 

edges as follows: 

  1

1
2 2

, sinhz
n

n

u b n n bx y c
z a a





  
   

   

 2 0
2 2 2

cosh sinh sinn
n n b n b n b n xc
a a a a a
     

  
 

 (48) 

Equation (48) is simplified to: 

1 2
2 2 2 2

sinh cosh sinhn n
n n b n n b n b n bc c
a a a a a a
      

   
 

(49) 

Hence, 

2

1
2 2 2

2

cosh sinh

sinh

n

n

n n b n b n bc
a a a ac

n n b
a a

    
  

 


 
   (50) 

Simplifying further, Equation (50) becomes: 

1 2
2 1

2

2

cosh

sinh
n n

n b
n b ac c

n ba
a

 
 

   
 

 

     (51) 

Equation (47) simplifies to: 
4 1

0
1 2 5

2 1

2 2 2

( )
cosh sinh

( )

n

n n
p an b n b n bc c

a a a D n

   
  


  (52) 

Substituting c1n in Equation (51) into Equation (52) gives: 

2 2
2 1

2 2 2 2

2

cosh

cosh sinh

sinh
n n

n b
n b n b n b n bac c

n ba a a a
a

 
    

   
 

 

 

  
4 1

0
5

2 1( )

( )

np a
D n

 



     (53) 

Simplifying, 

2

2 2 2
2

2 2 2 2

2

cosh

cosh sinh

sinh
n n n

n b
n b n b n b n bac c c

n ba a a a
a



   
  


 

   
4 1

0
5

2 1( )

( )

np a
D n

 



   (54) 

Further simplification gives: 

2

2 2
2

2 2 2

2

cosh

sinh cosh

sinh
n n

n b
n b n b n bac c

n ba a a
a

 
   

  
 

 

 

    
4 1

0
5

2 1( )

( )

np a
D n

 



   (55) 

Further simplification of Equation (55) yields: 

2 2

2 2
2 2

2 2

2

sinh cosh

cosh

sinh
n n

n b n b
n b n ba ac c

n ba a
a

  
  

 
 

 

 

    
4 1

0
5

2 1( )

( )

np a
D n


 


  (56) 

We recall the hyperbolic identity: 
2 2 1sinh cosh       (57) 

Using the hyperbolic identity in Equation (57), Equation (56) 

becomes: 
4 1

0
2 2 5

21 1

2 2

2

( )
cosh

( )
sinh

n

n n
p an b n bc c

n ba a D n
a

  
  

 
  (58) 

Thus, 
4 1

0
2 2 1 5

21 1

2 2

2

( )
cosh

( )
sinh

n

n n
p an b n bc c F

n ba a D n
a

   
    

 
 

 

        …(59) 

where, 1

1

2 2

2

cosh

sinh

n b n bF
n ba a

a

 
 


    (60) 

Then 
4 1

0
2 5

1

2 1 1( )

( )

n

n
p a

c
D Fn





      (61) 

Then, 
4 1

0
1 5

1

2 1
1

2 2

( )
coth

( )

n

n
p a n b n bc

a aD n F

    
  

 
    (62) 

In compact form, Equation (62) is expressed as: 
4 1

0 2
1 5

1

2 1( )

( )

n

n
p a F

c
D n F

 



      (63) 

where, 

2 1
2 2

coth
n b n bF

a a
 

         (64) 

Thus, the transverse deflection is determined as the single 

infinite series: 

4 1
0

25
11

2 1( )
( , ) cosh

( )

n

z
n

p a n yu x y F
aD n F

 



  
 


   

 
4 1 4 1

0 0
5 5

2 1 2 1( ) ( )
sinsinh

( ) ( )

n n n xp a p an y n y
aa aD n D n

     
 

  

        …(65) 

From Equation (65) it is confirmed that the transverse 

deflection expression satisfies all the Dirichlet boundary 

conditions along the simply supported edges given as: 
2 2

2 2
0 0( , ) ( , ) ( , )z z

z
u u

x y x a y u x y
x x

 
    

 
 

       0( , )zu x a y    

Since, 
0

0sin sin
x x a

n x n x
a a 

 
    

 

Deflection at the centre of the plate 

At the centre of the plate, x = a/2, y = 0, and the deflection at 

the plate centre is obtained by substitution of the centre 

coordinates into Equation (65) to obtain: 

 
4 1

0
25

11

2 1
0 0

2

( )
, cosh

( )

n

z
n

p aau x y F
D n F

 



 
   


  
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4 1 4 1

0 0
5 5

1

2 1 2 1
0

2

( ) ( )
sin

( ) ( )

n np a p a n
D n F D n

    
 

  
 (66) 

Simplification of the series expression in Equation (66) gives: 

 
4 1

0 2
5

11

2 1
0 1

2

( )
,

( )

n

z
n

p a Fau x y
FD n

 



  
    

  
    (67) 

Further simplification by factoring out the constants in 

Equation (67) gives: 

 
4 1

0 2
5

11

2 1
0 1

2

( )
,

( )

n

z
n

p a Fau x y
D Fn

 



  
    

  
    (68) 

The expression for the deflection of the centre of the plate can 

be given in general as: 

 
4

0
10

2
,z

p aau x y
D

          (69) 

where 
1

2
1 5

11

2 1
1

( )

( )

n

n

F
Fn

 



  
   

  
      (70) 

1 is the deflection coefficient for the centre of rectangular 

CSCS Kirchhoff plate subjected to triangular load distribution 

given by 0 /( , ) .p x y p x a   

 

Bending moment distributions 

By partial differentiations of ( , ),zu x y  we have: 

2

1 22
1

cosh sinhz
n n

n

u n y n y n yc c
a a ax





   
   


  

  

24 1
0

5

2 1( )
sin

( )

np a n n x
a aD n

    
 
  

   (71) 

2 2

2 1
1

cosh
z

n
n

u n n yc
y a a





       
   

   

3 2

2 2 sinsinh coshn
n xn n y n n yc y aa a a a
       

     
    

  (72) 

 
2

2
0

2
,xu ax y

x


  


  

 

24 1
0

1 5
1

2 1
0

2

( )
cosh sin

( )

n

n
n

p a n nc
aD n

 



    
    

  
  (73) 

 
2

2
0

2
,zu ax y

x


  


   

 

24 1
0

1 5
1

2 1

2

( )
sin

( )

n

n
n

p a n nc
aD n

 



    
    

  
   (74) 

 
2 2 2

2 1 2
1

0 2
2 2

, sinz
n n

n

u a nn nx y c c
y a a





                
       

  

   

  

2

1 2

1

2
2

( ) sinn n
n

n nc c
a





  
   

     (75) 

Hence at the plate centre, the bending moments Mxx and Myy 

are obtained by substituting Equations (74) and (75) into 

Equations (4) and (5) and simplifying: 

2 4 1
0

1 2 1 5
1

2 1
2

2

( )
sin( )

( )

n

xx n n n
n

n np aM D c c c
a D n

 



   
        

   
  

        …(76) 

Mxx expressed by Equation (76) is presented using bending 

moment coefficients 2 and 3 as: 
2 2

2 0 3 0xxM p a p b          (77) 

2 is the bending moment coefficient for Mxx at the plate 

centre, when Mxx is expressed using a, and 3 is the bending 

moment coefficient for Mxx at the plate centre when Mxx is 

expressed using b. 
2 4 1

0
1 2 1 5

1

2 1
2

2

( )
sin( )

( )

n

yy n n n
n

n np aM D c c c
a D n

 



    
        

    


        …(78) 

Myy expressed by Equation (78) is presented using bending 

moment coefficients 4 and 5 as: 
2 2

4 0 5 0yyM p a p b          (79) 

4 is the bending moment coefficient for Myy at the plate 

centre where Myy is expressed using a, 5 is the bending 

moment coefficient for Myy at the plate centre where Myy is 

expressed using b. 

 

Solutions for square CSCS plates 

For square CSCSplates / 1b a    

1

1
1

2 2

2

cosh

sinh

b n nF
na

  
   

 
     (80) 

2 1 1
2 2

coth
b n nF
a

  
   

 
      (81) 

 
4 1

0
1 5

1

2 2
2 1 21

1
2 2

cosh

sinh
( )

( )
coth

n

n

n n
n

p abc
n na D n



  
 

     
  

   


 (82) 

4 1
0

2 5

2 1 1
1

1

2 2

2

( )

( )
cosh

sinh

n

n
p abc

n na D n
n

   
       

 
  

 

 (83) 

Thus, uz(x, y), Mxx and Myy can be calculated for square CSCS 

plates from the obtained values of F1, F2, c1n and c2n. 

Similarly, for any plate aspect ratio, F1, F2, c1n, c2n are 

calculated and  uz(x, y), Mxx, Myy determined. An illustration of 

the solution obtained for a one term series approximation is 

presented for square CSCS plates. For the one term series 

approximation, n = 1 

1

1
1 1 3 19175

2 2

2

, cosh .

sinh

bF n
a

  
     

 
  (84) 

2 1 1 1 2 71269
2 2

, coth .
bF n
a

  
     

 
   (85) 

Then, 
4 2

0
5

2 1 2 71269
1 1 1

3 19175

( ) .
,

.
z

p abu n
a D

   
      

   
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4

4 09 8093 10.
p a

D
    (86) 

4 2 4
30 2 0

1 5
1

2 1
1 1 5 5546 10

( )
, .n

p a F p abc n
a DD F

  
      

  
 

        ...(87) 
4 2 4

30 0
2 5

1

2 1
1 1 2 0476 10

( )
, .n

p a p abc n
a DD F

 
     

  
(88) 

1 1,xx
bM n
a

 
   

 
 

2 4
20

1 2 1 05

2
0 3 2 0 01402. ( ) .

p a
D c c c p a

a D
  

       
   

(89) 

1 1,yy
bM n
a

 
   

 
 

2
2

1 2 1 05

2
2 0 3 0 017307. .D c c c p a

a
    

        
    

 (90) 

 

Table 1: Converged results for the expression for deflections 

evaluated at the centre of rectangular thin CSCS plate under 

triangular load distribution p(x, y) = p0x/a over the plate 

domain; for various values of the plate aspect ratio and 

comparison with the centre deflections evaluated and obtained 

previously by Onah et al [31] and Shames and Dym [2] 

b/a 

4
0

1c
p a

w
D

   

(1) Present 

study 

(1) Onah et 

al [31] 

(1) Shames and 

Dym [2] 

0.5 8.1576  105 8.1576  105 8.1576  105 

1.0 9.5855  104 9.5855  104 9.5855  104 

2.0 4.2224  103 4.2224  103 4.2224  103 

 

Table 2: Converged results for bending moments Mxx at the 

centre of rectangular thin CSCS plate subjected to triangular 

load distribution 0 /( , )p x y p x a  over the domain of the plate 

( = 0.30) for various values of the plate aspect ratio and 

comparison with previously obtained converged results by 

Onah et [31] and Timoshenko and Woinowsky-Krieger [1] for 

Mxx evaluated at the plate centre 

b/a 

aspect 

ratio 

Mxx 

Present study 

Mxx 

Onah et al 

[31] 

Mxx 

Timoshenko and 

Woinowsky-

Krieger [1] 

Mxx 

0.5 0.007p0b2 0.007p0b2 0.007p0b2 

0.75 0.011p0b2 0.011p0b2 0.011p0b2 

1.0 0.0121760p0a2 0.012p0a2 0.012p0a2 

1.25 0.021p0a2 0.021p0a2 0.021p0a2 

1.50 0.030p0a2 0.030p0a2 0.030p0a2 

2 0.043p0a2 0.043p0a2 0.043p0a2 

 0.063p0a2 0.063p0a2 0.063p0a2 

 

Table 3: Converged results for bending moments Myy at the 

centre of rectangular thin CSCS plate subjected to triangular 

load distribution 0 /( , )p x y p x a  over the domain of the plate 

(for  = 0.30) for various values of the plate aspect ratio; and 

comparative results for Myy at the plate centre for different 

values of plate aspect ratio as previously obtained by Onah et 

al [31] and Timoshenko and Woinowsky-Krieger [1] 

aspect 

ratio 
b/a 

Myy 

Present study 

Myy 

Onah et al 

[31] 

Myy 

Timoshenko and 

Woinowsky-

Krieger [1] 

Myy 

0.5 0.021p0b2 0.021p0b2 0.021p0b2 

0.75 0.020p0b2 0.020p0b2 0.020p0b2 

1.0 0.016617p0a2 0.017p0a2 0.017p0a2 

1.25 0.021p0a2 0.021p0a2 0.021p0a2 

1.50 0.023p0a2 0.023p0a2 0.023p0a2 

2 0.024p0a2 0.024p0a2 0.024p0a2 

 0.019p0a2 0.019p0a2 0.019p0a2 

 

Table 4: Convergence studies of the single series expression 

for the deflection at the centre of square CSCS Kirchhoff plate 

subjected to triangular load distribution 0 /( , ) ,p x y p x a  over 

the entire plate domain. Comparative results for the 

convergence investigation of the expressions for deflection at 

the centre of CSCS thin plate obtained using Kantorovich-

Vlasov method by Onah et al [31] and Levy’s method by 

Shames and Dym [2]. 4
1 0 /zu p a D    

Number of 

terms in series 

4
1 0 /( )zu p a D   

1 

Onah et al [31], 

Shames and 

Dym [2] (1) 

1 9.8093  104 9.8093  104 

2 9.8093  104 9.8093  104 

3 9.5679  104 9.5679  104 

4 9.5679  104 9.5679  104 

5 9.5887  104 9.5887  104 

6 9.5887  104 9.5887  104 

7 9.5848  104 9.5848  104 

8 9.5848  104 9.5848  104 

9 9.5859  104 9.5859  104 

10 9.5859  104 9.5859  104 

11 9.5855  104 9.5855  104 

12 9.5855  104 9.5855  104 

 

Table 5: Convergence studies of the single series expressions 

for bending moments Mxx and Myy at the centre of square 

CSCS Kirchhoff plate subjected to triangular load distribution 

0 /( , )p x y p x a  over the entire domain of the plate. 

Comparative results for the investigation of the convergence 

of expressions of bending moments, Mxx and Myy obtained by 

using Kantorovich-Vlasov variational method by Onah et al 

[31] and Levy’s method by Shames and Dym [2] 

Number 

of terms 

in series 

 
 

Mxx= 2p0a2 

 

 

2 

Onah et 

al [31]; 

Shames 

and 

Dym [2] 

2 

 
 

Myy = 4 p0a2 

 

 

4 

Onah et 

al [31]; 

Shames 

and Dym 

[2] 

4 

1 1.4002  

102 

1.4002  

102 

1.7307  

102 

1.7307  

102 

2 1.4002  1.4002  1.7307  1.7307  
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102 102 102 102 

3 1.1810  

102 

1.1810  

102 

1.6505  

102 

1.6505  

102 

4 1.1810  

102 

1.1810  

102 

1.6505  

102 

1.6505  

102 

5 1.2324  

102 

1.2324  

102 

1.6661  

102 

1.6661  

102 

6 1.2324  

102 

1.2324  

102 

1.6661  

102 

1.6661  

102 

7 1.2136  

102 

1.2136  

102 

1.6605  

102 

1.6605  

102 

8 1.2136  

102 

1.2136  

102 

1.6605  

102 

1.6605  

102 

9 1.2224  

102 

1.2224  

102 

1.6632  

102 

1.6632  

102 

10 1.2224  

102 

1.2224  

102 

1.6632  

102 

1.6632  

102 

11 1.2176  

102 

1.2176  

102 

1.6617  

102 

1.6617  

102 

12 1.2176  

102 

1.2176  

102 

1.6617  

102 

1.6617  

102 

 

 

5. DISCUSSION 

The flexural problem of rectangular thin plate with simply 

supported edges x = 0, x = a and clamped edges y = b/2 

where the plate is subjected to triangular load distribution p(x, 
y) = p0x/a over the domain has been solved in this work using 

the single finite Fourier sine integral transform method. The 

plate considered was modelled using the small deformation 

Kirchhoff thin plate theory. The governing domain equation 

of equilibrium is the inhomogeneous bihamonic partial 

differential equation expressed as Equation (1). The solution 

was sought to satisfy the boundary conditions of CSCS plates 

given by Equations (7 – 10). 

The application of the finite sine transformation to the explicit 

form of the governing PDE resulted in the integral equation 

formulation of the boundary value problem as Equation (28). 

The linearity properties of the integral transformation used 

and Leibnitz rule was used together with the boundary 

conditions to express the integral equation as the ordinary 

differential equation (ODE) – Equation (31). The general 

solution to the ODE – Equation (31) – was found using the 

trial function method, the expected symmetrical nature of the 

solution and the nondependence of the triangular loading 

function on y as Equation (44) which contains two integration 

constants c1n and c2n. 

By inversion of ( , )zU n y  the general solution in the problem 

domain was obtained as Equation (46). Enforcement of the 

boundary conditions equation at the clamped edges y = b/2 

led to the determination of c2n as Equation (61) and c1n as 

Equation (63). The deflection was thus found as the single 

infinite series expression given by Equation (65). The 

deflection expression was confirmed to satisfy the Dirichlet 

boundary conditions at the simply supported edges x = 0, and 

x = a. The deflection was evaluated in general at the centre of 

the plate and the deflection expression at the plate centre was 

found as Equation (68). Equation (68) is presented in terms of 

deflection coefficients 1 as Equation (69) where 1 is 

expressed as the single infinite series expressed by Equation 

(70). 

The bending moment expressions were found by using the 

single infinite series expression for uz(x, y) in the bending 

moment-deflection equations. The expression for Mxx was 

found as the single infinite series given generally by Equation 

(76), which can be expressed using bending moment 

coefficients for Mxx (2 and 3) as Equation (77). Similarly, 

the expression for Myy was found as the single infinite series 

given generally by Equation (78), which can be expressed 

using bending moment coefficients for Myy (4 and 5) as 

Equation (79). 

The expressions obtained were used to compute the solution 

for square CSCS plate under triangular loading distribution. A 

one term approximation was found for the centre deflection as 

Equation (86), and the bending moments at the centre as 

Equation (89) for Mxx and Equation (90) for Myy. 

The single infinite series for the deflection was used to obtain 

the converged solutions for deflection of the centre of CSCS 

plate for various values of the aspect ratio (b/a) and the results 

presented in Table 1, which shows that the results are in 

excellent agreement with previously presented results by 

Shames and Dym [2] and Onah et  [31]. The expression for 

Mxx was used to determine the bending moments Mxx at the 

centre of the plate for  = 0.30 and various values of the 

aspect ratio (b/a) and the results were presented in Table 2. 

Table 2 illustrates the excellent agreement of the present 

results for Mxx with the previous results obtained by 

Timoshenko and Woinowsky-Krieger [1] and Onah et al [31]. 

The expression for Myy was used to determine the bending 

moment Myy at the centre of the plate for  = 0.30, and various 

values of the plate aspect ratio (b/a) and the results were 

presented in Table 3. Table 3 illustrates the excellent 

agreement of the present results for Myy with the previous 

results obtained by Timoshenko and Woinowsky-Krieger [1] 

and Onah et al [31]. 

The results of the investigation of the convergence properties 

of the infinite series for the deflection, which are presented in 

Table 4 for square CSCS plate show the series for the 

deflection is a rapidly convergent series. Table 4 also 

demonstrates that the results of the convergence studies of the 

expression for deflection are identical with previous results 

presented by Shames and Dym [2] and Onah et al [31], who 

used Levy’s method and Kantorovich-Vlasov’s method 

respectively. The investigation of the convergence properties 

of the expressions for bending moments Mxx and Myy which 

are presented in Table 5 for square CSCS plates show that 

both series are rapidly convergent. Table 5 shows that the 

results of the convergence studies for the bending moment 

expressions at the centre of square CSCS plate are identical 

with previous results of convergence investigations presented 

by Shames and Dym [2} and Onah et [31]. 
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6. CONCLUSION 

(1) The single finite Fourier sine integral transform method is 

a very effective mathematical tool for solving the flexural 

analysis problem of rectangular Kirchhoff CSCS plates 

subject to triangular load distribution over the plate 

region. 

(2) The governing domain equation which is an 

inhomogeneous biharmonic partial differential equation is 

converted by the transformation to an integral equation 

over the solution domain. 

(3) The integral equation is reduced by the linearity 

properties of the transformation, the Leibnitz rule and the 

boundary conditions along the simply supported edges to 

ordinary differential equations (ODEs). 

(4) The general solution to the ODEs obtained using the 

method of trial functions but which could also be 

obtained using other methods of solving ODEs such as 

Differential Operator (D-operator) methods, variational of 

parameters methods, etc gave the expression for uz(x, y) 

that satisfies the domain PDE at all points in the solution 

domain in terms of the integration constants c1n and c2n. 

(5) The enforcement of boundary conditions along the 

clamped edges y = b/2 was used to obtain the 

expressions for the integration constants c1n and c2n, thus 

leading to the full determination of the solution for the 

deflection uz(x, y) for all points in the solution domain 

and on the clamped boundaries (y = b/2). 

(6) The obtained solution for transverse deflection uz(x, y) is 

a single infinite series with rapidly convergent properties. 

(7) The expression for transverse deflection uz(x, y) is used to 

determine the expressions for the bending moments Mxx 

and Myy at any point in the plate. The expressions for Mxx 

and Myy are single infinite series that are also rapidly 

convergent as demonstrated in the calculations done and 

presented for square CSCS plate considered. 

(8) Maximum deflection was obtained at the plate centre and 

this result agrees with the symmetrical features of the 

presented problem. 

(9) The converged values of deflection and bending moments 

calculated at the plate centre are in excellent agreement 

with previous results published by Timoshenko and 

Woinowsky-Krieger [1], Onah et al [31]  and Shames and 

Dym [2] and that employed superposition method, 

Kantorovich-Vlasov’s and Levy’s methods respectively.. 

(10) The single finite integral transform method has yielded 

exact solutions for the flexural problem of rectangular 

CSCS plates under triangular loading distribution since 

the governing domain equation is satisfied at every point 

in the solution domain, and at every point on the 

boundaries of the CSCS plate considered. 

 

Nomenclature/Notations 

ODE(s) Ordinary Differential Equations(s) 

3D  three-dimensional 

2D  two-dimensional 

CSCS plate: plate with two opposite sides simply supported 

and the other two sides clamped. 

x, y, z  Cartesian coordinates 

  Poisson’s ratio 

h  plate thickness 

p(x, y) transverse load distribution over the plate domain 

D  flexural rigidity of plate material 

( , )zu x y   transverse deflection of the plate middle surface. 

Mxx Myy  Bending moment distributions 

E Young’s modulus of elasticity of the plate 

material 

a  inplane dimension of the plate in the x direction 

b  inplane dimension of the plate in the y direction. 

p0  intensity of triangular load distribution at x = a. 

Sn  single finite Fourier sine integral transform 

operator 

0 x l    interval of definition of x for v(x) 

v(x)  a function defined in terms of x 

v(x, y)  a function defined in terms of x and y 

Vs(n)  single finite Fourier sine transform of v(x) 

Cn(v(x)) or Vc(n) single finite Fourier cosine integral transform 

of v(x) 

n single finite Fourier sine integral transform 

parameter. 
k

k
d
dx

  kth  derivative with respect to x 

  integral 

0

( )

a

dx    integration with respect to x between the 

intervals x = 0 and x = a. 

( , )zU n y  single finite Fourier integral transform of the 

deflection ( , )zu x y  of the plate. 

,  parameters of the assumed homogeneous 

solution for the ordinary differential equation in 

the transform space resulting from the 

application of the transformation to the 

governing domain equation. 

( , )zhU n y   homogeneous component of the general solution 

 for ( , )zU n y  

1 2 3 4, ,,    four roots of the resulting algebraic 

eigenequation involving  

1 2 3 4, , ,n n n nc c c c  integration constants 

( , )zpU n y   particular integral (solution) for the general 

solution of the ordinary differential equation in 

transform space 

 summation 

 infinity 

F1 parameter defined in terms of n, a and b 

F2 another parameter defined in terms of n, a and b 

1 deflection coefficient for the centre of 

rectangular CSCS Kirchhoff plate subjected to 

triangular load distribution over the entire plate 

domain 

2 bending moment coefficient for Mxx at the plate 

centre when Mxx is expressed using a 
3 bending moment coefficient for Mxx at the plate 

centre when Mxx is expressed using b 
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4 bending moment coefficient for Myy at the plate 

centre where Myy is expressed using a 

5 bending moment coefficient for Myy at the plate 

centre where Myy is expressed using b 
k

kx



  kth partial derivative with respect to x 

cos cosine function 

sin sine function 

cosh hyperbolic cosine function 

sinh hyperbolic sine function 

coth hyperbolic cotangent function. 
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