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Abstract 

This paper presents the Galerkin-Vlasov variational method for 

the elastic buckling analysis of SSCF and SSSS rectangular 

plates. The thin plate problems studied are: (i) simply supported 

along two opposite sides x = 0, and x = a, clamped along the 

third side y = 0, and free along the fourth side y = b; (ii) simply 

supported along the four sides x = 0, x = a, y = 0 and y = b. In 

each case the edges x = 0 and x = a are subjected to uniform 

compressive load. Mathematically, the considered stability 

problem is a Boundary Value Problem (BVP) expressed by a 

domain fourth order partial differential equation (PDE) whose 

general solution should satisfy all the boundary conditions 

determined by the edge support conditions. By the Galerkin-

Vlasov method, the unknown deflection shape function is 

chosen as the product of the eigenfunctions of a vibrating thin 

beam of identical span in the x direction and an unknown 

function of y(Gn(y)). The Galerkin-Vlasov variational integral 

equation is simplified using the Leibnitz rule, integration by 

parts and the orthogonality properties of the eigenfunctions of 

simply supported thin beams to a system of fourth order 

ordinary differential equations (ODEs). The general solution of 

the system of ODEs is obtained using trial function methods in 

terms of hyperbolic and trigonometric functions. The 

imposition of boundary conditions is used in each of the two 

cases to find the characteristic buckling equation. The buckling 

equation is obtained in each case as a transcendental equation, 

which is solved to obtain the eigenvalues from which the 

buckling loads are determined. The results obtained in each 

case for the buckling equation are identical to previous results 

obtained by other scholars who used classical methods and 

energy minimization methods. The results obtained for the 

buckling loads are in agreement with previously obtained 

solutions in the literature. The results obtained in each 

presented case in this study are found to be exact because exact 

shape functions were used in the x direction and the general 

solution was obtained for the domain PDE at every point in the 

plate domain. In addition, the solution obtained was made to 

satisfy all the boundary conditions at all the edges of the plate. 

Keywords: Galerkin-Vlasov variational method, characteristic 

elastic buckling equation, critical elastic buckling load, elastic 

buckling problem, elastic buckling load coefficient. 

I. INTRODUCTION 

The elastic buckling analysis of plates subjected to various 

distributions of compressive loads applied in their plane is an 

important part of structural design of such members [1 – 10]. 

The plate may be assumed thin or thick, homogeneous or 

inhomogeneous; and the loads may vary uniformly or non-

uniformly along the plate edges. The buckling problem may be 

elastic or inelastic. One of the first studies of plate buckling was 

conducted by Navier, who used the basic assumptions of 

Kirchhoff thin plate theory to formulate the stability equation 

of rectangular thin plates to include twisting. Saint Venant 

modified the Navier formulation to incorporate the edge axial 

and shear loads. Since the scholarly works of Navier and Saint 

Venant, several other studies have contributed significantly to 

the present day knowledge of buckling. Some of these works 

are presented by: Ullah et al [11, 12, 13, 14], Timoshenko [2], 

Timoshenko and Gere [3], Yu [8], Xiang et al [15], and Abodi 

[16]. Oguaghamba [17] and Oguaghamba et al [18] 

investigated the buckling and post-buckling loads of 

rectangular plates assumed to be thin and with material 

properties that are isotropic and homogeneous. 

Various numerical and mathematical techniques have been 

used for the plate buckling problem. They include: Finite 

Difference Method (FDM), Differential Quadrature Method 

(DQM), Discrete Singular Convolution (DSC) Method, Finite 

Element Method (FEM), Ritz variational method, Finite Strip 

Method (FSM), Galerkin variational method, single finite 

Fourier sine transform method, double finite Fourier sine 

transform method and Galerkin-Kantorovich method. 

Ibearugbulem [19] and Nwadike [20] studied the elastic 

buckling analysis of thin rectangular flat plates under uniform 

compressive loads using Ritz variational technique. They 

considered various boundary conditions and mostly presented 

one unknown displacement parameter solutions for the critical 

buckling loads. Osadebe et al [21] and Ibearugbulem et al [22] 

presented the elastic buckling analysis of SSSS plates by the 

Galerkin variational method that used the truncated Taylor-

Maclaurin’s series shape functions. Both studies considered 

thin rectangular isotropic homogeneous plates subjected to 

uniaxial uniform compressive load applied in-plane. 
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Finite Difference method has been used for buckling problems 

by Abodi [16]. Boundary element method was used by Shi [5], 

and Shi and Bezine [6]. Finite Fourier sine integral transform 

methods were used for elastic buckling analysis of plates by 

Nwoji et al [23], and Onah et al [24]. 

In a recent study, Onyia et al [25] presented the Galerkin-

Kantorovich method for solving the elastic stability problem of 

thin rectangular plate with two opposite simply supported sides 

and the remaining two edges clamped. Onyia et al [25] assumed 

the simply supported sides carry uniaxial uniform compressive 

load, and considered isotropic, homogeneous material 

properties. They obtained exact solutions for both the stability 

equation and the buckling loads. Other recent studies on plate 

buckling include: Lopatin and Morozov [26], Jafari and Azhari 

[27], Zureick [28], Seifi et al [29], Li et al [30], Wang et al [31], 

Mandal and Mishra [32] and Bouazza et al [33]. 

In the present study, the Galerkin-Vlasov method is presented 

for solving the elastic buckling problems of rectangular SSCF 

and SSSS plates subjected to uniform compressive loads acting 

on the simply supported edges. 

 

II.THEORETICAL FRAMEWORK 

The governing partial differential equation for the elastic 

buckling of rectangular thin plate (of dimensions a b ) is 

generally given by: 

4 4 4 2

4 2 2 4 2
2 x

w w w wD N
x x y y x

    
          

 

  
2 2

2
2 ( , )y xy

w wN N p x y
x yy

 
 

 
 (1)    The 

origin is assumed to be at a corner of the plate. Equation (1) is 

also expressed in more compact form as: 

4 2 ( , )x xx y yy xy xyD w N w N w N w p x y      (2) 

where 
4 4 4

4

4 2 2 4
2

x x y y
  

   
   

 

2 2 2

2 2
, ,xx yy xy

w w ww w w
x yx y

  
  

  
 

4 is the biharmonic operator, w(x, y) is the deflection, x, y are 

the in-plane Cartesian coordinates, Nx, Ny are the in-plane 

normal compressive loads on the edges, Nxy is the in-plane shear 

force D is the flexural rigidity of the plate. 

3

212(1 )

EhD 
 

 

E is the Young’s modulus of elasticity, h is the plate thickness, 

 is the Poisson’s ratio of the plate material, p(x, y) is the 

distributed transverse force on the plate domain. 

The SSCF plate considered is shown in Figure 1. 

 

 

Figure 1: Rectangular thin plate simply supported on two 

opposite edges, clamped on the third edge and free on the fourth 

with the simply supported edges under uniform axial 

compressive load 

 

The governing domain equation for the elastic buckling 

problem simplifies to: 

4 ( , ) 0x xxD w x y N w      (3) 

Since Ny = 0, Nxy = 0, p(x, y) = 0 

Thus, 
2

4

2

( , )
( , ) 0xN w x yw x y

D x


  


  (4) 

The boundary conditions are: 

For the simply supported edges, x = 0, and x = a, 

( 0, ) ( , ) 0w x y w x a y       (5) 

( 0, ) ( , ) 0xx xxw x y w x a y       (6) 

At the clamped edge, y = 0, 

w(x, y = 0) = 0     (7) 

( , 0) 0
w x y
y


 


    (8) 

At the free edge, y=b, 

2 2

2 2

,

( , ) 0yy
x y b

w wM x y b D
y x



  
         

 (9) 

3 3

3 2

,

(2 ) 0y
x y b

w wV D
y x y



  
         

  (10) 

where Myy is the bending moment, Vy is the shear force. 

 

III. METHODOLOGY 

By the Galerkin-Vlasov methodology, the shape function is 

chosen for the x-coordinate direction as the eigenfunctions of a 

vibrating thin beam of equivalent span and support conditions. 

Thus, the shape function in the x direction is assumed as 

Equation (11). 

1

( ) sinm
m

m xF x
a






      (11) 

m = 1, 2, 3, …,   
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We observe that Fm(x) satisfies the Dirichlet boundary 

conditions at the simply supported edges. Hence it is an 

appropriate shape function for the considered problem. The 

deflection function is thus given by Equation (12) as follows: 

( , ) ( ) ( ) ( )sinm n n
m n m n

m xw x y F x G y G y
a

    
    (12) 

The Galerkin-Vlasov variational integral equation for the 

problem is given by Equation (13). 

4

0 0

( )sin

b a

n
m n

m xG y
a

  
 


  

2

2
( )sin sin 0x

n
m n

N m x m xG y dxdy
D a ax

    
 

  (13) 

where m  assume integer values. 

Explicitly, Equation (13) can be expressed as Equation (14). 

4 4 2

4 2 2 4
0 0

2 ( )sin

b a

n
m n

m xG y
ax x y y

     
         

  

2

2
( )sin sin 0x

n
m n

N m x m xG y dxdy
D a ax

    
 

  (14) 

Simplification of Equation (14) yields the integral equation as 

Equation (15). 

4 2

0 0

( ) 2 ( ) ( ) sin

b a
iv

n n n
m n

m m m xG y G y G y
a a a

         
            



 

2

( )sin sin 0x
n

Nm m x m xG y dxdy
a D a a

   
     

 (15) 

Further simplification of Equation (15) gives the integral 

equation as Equation (16). 

4 2

0 0

( ) 2 ( ) ( )

b a
iv

n n n
m n

m mG y G y G y
a a

        
            

  

2

( ) sin sin 0x
n

Nm m x m xG y dxdy
a D a a

   
     

 (16) 

Simplifying Equation (16) further yields the Galerkin-Vlasov 

integral equation for the considered problem as Equation (17). 

Thus, 

2 4

0

( ) 2 ( )

b
iv
n n

m n

m mG y G y
a a

        
           

  

2

0

( ) sin sin 0

a
x

n
Nm m x m xG y dy dx

a D a a

   
      

  (17) 

Simplifying again, Equation (17) becomes Equation (18). 

2 4

0

( ) 2 ( )

b
iv
n n

m n

m mG y G y
a a

        
           

  

  

2

1( ) 0x
n

Nm G y dy I
a D

  
       

 (18) 

in which, 

1

0

sin sin

a m x m xI dx
a a
 

     (19) 

The orthogonality properties of the sinusoidal functions in the 

integrand forI1 are used to obtain the following results for the 

integration problem described by Equation (19): 

For  1, 0m m I   

 1, 0m m I   

Hence, Equation (18) simplifies to Equation (20). 

2 4

0

( ) 2 ( )

b
iv
n n

m n

m mG y G y
a a

       
           

  

  

2

( ) 0x
n

Nm G y dy
a D

 
       

 (20) 

This Equation (20) is true if the integrand vanishes for all, m, n. 

This leads to the system of homogeneous fourth order ordinary 

differential equations (ODEs) in Gn(y) expressed by Equation 

(21). 

2 4

( ) 2 ( )iv
n n

m mG y G y
a a

    
         

  

  

2

( ) 0x
n

Nm G y
a D

 
     

  (21) 

Let m
m
a


       (22) 

Then, Equation (21) is expressed in terms of αm as Equation 

(23). 

2 4 2( ) 2 ( ) ( ) 0iv x
n m n m m n

N
G y G y G y

D
 

      
 

 (23) 

 

IV. GENERAL SOLUTION FOR Gn(y) 

The general solution for Gn(y) is assumed in exponential form 

as Equation (24): 

( ) expn nG y A y      (24) 

where A and n are parameters to be found. 



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 6 (2020), pp. 1137-1146 

© International Research Publication House.  https://dx.doi.org/10.37624/IJERT/13.6.2020.1137-1146 

1140 

Then, the fourth order ODE becomes the algebraic problem 

given by Equation (25). 

4 2 2 4 22 exp 0x
n m n m m n

N
A y

D
  
          

  
 (25) 

For nontrivial solutions, A exp Ωny is not equal to 0, and the 

auxillary equation results from Equation (25) as Equation (26). 

4 2 2 4 22 0x
n m n m m

N
D

           (26) 

Solving Equation (26), we obtain by completing the squares: 

2 2 2 2( ) x
n m m

N
D

        (27) 

Taking the square root of both sides of the Equation (27), we 

obtain Equation (28). 

2 2 2 x
n m m

N
D

        (28) 

Hence, solving for 2,n  we obtain: 

2 2 2 x
n m m

N
D

         (29) 

Hence the two possibilities for n are: 

2 2 2 x
n m m

N
D

         (30) 

Or, 
2 2 2 2 2x x
n m m m m

N N
D D

 
           

 

 (31) 

The four roots are thus, 

1/2

2 2
1

x
n m m m

N
D

 
        

 

   (32) 

1/2

2 2
2

x
n m m m

N
i i

D
 

          
 

  (33) 

where 

1/2

2 2
1

x
m m m

N
D

 
      

 

   (34) 

1/2

2 2
2

x
m m m

N
D

 
      

 

   (35) 

The general solution for Gn(y) is: 

1 1 2 1( ) cosh sinhn m m m mG y c y c y       

  3 2 4 2cos sinm m m mc y c y    (36) 

where c1m, c2m, c3m and c4m are the integration constants. 

 

IV.I   Imposition of boundary conditions on w(x, y) along 

the edges y = 0 and y = b 

Case of SSCF plate 

Using Equations (12) and (36), the general solution for w(x, y) 

is found as the expression given by Equation (37). 

 1 1 2 1( , ) cosh sinhm m m m
m

w x y c y c y


      

 3 2 4 2cos sin sinm m m m
m xc y c y

a


    (37) 

The boundary condition for w(x, y) at the edge y = 0 is given 

by: 

, 01

( , 0) ( )sin 0n
x ym

m xw x y G y
a






     (38) 

Hence, the boundary condition Equation (38) simplifies to: 

( 0) 0nG y        (39) 

Similarly, the boundary condition on 
w
y




 at y = 0 is given by: 

( , 0) ( )sin 0n
w m xx y G y
y y a

  
  

 
   (40) 

Hence, 

( 0) 0nG y        (41) 

The boundary condition at the free edge y = b is: 

( , ) ( )sinyy n
m xM x y b D G y

a


   


 

  

2

( )sin 0n
m m xG y
a a

  
     

 (42) 

Hence, 

2

( ) ( ) sin 0n n

y b

m m xG y G y
a a



   
       

 (43) 

Or,  2( ) ( ) 0n m nG y b G y b       (44) 

The boundary condition on Vy at the free edge y = b is: 

0 ( )siny ny b
m xV D G y

a


   


 

  
2(2 ) ( )sin 0m n

m xG y
a
 

   


 (45) 

Hence, Equation (45) becomes: 

2( ) (2 ) ( ) 0n m nG y b G y b          (46) 

Taking the derivatives of Gn(y) with respect to y, we have: 

1 1 1 2 1 1( ) sinh coshn m m m m m mG y c y c y         

 3 2 2 4 2 2sin cosm m m m m mc y c y      (47) 
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2 2
1 1 1 2 1 1( ) cosh sinhn m m m m m mG y c y c y         

 2 2
3 2 2 4 2 2cos sinm m m m m mc y c y      (48) 

3 3
1 1 1 2 1 1( ) sinh coshn m m m m m mG y c y c y         

 3 3
3 2 2 4 2 2sin cosm m m m m mc y c y      (49) 

Hence from Equation (39), we have: 

1 3( 0) 0n m mG y c c       (50) 

So, 3 1m mc c       (51) 

From Equation (41), we have: 

2 1 4 2( 0) 0n m m m mG y c c         (52) 

Hence, 2 1
4

2

m m
m

m

c
c


 


    (53) 

From Equation (44), we obtain 

2 2 2
1 1 1 2 1 1 3 2 2cosh sinh cosm m m m m m m m mc b c b c b          

2 2
4 2 2 1 1 2 1sin ( cosh sinhm m m m m m m mc b c b c b        

 3 2 4 2cos sin ) 0m m m mc b c b      (54) 

Simplifying, Equation (54) gives Equation (55): 

2 2 2
1 1 1 2 2( )cosh (m m m m m mc b c       

 2 2 2
1 3 2 2)sinh ( )cosm m m m m mb c b       

 2 2
4 2 2( )sin 0m m m mc b       (55) 

Further simplification, of Equation (55) using Equations (51) 

and (53) gives Equation (56). 

2 2 2
1 1 1 2 1( )cosh (m m m m m mc b c       

 2 2 2
1 1 2 2)sinh ( )cosm m m m m mb c b        

 2 22 1
2 2

2

( )sin 0m m
m m m

m

c
b


    


  (56) 

Using Equation (46) we obtain: 

3 3 3
1 1 1 2 1 1 3 2 2sinh cosh sinm m m m m m m m mc b c b c b          

3 2
4 2 2 1 1 1 2 1 1cos (2 ) ( sinh coshm m m m m m m m m mc b c b c b           

 

3 2 2 4 2 2sin cos ) 0m m m m m mc b c b        (57) 

Simplifying, Equation (57) gives Equation (58): 

3 2 3
1 1 1 1 2 1( (2 ) )sinh (m m m m m m mc b c          

2 3 2
1 1 3 2 2 2(2 ) )cosh ( (2 ) )sinm m m m m m m mb c b             

3 2
4 2 2 2( (2 ) )cos 0m m m m mc b         (58) 

 

Further simplification of Equation (58) gives Equation (59) as 

follows: 

2 2 2
1 1 1 1 2 1 1( (2 ) )sinh (m m m m m m m mc b c           

2 2 2
1 3 2 2 2(2 ) )cosh ( (2 ) )sinm m m m m m mb c b            

2 2
4 2 2 2( (2 ) )cos 0m m m m mc b         (59) 

It can be shown that Equation (60) is true. 

2 2 2 2
1 2 (2 )m m m m          (60) 

From Equation (60), we have 

2 2 2 2 2
2 1 (2 ) 2m m m m m            (61) 

Also from the expressions for β1m and β2m, (Equations (34) and 

(35)) we have: 

2 2 2 2
2 1

x
m m m m

N
D

 
        

 

   

  
2 2 22x
m m m

N
D

 
       

 

 (62) 

Hence, 2 2 2 2
1 2 1(2 )m m m m           (63) 

Similarly, 

2 2 2 2
2 1 2(2 )m m m m           (64) 

Then, the boundary conditions become: 

1 1 1 2 2 2 1 1( cosh cos ) sinhm m m m mc b b c b
        


 

  1
2 2

2

sin 0m
m

m
b


  
 

  (65) 

and, 

1 1 2 1 2 1 2( sinh sin )m m m m mc b b        

2 1 2 1 1 1 2( cosh cos ) 0m m m m mc b b        (66) 

As a matrix, the system of Equations (65) and (66) becomes: 

11
1 1 2 2 1 1 2 2

2

21 2 1 2 1 2 1 2 1 1 1 2

0
( cosh cos ) sinh sin

0( sinh sin ) ( cosh cos )

mm
m m m m

m
mm m m m m m m m

c
b b b b

cb b b b

      
               

      
    

                

      …(67) 

The stability equation is obtained for nontrivial solutions as the 

equation: 

1
1 1 2 2 1 1 2 2

2

1 2 1 2 1 2 1 2 1 1 1 2

( cosh cos ) sinh sin
0

( sinh sin ) ( cosh cos )

m
m m m m

m

m m m m m m m m

b b b b

b b b b

 
          

 

             

      …(68) 
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Expansion of the determinant yields: 

1 1 2 2 1 2 1( cosh cos )( coshm m m mb b b          

1
1 1 2 1 1 1 2

2

cos ) sinh sinm
m m m m

m
b b b

 
          

 
 

 1 2 1 2 1 2( sinh sin ) 0m m m mb b        (69) 

Hence, simplification of Equation (69) gives Equation (70). 

2 2
1 1 2 1 2 1 1 2cosh cosh cosm m m m mb b b           

2 2
1 1 1 2 1 2 1 2cosh cos cosm m m m mb b b           

2 1
1 1 2 1 2 1 2 1 2

2

sinh sinh sinm
m m m m m

m
b b b

 
          


 

2
2 21
1 2 1 2 2 1 2 2

2

sinh sin sin 0m
m m m m m

m
b b b


         

 

 

      …(70) 

Simplification of Equation (70) gives: 

2 2 2
1 2 1 1 1 1 2 1 2(cosh sinh ) (cosm m m m mb b b             

2 2 2
2 2 1 1 1 1 2sin ) ( )cosh cosm m m m mb b b           

 

2 2
22 1
1 2 1 2

2

sinh sin 0m
m m m

m
b b

  
      

  

 (71) 

From trigonometric and hyperbolic identities, Equation (71) 

can be simplified using Equations (72) and (73) 

2 2
1 1cosh sinh 1m mb b       (72) 

2 2
2 2cos sin 1m mb b       (73) 

Hence, the simplification of Equation (71) using the 

trigonometric and hyperbolic identities gives Equation (74). 

2 2
1 2 1 2 1 1 1 22 ( ) cosh cosm m m mb b            

 
2 2

22 1
1 2 1 2

2

sinh sin 0m
m m m

m
b b

  
      

  

 (74) 

Division of Equation (74) by β1m, gives Equation (75). 

2 2
1 2 2 1 1 22 ( )cosh cosm mb b          

2 2
22 1
1 2 1 2

1 2

1
sinh sin 0m

m m m
m m

b b
  

      
   

 (75) 

Further simplification of Equation (75) yields Equation (76). 

2 2
1 2 1 2 1 22 ( )cosh cosm mb b          

 2 2 2 2
2 1 1 2 1 2

1 2

1
sinh sin 0m m m m

m m
b b       

 
 (76) 

The characteristic buckling equation – Equation (76) – which 

has been derived and observed to be a transcendental equation 

is solved by computational software tools to find the 

eigenvalues (roots). The obtained eigenvalues are used to find 

the buckling loads for different varying plate aspect ratios and 

for a Poisson’s ratio  = 0.25. The critical buckling load 

coefficients K(a/b) of SSCF plates obtained in this study using 

the Galerkin-Vlasov method for  = 0.25, and varying aspect 

ratios are presented in Table 1 for uniform compressive load 

applied at the simply supported edges x = 0, and x = a. 

 

Table 1. Critical buckling load factors (coefficients) K(a/b) for 

SSCF rectangular thin plates under uniform axial compression 

 
2

2crx
DaN K b b


  

Aspect 

ratio, a/b 
Corresponding 

buckling mode, 

m 

Present study 

K(a/b) 

Wang et al 

[1] 

K(a/b) 

0.5 m = 1 4.518 4.518 

1.0 m = 1 1.698 1.698 

1.5 m = 1 1.339 1.339 

2.0 m = 1 1.386 1.386 

2.5 m = 2 1.432 1.432 

3.0 m = 2 1.339 1.339 

3.5 m = 2 1.336 1.336 

4.0 m = 3 1.386 1.386 

4.5 m = 3 1.339 1.339 

5.0 m = 3 1.329 1.329 

5.5 m = 3 1.347 1.347 

6.0 m = 3 1.339 1.339 

 

IV.II   Imposition of boundary conditions along y = 0, and y 

= b for case of SSSS plates 

For simply supported plates, the boundary conditions along the 

y = 0, and y = b edges are given by: 

w(x , y = 0) = 0 

2

2
( , 0) 0

w x y
y


 


 

w(x , y = b) = 0     (77) 

2

2
( , ) 0

w x y b
y


 


 

These boundary conditions imply that: 

Gn(y = 0) = 0 

( 0) 0nG y    

Gn(y = b) = 0     (78) 

( ) 0nG y b    
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Thus, 

1 3( 0) 0n m mG y c c        (79) 

2 2
1 1 3 2( 0) 0n m m m mG y c c          (80) 

1 1 2 1( ) cosh sinhn m m m mG y b c b c b       

  3 2 4 2cos sin 0m m m mc b c b     (81) 

2 2
1 1 1 2 1 1( ) cosh sinhn m m m m m mG y b c b c b           

2 2
3 2 2 4 2 2cos sin 0m m m m m mc b c b        (82) 

Solving Equations (79) and (80) simultaneously, we have: 

c1m = c3m = 0     (83) 

Then the system of homogeneous equations become 

2 1 4 2sinh sin 0m m m mc b c b       (84) 

2 2
2 1 1 4 2 2sinh sin 0m m m m m mc b c b        (85) 

As a matrix, Equations (84) and (85) become: 

1 2 2

2 2
41 1 2 2

sinh sin 0

0sinh sin

m m m

mm m m m

b b c
cb b

     
            

 (86) 

The determinant of the coefficient matrix is required to vanish 

for nontrivial solutions. Hence the elastic buckling equation is 

given by Equation (87). 

1 2

2 2
1 1 2 2

sinh sin
0

sinh sin

m m

m m m m

b b

b b

 


   
  (87) 

Expansion of the determinant in Equation (87) yields: 

2 2
2 2 1 1 1 2sin sinh sinh sin 0m m m m m mb b b b       (88) 

Simplifying, 

2 2
1 2 2 1( )sin sinh 0m m m mb b        (89) 

For nontrivial solutions, 

2sin 0mb       (90) 

1
2 sin 0 , 1, 2,3,...mb n n       (91) 

2m
n
b


       (92) 

From Equation (35), we have 

1/2

2 2
2

x
m m m

N n
D b

  
       

 

   (93) 

Squaring both sides of Equation (93) gives Equation (94) as 

follows: 

2
2 2x
m m

N n
D b

 
     

 
    (94) 

Hence, simplifying Equation (94) gives: 

2 2 2
2 2x
m m

N n m n
D b a b

       
          

     
 (95) 

Hence, squaring both sides of Equation (95) gives: 

2
2 2 2

2 x x
m

N Nm m n
D a D a b

        
                

 (96) 

Then, Equation (96) is expressed such that Nx is the subject as 

follows: 

2
2 2 2

x
a m nN D

m a b

       
              

  (97) 

Simplifying Equation (97) gives: 

4 2 2 42

2
2

( )
x

a m m n nN D
a a b bm

           
                    

(98) 

Further simplification gives: 

22 2 4

2
( )

x
m n a nN D
a b m b

         
                  

 (99) 

Further simplification of Equation (99) gives Equation (100) as 

follows: 

2 2 2 4 2

2 4
2x

m n a nN D
a b m b

      
           

  (100) 

Let a/b = r, then a = br, and Equation (100) becomes in terms 

of r and b; 

2 2 2 4
2

2 2 2 2 2

2
x

m n r nN D
b r b m b

 
     

 

  (101) 

Simplifying Equation (101) gives: 

2 2 2 4
2

2 2 2
2x

D m r nN n
b r m

 
    

 

   (102) 

Equation (102) is expressed in terms of buckling coefficients, 

K(r, m, n) as: 

2

2
( , , )x

DN K r m n
b


     (103) 

where, 
2 2 4

2

2 2
( , , ) 2

m r nK r m n n
r m

 
    
 

  (104) 

For m = n = 1, 

 2

2

1
( , 1) 2 aK r m n r K br

 
      

 
  (105) 
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K(r) is evaluated for SSSS plates for different values of the 

aspect ratio and presented in Table 2 which also shows the 

agreement of the obtained results with results by Iyengar [4] 

and Nwoji et al [23]. 

 

Table 2. Elastic buckling load coefficients K(a/b) for simply 

supported rectangular thin plate under uniaxial uniform 

compressive load applied at the two opposite simply supported 

edges for varying values of the aspect ratio, r.  

r = a/b 
Present study 

K(a/b) 

Iyengar [4] 

K(a/b) 

Nwoji et al [23] 

K(a/b) 

0.1 102.01 102.01 102.01 

0.2 27.04 27.04 27.04 

0.3 13.201111 13.2011 13.2011 

0.4 8.41 8.41 8.41 

0.5 6.25 6.25 6.25 

0.6 5.137778 5.1378 5.1378 

0.7 4.530816 4.5308 4.5308 

0.8 4.2025 4.2025 4.2025 

0.9 4.044568 4.0446 4.0446 

1.0 4 4 4 

 

V. DISCUSSION 

This study has presented the Galerkin-Vlasov method for the 

elastic buckling analysis of SSCF and SSSS rectangular thin 

plates subjected to uniform axial compression at the two 

opposite simply supported edges (x = 0, and x = a). The 

governing domain equation is a simplification of the general 

domain equation for thin plate buckling under a general state of 

in-plane loads and distributed transverse loads given by 

Equation (1). The governing domain equation is obtained from 

Equation (1) for the case when Ny = 0, Nxy = 0, and p(x, y) = 0, 

and is given by Equation (4). The boundary conditions for 

SSCF plates are given by Equations (5 – 10). Using the 

Galerkin-Vlasov methodology, the shape function in the x 

coordinate direction Fm(x) is chosen as the eigenfunctions of a 

vibrating Euler-Bernoulli beam of equivalent span and support 

conditions, as Equation (11). The deflection function used is 

thus given as the product of unknown function in the y-

coordinate Gn(y) and Fm(x) as Equation (12). The Galerkin-

Vlasov variational integral equation for the considered problem 

for both SSCF and SSSS plates was thus found as Equation (13) 

expressed explicitly as Equation (14). Simplification of the 

Galerkin-Vlasov integral equation resulted in Equation (18) 

which further reduced to Equation (20). Ultimately the 

condition for the validity of equation (20) was found to be the 

vanishing of the integrand, resulting in the system of ODEs in 

Gn(y) given by Equation (21), or more compactly as Equation 

(23). A trial function solution assuming the exponential trial 

function in Equation (24) led to the algebraic problem in 

Equation (25). The condition for nontrivial solutions of 

Equation (25) resulted in the homogeneous algebraic equation 

– Equation (26). The four roots of Equation (26) were found as 

Equations (32) and (33). The four roots were used to establish 

the solution basis of linearly independent solutions resulting in 

the general equation presented in Equation (36) which contains 

integration constants c1m, c2m, c3m and c4m. The general solution 

for w(x, y) was thus obtained as Equation (37).  

 

V.I   Discussion on SSCF plates 

The boundary conditions equations for SSCF plates were 

expressed in terms of Gn(y) and its derivatives as Equations (39), 

(41), (44) and (46). The boundary conditions Equations (39), 

(41), (44) and (46) were used to set up a set of four 

homogeneous equations – Equations (50), (52), (56) and (59). 

The set of homogeneous equations was further reduced with the 

aid of relations between two constants given by Equations (51) 

and (53). The resulting simplification is a set of two 

homogeneous equations expressed by Equations (65) and (66) 

and presented as the matrix in Equation (67). The stability 

equation, obtained from the condition for nontrivial solutions 

was found as Equation (68). The simplification and use of 

trigonometric and hyperbolic identities of mathematics resulted 

in the transcendental equation given as Equation (76). 

Transcendental equations are usually difficult to solve in closed 

form. The eigenvalues of the transcendental equation were 

found using computational software tools that deploy iteration, 

and the buckling loads obtained from the eigenvalues. The 

buckling loads computed for various buckling modes and 

varying aspect ratios, and for Poisson’s ratio μ =0.25 are 

presented in Table 1. Table 1 shows that the present results are 

identical with previous results obtained by Wang et al [1] thus 

validating the present study. 

 

V.II   Discussion on simply supported plates 

For the case of SSSS plates considered, the boundary 

conditions for the edges y = 0 and y = b, expressed as the system 

of four equations in Equation (77) are given as the system of 

equations in terms of Gn(y) and its second derivative with 

respect to y as Equation (78). Explicitly, the imposition of 

boundary conditions results in the system of four equations – 

Equations (79), (80), (81) and (82). Equations (79) and (80) are 

solved simultaneously yielding the solutions for two constants 

as Equation (83). The vanishing of two integration constants as 

expressed by Equation (83) reduce the resulting equations to a 

set of two equations – Equations (84) and (85). The equations 

are expressed as the matrix equation in Equation (86). The 

condition for nontrivial solutions requires the vanishing of the 

determinant of the coefficient matrix yielding the equation 

given by Equation (87). Expansion of the determinant and 

further simplification gave the elastic buckling equation as the 

transcendental equation expressed by Equation (89). The 

eigenvalues are found by seeking closed form solutions to 

Equation (90), and are obtained as Equation (92). The 

expressions for the buckling loads for any buckling mode are 

then obtained from the eigenvalues as Equation (102) after 

some algebraic simplifications. Critical buckling loads are 

associated with the first buckling modes for which m = n = 1. 

The expression for the critical buckling load coefficient is 

obtained as Equation (105). The critical buckling load 
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coefficient is calculated for varying values of the plate aspect 

ratio and presented in Table 2, together with previous results 

obtained by Iyengar [4] and Nwoji et al [23]. Table 2 illustrates 

the agreement of the present results with previous results 

obtained by Iyengar [4] and Nwoji et al [23] where Nwoji et al 

[23] used the double finite Fourier sine integral transform 

method. 

 

VI. CONCLUSION 

(i) The Galerkin-Vlasov method has been proved to be 

effective for solving the elastic buckling problem of SSCF 

and SSSS rectangular thin plates subjected to uniform 

compressive load along the simply supported edges x = 0, 

and x = a. 

(ii) The displacement function chosen using the Vlasov 

procedure as the eigenfunctions of a vibrating Euler-

Bernoulli beam of equivalent span and support conditions 

in the x-coordinate direction ensured the satisfaction of all 

Dirichlet boundary conditions along the simply supported 

edges (x = 0, and x = a). 

(iii) The Galerkin-Vlasov methodology converts the BVP of 

elastic stability to an integral equation using the Galerkin-

Vlasov variational integral formulation of the problem. 

(iv) The Galerkin-Vlasov variational statement (equation), 

simplifies to a system of homogeneous ordinary 

differential equations (ODEs) in the unknown function 

Gn(y). 

(v) The system of ODEs is solved by assuming an 

exponential function as trial function, and this leads to 

obtaining the basis for linearly independent solutions and 

the general solution. 

(vi) The application of boundary conditions along the edges y 

= 0, and y = b results in a system of homogeneous 

equations in terms of the integration constants. 

(vii) The condition for nontrivial solutions is used on the 

homogeneous equation to find the elastic stability 

equation in determinant form. 

(viii) The characteristic buckling equation is obtained from 

expansion and simplification of the determinant as a 

transcendental equation. 

(ix) The eigenvalues of the transcendental equation are 

obtained using the computational software tools based on 

iterations, since closed form solutions of some 

transcendental equations are difficult to obtain, and in 

most cases have not yet been found. 

(x) The expressions found for the elastic stability equation for 

the considered SSCF and SSSS rectangular thin plates are 

exact, and identical with previous exact expressions in the 

literature, thus validating the study results. 

(xi) The critical elastic buckling loads found for the 

considered SSCF and SSSS rectangular thin plates are 

also exact, since the governing equations were solved for 

all points in the plate domain, and all boundary conditions 

are also satisfied by the solution. 

(xii) The exact buckling loads obtained are in agreement with 

results from the literature. 
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