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Abstract 

The analysis of the stability problem of plate subjected to in-

plane compressive load is important due to the relatively poor 

capacity of plates in resisting compressive forces compared to 

tensile forces. It is also significant due to the nonlinear, sudden 

nature of buckling failures. This study presents the elastic 

buckling analysis of SSCF and SSSS rectangular thin plates 

using the single finite Fourier sine integral transform method. 

The considered plate problems are (i) rectangular thin plate 

simply supported on two opposite edges, clamped on one edge 

and free on the fourth edge; (ii) rectangular thin plate simply 

supported on all edges. The plates are subject to uniaxial 

uniform compressive loads on the two simply supported edges. 

The governing domain equation is a fourth order partial 

differential equation (PDE). The problem solved is a boundary 

value problem (BVP) since the domain PDE is subject to the 

boundary conditions at the four edges. The single finite sine 

transform adopted automatically satisfies the Dirichlet 

boundary conditions along the simply supported edges. The 

transform converts the BVP to an integral equation, which 

simplifies upon use of the linearity properties and integration 

by parts to a system of homogeneous ordinary differential 

equations (ODEs) in terms of the transform of the unknown 

buckling deflection. The general solution of the system of 

ODEs is obtained using trial function methods. Enforcement of 

boundary conditions along the y = 0, and y = b edges (for the 

SSCF and SSSS plates considered) results in a system of four 

sets of homogeneous equations in terms of the integration 

constants. The characteristic buckling equation in each case 

considered is found for nontrivial solutions as a transcendental 

equation, whose roots are used to obtain the buckling loads for 

various values of the aspect ratio and for any buckling modes. 

In each considered case, the obtained buckling equation is exact 

and identical with exact expressions previously obtained in the 

literature using other solution methods. The buckling loads 

obtained by the present method are validated by the observed 

agreement with results obtained by previous researchers who 

used other methods. 

Keywords: single finite Fourier sine integral transform method, 

characteristic elastic buckling equation, critical elastic buckling 

load, elastic buckling load coefficient, elastic buckling problem. 

I. INTRODUCTION 

The analysis of stability problems of plate carrying in-plane 

compressive loads is important in structures due to the 

relatively poor capacity of plates in resisting compressive 

forces [1 – 7]. It is also important due to the nonlinear, sudden 

nature of buckling. A good knowledge of buckling loads and 

the associated buckling mode shapes is fundamental to 

structural analysis and design for compressed plates; hence the 

need for development of effective analytical and numerical 

methods for solving the buckling problem. 

The determination of buckling loads is thus an important theme 

in structural analysis. In-plane compressive loads can be 

uniformly or non-uniformly applied over the edges uniaxially 

or biaxially. The plate may be modelled as a thin or thick plate, 

depending on the thickness-width ratio, where the width is the 

least in-plane dimension. 

The buckling problem is classified as elastic or inelastic. In 

elastic buckling problems, the critical buckling load is smaller 

than the elastic limit of the material otherwise the problem is 

called inelastic buckling. 

Navier’s investigation of stability problem of rectangular thin 

plates was one of the first studies on the subject of thin plate 

stability. Navier used the assumptions and hypotheses of the 

Kirchhoff thin plate theory to derive the stability equation of 

rectangular thin plates that included the twisting term. 

Saint-Venant later presented a modification of the Navier’s 

equation to include the axially applied edge loads and the 

shearing loads. Saint-Venant’s modified differential equation 

provided the theoretical basis for the elastic stability of thin 

plates with various edge loads and edge support conditions. 

Bryan used the total potential energy minimization principle to 

solve the elastic stability of a rectangular thin plate under 

uniaxial compressive load for Dirichlet boundary conditions. 

Bryan assumed the buckling shape function for the problem as 

a double Fourier sine series. 

Timoshenko [6] also presented solutions to elastic stability 

problem of rectangular thin plates with simply supported edges 

under uniaxial compressive loads by assuming the buckling 

shape function as series of sinusoidal half waves in the 
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direction of the axial compression. Timoshenko used the 

boundary conditions to set up a matrix which was solved to 

obtain the buckling loads. He also investigated and found 

solutions for the elastic stability problem of uniaxially 

compressed rectangular thin plates with two opposite edges 

simply supported and the other edges under various support 

conditions. 

Considerable research works have been presented on the 

stability of plates of various shapes, types and boundary 

conditions. Some significant contributions to the research on 

plate stability are reported by: Gambhir [2], Bulson [3], Chajes 

[4], Timoshenko and Gere [5], Shi [8], Shi and Bezine [9], 

Ullah et al [10, 11, 12, 13], Wang et al [14], Abodi [15], Yu 

[16], Abolghasemi et al [17], Xiang et al [18] and Bouazza et 

al [19] 

Contemporary research work on the plate stability problems 

have used various numerical methods such as the differential 

quadrature method (DQM), discrete singular convolution (DSC) 

method, harmonic differential quadrature method, ordinary 

finite difference method (FDM), meshfree method, generalized 

Galerkin method, finite strip method, B-spline finite strip 

method, exact finite strip method, hp-cloud method, modified 

Ishlinskii’s solution method, meshless analog equation method, 

finite element method (FEM), extended Kantorovich method 

(EKM) and pb2-Ritz method. Very recent research work on the 

subject of plate stability using various numerical and analytical 

techniques have been reported by Lopatin and Morozov [20], 

Ghannadpour et al [21], Jafari and Azhari [22], Zureick [23], 

Seifi et al [24], Li et al [25], Wang et al [26], Mandal and 

Mishra [27], Shama [28], and Yao and Fujikubo [29]. 

Oguaghamba [30] studied the buckling and post buckling load 

characteristics of thin rectangular plates with isotropic, 

homogeneous material properties. Oguaghamba et al [31] 

studied the buckling and post buckling load characteristics of 

thin rectangular clamped plates made of isotropic, 

homogeneous materials. Ibearugbulem [32] used the Ritz direct 

variational method to study the elastic stability problems of thin 

rectangular flat plates under uniaxial uniform compressive load 

for various boundary conditions. Ibearugbulem et al [33] and 

Osadebe et al [34] used the Taylor-Maclaurin’s series shape 

functions in the Galerkin’s variational method for the elastic 

stability analysis of simply supported, isotropic, homogeneous 

thin rectangular plates under uniaxial uniform in-plane 

compressive load. 

Elastic buckling problems of thin plates have been solved using 

Finite Difference method by Abodi [15]. Boundary element 

method has been applied to solve elastic buckling problem of 

orthotropic plates by Shi [8], and Shi and Bezine [9]. Nwoji et 

al [35] used the two-dimensional finite Fourier sine integral 

transformation method to obtain solutions for the elastic 

stability problem of Kirchhoff plates under uniaxial uniform 

compressive loads for the case of Dirichlet boundary conditions. 

They found that the two-dimensional finite Fourier sine integral 

transformation converts the domain PDE to an integral 

equation over the plate domain. They also found that the 

integral equation simplifies to an algebraic equation giving 

exact closed-form solutions for the buckling loads for all 

buckling modes. They found that the integral Kernel function 

in the transform adopted satisfies all the Dirichlet boundary 

conditions along all the edges for the simply supported plate 

studied. 

Onah et al [36] solved the elastic buckling problem of thin 

rectangular plates with two opposite simply supported edges 

under uniform compressive loads and two clamped edges. They 

used the single finite Fourier sine integral transform method 

which they found suitable for the problem since the Dirichlet 

boundary conditions are identically satisfied by the integral 

kernel. They found that the domain equation is transformed to 

an integral equation, and ultimately to a system of ODEs. They 

solved the ODEs subject to the boundary conditions to set up a 

system of homogeneous algebraic equations in the integration 

constants. They used the conditions for nontrivial solutions to 

obtain the characteristic buckling equations whose eigenvalues 

were used to obtain the buckling loads. They obtained solutions 

that agreed with previous solutions in the literature.  

Onyia et al [37] used the Galerkin-Kantorovich method for the 

elastic buckling analysis of rectangular thin SCSC plates. They 

found that the Galerkin-Kantorovich formulation of the elastic 

stability problem of thin plates is an integral equation that 

further simplified to a system of homogeneous fourth order 

ordinary differential equations (ODEs) in the unknown 

function. They obtained the general solution to the unknown 

function in terms of four sets of constants of integration and 

enforced boundary conditions to set up a system of 

homogeneous algebraic equations in terms of the integration 

constants. The condition for nontrivial solution was used to 

obtain the characteristic buckling equation as a transcendental 

equation which was solved using computer software based 

iteration methods. They obtained the buckling loads from the 

eigenvalues of the buckling equation, and found the solutions 

were exact for the buckling modes. They found that the 

characteristic buckling equation was identical to previously 

obtained equations. 

In this study the single finite Fourier sine integral transform 

method is used to solve the elastic stability problem of 

rectangular thin SSCF plates under uniaxial uniform 

compressive loads on the simply supported edges. 

 

II.THEORETICAL FRAMEWORK 

The elastic buckling thin plate theory used is expressed in the 

rectangular Cartesian coordinates x, y, z where x and y axis 

coincide with the middle plane and the z coordinate axis is 

directed downwards from the middle plane as shown in Figure 

1. 

 

 

Fig. 1. Cartesian coordinate axes for the plate 
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The origin of the Cartesian coordinates is defined at a corner of 

the plate as shown in Figure 1. A rectangular thin plate of in-

plane characteristic dimensions a by b and thickness t is 

considered. The fundamental assumptions are: 

(i) The deflections are very small as compared to the plate 

thickness. 

(ii) The middle plane does not suffer deformation and is a 

neutral surface.  

(iii) The plate thickness t is small compared to the other in-

plane characteristic dimensions (a  and b). 

(iv) Plane cross-sections of the plate rotate during bending 

deformation, but remain perpendicular to the neutral 

plane; and do not distort. Hence the stresses and strains 

are proportional to their distance from the neutral surface. 

The governing equation of elastic stability of plate is obtained 

by simultaneous consideration of the static equations of in-

plane equilibrium, transverse equilibrium and moment 

equilibrium. The equations are expressed in terms of stress 

resultants which are defined in terms of the stresses as follows: 
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where , ,xx yy zz    are normal stresses , ,xy yz xz    are shear 

stresses, Qx and Qy are shear forces, Nx, Ny, Nxy, Nyx are the in-

plane  forces, Mx, My are bending moments and Mxy, Myx are 

twisting moments. 

The equations of in-plane equilibrium are: 
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The equation of transverse equilibrium is: 
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The equations of moment equilibrium are: 
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Substitution of expressions for Qx and Qy obtained from 

Equation (4) into Equation (3), gives: 
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Substitution of expressions for xQ
x




 and 

yQ
y




  obtained from 

Equation (5) into Equation (3), gives the governing equation 

for elastic buckling as: 
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The moment deflection equations are used to express the 

governing equation in terms of transverse deflections, w(x, y). 

The stress-strain relations for the plane stress problem are given 

by: 
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where εx, εy are normal strains, γxy is the shear strain, E, is the 

Young’s modulus of elasticity, μ is the Poisson’s ratio, G is the 

shear modulus or modulus of rigidity. 

The displacement field components are: 
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where u is the displacement field component in the x direction, 

v is the displacement field component in the y direction. 

The kinematics relations are for linear infinitesimal elasticity 

problems, given by: 

x
u
x


 


 

y
v
y


 


     (9) 

xy
u v
y x
 

  
 

 

Thus, the strains are expressed in terms of the transverse 

deflection w as: 
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The stress-strain relations are then: 

2 2

2 2 2(1 )
x

Ez w w
x y

   
         

 

2 2

2 2 2(1 )
y

Ez w w
y x

   
         

   (11) 

2

1
xy

Ez w
x y

 
 

   
 

The stress resultants are obtained from Equation (1) as: 
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where 
3
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D is the flexural rigidity of the plate. 

 

Substitution of Equation (12) in Equation (6) gives the elastic 

buckling equation in terms of w as: 
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4 is the biharmonic operator, 2 is the Laplace operator. 

 

II.I   The SSCF thin plate considered 

The SSCF thin plate considered, as shown in Figure 2 is simply 

supported along the edges x = 0, and x = a, clamped along the 

edge y = 0 and free along y = b. 

 

 

Fig. 2. SSCF thin plate studied 

 

The SSCF plate is subject only to uniaxial uniform compressive 

load Nx as shown in Figure 2. The governing domain equation 

to be solved is thus: 
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Since Ny = 0, Nxy = 0 

The boundary conditions are: 

at the simply supported edges x = 0, x = a, 

w(x = 0, y) = 0 

w(x = a, y) = 0     (18) 
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w(x, y = 0) = 0 
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Vyzis the effective shear forces. 

 

III. METHODOLOGY 

The one dimensional finite Fourier sine integral transformation 

is applied to the domain PDE to obtain the integral equation: 
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where the sinusoidal integral kernel function satisfies the 

boundary conditions at the simply supported edges, x = 0, and 

x = a. 

Using the linearity properties of the transformation, we obtain: 
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Due to the Dirichlet boundary conditions along the simply 

supported edges, x = 0, and x = a,  
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W(n,y) is the finite sine integral transform of w(x, y). The 

inversion formula is the infinite series. 
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Then, we obtain: 
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Simplifying, 
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III.I General solution for the fourth order ordinary 

differential equation (ODE) 

By the method of trial functions, we assume a solution in the 

exponential form as: 

( , ) expW n y A y      (31) 

where β and A are unknown parameters. 

For nontrivial solutions, the characteristic or auxiliary equation 

is obtained as: 
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Hence, taking the square root of Equation (36) and (37), we 

have: 

1/2

2 2
1

x
n n

N
D

 
        

 

   (38) 

2 2
2

x
n n

N
i i

D
 

          
 

   (39) 

where 

1/2

2 2
1

x
n n

N
D

 
      

 

   (40) 

1/2

2 2
2

x
n n

N
D

 
      

 

    (41) 

The general solution is thus obtained from the basis of linearly 

independent solutions as: 

1 1 2 1( , ) cosh sinhW n y c y c y      

   3 2 4 2cos sinc y c y    (42) 

where c1, c2, c3 and c4 are the four constants of integration. 

 

III.II   Enforcement of boundary conditions 

Application of the finite Fourier sine transformation to the 

boundary conditions gives as follows: 

0

( , 0)sin ( , 0) 0

a n xw x dx W n y
a


     (43) 

0 0

( , 0)
sin ( , 0)sin 0

a aw x n x d n xdx w x dx
y a dy a

  
 

   (44) 

( , 0) 0
dW x y
dy

      (45) 

0

( , )sin

a

yy
n xM x y b dx
a


   

 
2 2

2 2
0

sin 0

a w w n xD dx
ay x

   
       
  (46) 

2 2

2 2
0

( , ) ( , )
sin 0

a w x b w x b n xD dx
ay x

     
          

  (47) 

2
2

2
( , ) ( , ) 0n

d W n b W n b
dy

     (48) 

3 3

3 2
0

( , ) ( , )
(2 ) sin 0

a w x b w x b n xD dx
ay x y

   
        
  (49) 

3
2

3
( , ) (2 ) ( , ) 0n

d dWW n b n b
dydy

      (50) 

 

IV. RESULTS 

By differentiation with respect to y: 

1 1 1 2 1 1( , ) sinh coshW n y c y c y          

  3 2 2 4 2 2sin cosc y c y      (51) 

2 2
1 1 1 2 1 1( , ) cosh sinhW n y c y c y         

  2 2
3 2 2 4 2 2cos sinc y c y      (52) 

3 3
1 1 1 2 1 1( , ) sinh coshW n y c y c y         

  3 3
3 2 2 4 2 2sin cosc y c y      (53) 

Hence using the equations, Equations (43, 45, 48 and 50), we 

obtain: 

1 3( , 0) 0W n y c c        (54) 

Solving Equation (54) for c3, we have: 

3 1c c        (55) 

2 1 4 2( , 0) 0W n y c c          (56) 

Solving Equation (56) for c4, we have: 

2 1
4

2

cc 
 


     (57) 

The use of Equation (48) gives: 

2 2 2
1 1 1 2 1 1 3 2 2cosh sinh cosc b c b c b          

2 2
4 2 2 1 1 2 1sin ( cosh sinhnc b c b c b        

  3 2 4 2cos sin ) 0c b c b     (58) 

Simplifying, Equation (58) give: 

2 2 2 2
1 1 1 2 1 1( )cosh ( )sinhn nc b c b         

2 2 2 2
3 2 2 4 2 2( )cos ( )sin 0n nc b c b        (59) 

Hence, using Equations (55) and (57), we simplify Equation 

(55) as follows: 

2 2 2 2
1 1 1 2 1 1( )cosh ( )sinhn nc b c b       

2 2 2 22 1
1 2 2 2 2

2

( )cos ( )sin 0n n
cc b b

       


(60) 

Using Equation (50), we have: 

3 3 3
1 1 1 2 1 1 3 2 2sinh cosh sinc b c b c b          

3 2
4 2 2 1 1 1 2 1 1cos (2 ) ( sinh coshnc b c b c b            

3 2 2 4 2 2sin cos ) 0c b c b        (61) 

Simplifying Equation (61) we have: 

3 2 3
1 1 1 1 2 1( (2 ) )sinh (nc b c          

2 3 2
1 1 3 2 2 2(2 ) )cosh ( (2 ) )sinn nb c b             

 3 2
4 2 2 2( (2 ) )cos 0nc b        (62) 
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Further simplification of Equation (62) gives: 

2 2 2
1 1 1 1 2 1 1( (2 ) )sinh (nc b c           

2 2 2
1 3 2 2 2(2 ) )cosh ( (2 ) )sinn nb c b            

 2 2
4 2 2 2( (2 ) )cos 0nc b        (63) 

The boundary condition equations can be simplified using 

Equation (64) which can be proved. 

2 2 2 2
1 2 (2 )n n          (64) 

 

From Equation (64), we have: 

2 2 2 2 2 2 2 2
2 1 (2 ) 2 2n n n n n n              

      …(65) 

From Equations (40) and (41) we have: 

2 2 2 2 2 2 2
2 1 2x x

n n n n n
N N
D D

 
             

 

(66) 

2 2 2
2 1 2 n      

Thus, Equation (64) is proved. Let us define a new parameter 

λ1 as follows: 

2 2 2 2
1 2 1(2 )n n            (67) 

Similarly, the following Equation (68) can be proved where we 

define another new parameter λ2 for simplification of the 

resulting expressions: 

2 2 2 2
2 1 2(2 )n n            (68) 

From Equation (68) we have: 

2 2 2 2 2 2 2 2
2 1 (2 ) 2 2n n n n n n              

      …(69) 

In terms of the parameters, λ1 and λ2, the boundary conditions 

are expressed as: 

1 1 1 2 2( cosh cos )c b b      

 1
2 1 1 2 2

2

sinh sin 0c b b
 
      

 
 (70) 

1 1 2 1 2 1 2( sinh sin )c b b        

 2 1 2 1 1 1 2( cosh cos ) 0c b b        (71) 

In matrix form, we have: 

0
( cosh cos ) sinh sin

0( sinh sin ) ( cosh cos )

11
1 1 2 2 1 1 2 2

2

21 2 1 2 1 2 1 2 1 1 1 2

c
b b b b

cb b b b

      
               

      
                  

      …(72) 

For nontrivial solutions 
1

2

0
c
c
 

 
 

 

The elastic stability equation is expressed in determinant form 

as: 

1
1 1 2 2 1 1 2 2

2

1 2 1 2 1 2 1 2 1 1 1 2

( cosh cos ) sinh sin
0

( sinh sin ) ( cosh cos )

b b b b

b b b b

 
          

 

            

      …(73) 

Expanding the determinant, the stability equation becomes: 

2 2
1 1 2 1 2 1 1 2cosh cosh cosb b b           

2 2
1 1 1 2 1 2 1 2cosh cos cosb b b          

2 1
1 1 2 1 2 1 2 1 2

2

sinh sinh sinb b b
 
          


 

2
2 21
1 2 1 2 1 2 2 2

2

sinh sin sin 0b b b


         
 

 (74) 

Simplifying, the elastic stability equation becomes: 

2 2 2
1 2 1 1 1 1 2 1 2(cosh sinh ) (cosb b b            

2 2 2
2 2 1 1 1 1 2sin ) ( )cosh cosb b b           

 
2 2

22 1
1 2 1 2

2

sinh sin 0b b
  

      
  

 (75) 

We recall the following trigonometric and hyperbolic identities 

2 2cosh sinh 1       (76) 

2 2cos sin 1       (77) 

From Equations (76) and (77) we note that: 

2 2
1 1cosh sinh 1b b       (78) 

2 2
2 2cos sin 1b b        (79) 

Using Equations (78) and (79), the buckling equation – 

Equation (75) – further simplifies as: 

2 2
1 2 1 2 1 1 1 22 ( ) cosh cosb b             

 

2 2
22 1
1 2 1 2

2

sinh sin 0b b
  

      
  

 (80) 

Division of Equation (80) by Ω1 gives: 

2 2
1 2 2 1 1 22 ( )cosh cosb b          

 

2 2
22 1
1 2 1 2

1 2

1
sinh sin 0b b

  
      

   

 (81) 

Thus, we obtain the elastic stability equation as the 

transcendental equation: 

2 2
1 2 1 2 1 22 ( )cosh cosb b          

  2 2 2 2
2 1 1 2 1 2

1 2

1
sinh sin 0b b       

 
 (82) 
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The transcendental equation is solved using computer based 

iteration software to obtain the eigenvalues from which the 

critical buckling loads are determined for various values of the 

plate aspect ratio and for Poisson’s ratio μ = 0.25. The critical 

buckling load coefficients K(a/b) of SSCF plates for μ = 0.25 

and various values of the aspect ratio r = a/b are presented in 

Table 1 for uniaxial uniform compressive load applied at the 

simply supported edges x = 0, and x = a. 

 

Table 1. Critical buckling load factors (coefficients) K(a/b) for 

SSCF rectangular plates under uniform axial compression 

 
2

2crx
a DN K b b

  

r = a/b Corresponding 

buckling mode 

Present study 

K(a/b) 

Wang et al [1] 

K(a/b) 

0.5 n = 1 4.518 4.518 

1.0 n = 1 1.698 1.698 

1.5 n = 1 1.339 1.339 

2.0 n = 1 1.386 1.386 

2.5 n = 2 1.432 1.432 

3.0 n = 2 1.339 1.339 

3.5 n = 2 1.336 1.336 

4.0 n = 3 1.386 1.386 

4.5 n = 3 1.339 1.339 

5.0 n = 3 1.329 1.329 

5.5 n = 3 1.347 1.347 

6.0 n = 3 1.339 1.339 

 

IV.I   Imposition of boundary conditions for SSSS Plates 

For SSSS plates, the boundary conditions along the y = 0 and y 

= b edges are: 

w(x , y = 0) = 0 

w(x , y = b) = 0 
2

2
( , 0) 0

w x y
y


 


    (83) 

2

2
( , ) 0

w x y b
y


 


 

Application of the finite Fourier sine integral transform to the 

boundary conditions gives: 

0

( , 0)sin ( , 0) 0

a n xw x y dx W n y
a


      (84) 

0

( , )sin ( , ) 0

a n xw x y b dx W n y b
a


      (85) 

2 2

2 2
0 0

( , 0)sin ( , 0)sin

a aw n x n xx y dx w x y dx
a ay y

   
  

 
   

 
2

2
( , 0) ( , 0) 0

d W n y W n y
dy

      (86) 

2 2

2 2
0 0

( , )sin ( , )sin

a aw n x n xx y b dx w x y b dx
a ay y

   
  

 
   

 
2

2
( , ) ( , ) 0

d W n y b W n y b
dy

      (87) 

Hence, 

W(n, y = 0) = c1 + c3 = 0    (88) 

2 2
1 1 3 2( , 0) 0W n y c c          (89) 

1 1 2 1( , ) cosh sinhW n y b c b c b        

  3 2 4 2cos sin 0c b c b     (90) 

2 2
1 1 1 2 1 1( , ) cosh sinhW n y b c b c b          

  2 2
3 2 2 4 2 2cos sin 0c b c b       (91) 

Solving, from Equation (88), 

c1 = – c3     (92) 

Then substitution into Equation (89) gives 

2 2 2 2
1 1 1 2 1 1 2( ) 0c c c          (93) 

Since 2 2
1 2 0,    then 

c1 = 0      (94) 

c3 = 0      (95) 

The system of homogeneous equations then simplifies to: 

2 1 4 2sinh sin 0c b c b       (96) 

2 2
2 1 1 4 2 2sinh sin 0c b c b         (97) 

In matrix form, we have 

1 2 2

2 2
41 1 2 2

sinh sin 0

0sinh sin

b b c
cb b

     
            

  (98) 

The characteristic stability equation is found from the condition 

for nontrivial solutions which is the vanishing of the 

determinant of the coefficient matrix. Thus 

1 2

2
1 1 2 2

sinh sin
0

sinh sin

b b

b b

 


   
   (99) 

Expansion of the determinant gives: 

2 2
2 2 1 1 1 2sin sinh sinh sin 0b b b b        (100) 
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Simplifying, Equation (100) becomes: 

2 2
2 1 1 2sin sinh ( ) 0b b        (101) 

For nontrivial solutions, the characteristic buckling equation 

has infinite number of roots (eigenvalues) found by solving: 

2sin 0b       (102) 

Or 1sinh 0b       (103) 

Solving, 

1
2 sin 0 , 1, 2,3, 4,...b m m       (104) 

2

m
b


       (105) 

Then using Equation (41) we have: 

1/2
2

2
2

n x
n

N m
D b

  
     
 
 

   (106) 

Squaring both sides of Equation (106), we have: 

22
2n x
n

N m
D b

  
    

 
    (107) 

Hence, 

2 2 22
2n x
n

N m n m
D b a b

        
         

     
  (108) 

Squaring both sides of Equation (108), we obtain: 

2
2 22

n xN n m
D a b

      
          

   (109) 

Simplifying, 

2
2 2

2x
n

D n mN
a b

     
           

   (110) 

Hence, 

2
2 2 2

x
a n mN D

n a b

       
              

  (111) 

Simplifying, 

2 22 22 4 2 2 2
2

2 2 2 2 2x
Da n m a n mN D

a bn n a b

       
                  

 (112) 

Simplifying further, 

2 4 2 2 4
2

2 4 2 2 4

2
x

a n n m mN D
n a a b b

 
     

 

  (113) 

Hence, 

2 2 4 2
2

2 2 2 4

2
x

n m m aN D
a b n b

 
     

 

   (114) 

Let a = br     (115) 
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  (116) 

Thus, 

2 2 4 2 2
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 (117) 

In which, 

 
2 4 2

2

2 2
( ) 2

n m raK r K mb r n

 
     
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  (118) 

For m = 1, n = 1, 

  2

2

1
( ) 2 ( )

crx
aK K r r K rb r

 
     

 
  (119) 

K(a/b) is calculated for varying values or r where 0 <r< 1 and 

presented in Table 2. Table 2 also displays results obtained 

previously for the critical elastic buckling load by Iyengar [7] 

and Nwoji et al [35] using a double finite Fourier sine integral 

transform method. 

 

Table 2. Critical elastic buckling load factors (coefficients) for 

simply supported rectangular thin plates subjected to uniaxial 

uniform compressive load acting at x = 0, and x = a for various 

plate aspect ratios.  

Plate aspect 

ratio (a/b) 

Present study 

K(a/b) 

Iyengar [7] 

K(a/b) 

Nwoji et al [35] 

K(a/b) 

0.1 102.01 102.01 102.01 

0.2 27.04 27.04 27.04 

0.3 13.201111 13.2011 13.2011 

0.4 8.41 8.41 8.41 

0.5 6.25 6.25 6.25 

0.6 5.137778 5.1378 5.1378 

0.7 4.530816 4.5308 4.5308 

0.8 4.2025 4.2025 4.2025 

0.9 4.044568 4.0446 4.0446 

1.0 4 4 4 
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V. DISCUSSION 

This article has illustrated the application of the single finite 

Fourier sine integral transform method to the elastic stability 

problem of rectangular thin SSCF and SSSS plates. The 

problem is governed by BVP given for SSCF plates as 

Equations (17), (18), (19) and (20), where Equation (17) is the 

domain equation and Equations (18), (19) and (20) are the 

boundary conditions. The application of the one-dimensional 

finite sine integral transform to the governing domain equation 

converted the problem to an integral equation expressed as 

Equation (21). The sinusoidal kernel function of the 

transformation is found to satisfy all the Dirichlet boundary 

conditions along the simply supported edges x = 0 and x = a. 

The integral equation is simplified using its linearity properties, 

integration by parts, and the Dirichlet conditions at x = 0, and x 

= a to yield the system of homogeneous fourth order ODEs 

expressed as Equation (28). The general solution of the system 

of homogeneous ODEs is obtained as Equation (42) in terms of 

four sets of integration constants. 

SSCF plates: Enforcement of the boundary conditions along 

the clamped and free edges gave a system of four homogeneous 

equations in terms of four sets of integration constants – 

Equations (54), (56), (59) and (63). Equations (55) and (57) are 

used to further simplify the system of equations to a system of 

two homogeneous equations (70) and (71), which are expressed 

in matrix form as Equation (72). The condition for nontrivial 

solution gave the characteristic buckling equation as Equation 

(73) – a determinantal equation. The determinant was expanded 

and simplified to yield after using trigonometric and hyperbolic 

identities, the characteristic buckling equation as the 

transcendental equation – Equation (82). The eigenvalues of the 

transcendental equations obtained by iteration methods for 

various aspect ratios were used to find the critical buckling load 

factors (coefficients) K(a/b). The critical buckling load 

coefficient calculated for various aspect ratios (a/b) are 

presented in Table 1, as well as solutions previously obtained 

by Wang et al [1]. Table 1 shows that the solutions obtained in 

this study using the one-dimensional (1D) finite Fourier sine 

integral transform method are identical with results reported by 

Wang et al [1]. 

SSSS plates: The one-dimensional finite sine integral 

transformed boundary condition equations are found as 

Equations (84), (85), (86) and (87). Explicitly, the transformed 

boundary conditions are found in terms of the integration 

constants as Equations (88), (89), (90) and (91). Solutions of 

Equations (88) and (89) give Equations (94) and (95) and the 

equations reduce to Equations (96) and (97) which contain only 

two constants c2 and c4. The system of homogeneous equations 

then become in matrix form Equation (98). The characteristic 

stability equation, obtained from the condition for nontrivial 

solutions which is the vanishing of the determinant of the 

coefficient matrix is found as Equation (99). Expansion of the 

determinant and simplification of the resulting equation gave 

the stability equation as Equation (101). The solution is found 

by solving Equation (102) and is obtained as Equation (105). 

The eigenvalues of the equation are used to obtain the buckling 

load expression as Equation (116). The buckling load 

expression is written in terms of elastic buckling load 

coefficients K(a/b) which depend upon the aspect ratio as 

Equation (117). Critical elastic buckling load coefficients are 

found for m = n = 1 as Equation (119) which is evaluated for 

varying values of the aspect ratio and presented in Table 2. 

Table 2 reveals that the obtained results of the present study are 

identical with solutions obtained by Iyengar [7] and Nwoji et al 

[35] in which Nwoji et al [35] used a double finite Fourier sine 

integral transform method. 

 

VI. CONCLUSION 

In conclusion, 

(i) The single finite Fourier sine integral transform method 

has been successfully used to solve the elastic stability 

problem of SSCF and SSSS rectangular thin plates 

subjected to uniaxial uniform compressive load along the 

simply supported edges x = 0, and x = a. 

(ii) The integral transform method used has proved ideally 

fitting for the problem because the integral kernel 

function of the transform is a sinusoidal function of the x 

coordinate and satisfies all the Dirichlet boundary 

conditions along the simply supported edges. 

(iii) The one-dimensional finite Fourier sine integral 

transform of the governing domain equation converts the 

boundary value problem (BVP) to an integral equation. 

(iv) The resulting integral equation upon the use of linearity 

properties of the transformation and  integration by parts, 

simplifies to a system  of homogeneous ordinary 

differential equations (ODEs) in the unknown function, 

which is the single finite Fourier sine transform of w(x, y). 

(v) The system of ODEs is solved using the method of trial 

functions to obtain the solution basis for linearly 

independent solutions and then the general solution which 

has four sets of integration constants. 

(vi) The employment of the boundary conditions along the 

edges y = 0 and y = b is used to set up a system of 

homogeneous equations in terms of the integration 

constants. 

(vii) The requirement for nontrivial solutions of the 

homogeneous equations is used to find the characteristic 

elastic stability equation in determinantal form. 

(viii) Ultimately, upon expansion of the determinant, the 

characteristic elastic stability equation  is obtained as a 

transcendental equation which is solved using iteration 

methods and software tools to obtain the eigenvalues used 

to find the buckling loads. 

(ix) The expressions obtained for the characteristic elastic 

buckling equation for the SSCF and SSSS plates are exact 

and identical with previously obtained expressions thus 

validating the study results. 

(x) The elastic buckling loads obtained for both SSCF and 

SSSS plates are also exact since the governing equations 

were solved for all points in the solution domain (plate 

region) and all boundary conditions are also satisfied by 

the solution. 
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(xi) The exact buckling loads for the SSCF and SSSS plates 

are identical with previously obtained values by other 

researchers. 
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