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Abstract 

In virtual worlds simulated by computers, all objects consist of 

complex 3D meshes, and it is important to simplify the meshes 

for rendering performance while maximally maintaining the 

original geometry. This research conducts a series of studies on 

the simplification of the triangular mesh model and proposes 

four different simplified algorithms and two hybrid algorithms. 

All of these algorithms are based on vertex aggregation, vertex 

removal, and iterative edge folding, and the common principle 

is to reduce vertex data in the original model that is not 

important to the model geometry. After reducing the data, the 

point cloud is retriangulated. This research implements these 

six algorithms and conducts an experiment. With the 

simplification algorithms in this paper, rendering performance 

improves by 25% ~ 35% while maintaining the geometry of the 

model to the greatest extent. To the best of our knowledge, the 

proposed algorithms in this paper (VT, FAD, SS, VTD, FASS) 

are the world-first.  

Keywords: Triangular mesh, Mesh reconstruction, Mesh 

simplification, Model rendering 

 

I.  INTRODUCTION  

To render a 3D scene into generally used 2D devices such as 

monitors and HMDs (head-mounted displays), triangles have 

been widely used because of their high efficiency during 

rendering and have succeeded in games, VR (virtual reality), 

AR (augmented reality), simulation, and other fields. However, 

the detailed triangular mesh models usually require computers 

to deal with complex and large quantities of data, which 

decreases application rendering performance. 

In many cases, such as rendering or simulation, it is not always 

necessary to use the highest complexity model to render all 

parts of a scene. For example, distant mountains, rivers, and 

other backgrounds in game scenes and nongazing objects in 

foveated rendering do not have to be rendered with the full 

details. For example, in a scene from the PUBG 

(PlayerUnknown's Battlegrounds) game, when the player 

operated game sprite advances toward a target, objects around 

the sprite, whether it is a house, box, or grass, should be 

rendered in detail, but the mountains and rivers far from the 

sprite do not need to be carefully rendered due to their long 

distances. It is enough to coarsely render these objects in scenes 

where the user will not notice. Similarly, in foveated rendering, 

the objects that the human eye looks at should be rendered in 

more detail. Objects that the human eye does not focus on do 

not need a detailed rendering, which can improve computing 

performance and reduce the computational burden of the 

calculations. 

As a result, it is important to choose the appropriate complexity 

according to the needs of actual rendering and to effectively 

simplify the triangular mesh model under the premise of 

keeping as much of the original geometry as possible for the 

rendering performance [1, 2]. 

In the past 50 years, a series of representative algorithms and 

technical theories have emerged for mesh simplification [1-2, 

4-6, 13-17]. Classifying many mesh simplification algorithms 

according to the simplified features, the mesh simplification 

algorithms can be largely categorized into the following: the 

adaptive subdivision algorithm, the geometric element removal 

method, and the simplified sampling algorithm. The adaptive 

subdivision algorithm [6] achieves the goal of simplifying the 

model by generating edge points and moving the original 

vertices, continuously approximating, and finally generating a 

smooth surface with a continuous tangent plane. The geometric 

element removal method [7] deletes the geometric elements 

inside the mesh model according to the topology and geometric 

characteristics of the model mesh and the specified geometric 

elements to reduce the number of vertices to achieve the effect 

of model simplification. The simplified sampling algorithm [8] 

defines the probability distribution function based on the local 

geometric eigenvalues of the model, determines the triangles to 

be addressed, and adjusts the internal triangles of the mesh 

model to achieve the goal of simplification. Among them, the 

geometric element removal method is quite mature after 

previous studies, and it is one of the algorithms with relatively 

high simplification efficiency [2], but additionally, the previous 

algorithms are relatively limited. Therefore, based on the 

premise of geometric element removal, this study proposes 

some new ideas. 

This research offers the following major contributions to 3D 

geometry research. First, this research proposes four different 

mesh simplification algorithms and two hybrid simplification 

algorithms based on the geometric element deletion method 

from three aspects. Second, this research proposes the FAD 

algorithm based on vertex removal and the SS algorithm based 

on spatial vertex clustering. Third, this paper studies and 

proposes a hybrid algorithm that combines different algorithms. 

These hybrid algorithms are merged based on the algorithms 

that have been proposed before. Compared to a single 

algorithm, the degree of grid optimization is improved, the 

hybrid algorithms complement each other, and the performance 

of these algorithms is almost the same as the performance of a 

single algorithm. 
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This paper is organized as follows. Section 2 introduces the 

background of the algorithms and related works. Section 3 

implements four independent algorithms and the two hybrid 

algorithms according to the order of algorithm proposals. 

Section 4 evaluates the six algorithms separately and compares 

the test data to prove the functions and describe the advantages 

and disadvantages of the algorithms. Section 5 summarizes the 

results of the algorithms. 

 

II.   RELATED WORK 

The essence of mesh simplification is to minimize the number 

of triangles and vertices of the original model while 

maintaining as many of the features of the original model as 

possible. Therefore, it usually includes two principles: the 

principle of minimum vertices, which minimizes the number of 

fixed points of the simplified model given the upper error limit; 

the principle of minimum errors is to minimize the error 

between the simplified model and the original model given the 

number of vertices of the simplified model [9]. The minimum 

error refers to the error of the overall model calculated by 

expressing each edge of the original model with a fixed metric 

value, and comparing the metric value of each simplified side; 

the smaller the error, the closer the simplified model geometry 

is to the original model. Combined with the research results in 

the field of mesh simplification, geometric element deletion 

methods mainly include the vertex clustering method, vertex 

removal method, iterative edge contraction method, and 

triangle contraction method. Figure 1 shows each method. 

Vertex clustering aggregates two or more vertices in a mesh 

model. In 1993, Ressignac et al. proposed a vertex clustering 

method in [13], which has a profound impact on the subsequent 

improvement of the algorithm. 

[13] used a bounding box to surround the original model and 

then divided the bounding box into several regions; then, the 

vertices of the original mesh model fall into these subdivided 

regions. After this subdivision, on the premise of not affecting 

the basic geometry, the vertices in the unified region are 

merged to the greatest extent. 

Vertex removal removes some vertices. In 1992, Schroeder et 

al. [14] proposed a classic deletion algorithm, which defined 

the standard of vertex deletion as the distance from the vertex 

to the plane or edge. If the distance is less than the specified 

threshold, the vertex is deleted; otherwise, the vertex is retained. 

A hole can be created at the position where the vertex is 

removed. After that, the hole should be recovered. 

Because the removal condition is single, the original model is 

largely changed, especially in the sharp parts of the original 

model. It is difficult to maintain the original contour features 

because it only addresses the distance between the vertex and 

the surrounding planes or edge and does not consider the angle 

between the vertex and the surrounding planes. In addition, the 

degree of model simplification in this algorithm is often 

difficult to determine. In different positions of the same mesh 

model, due to different levels of detail, different control 

thresholds are usually required. 

Most of the subsequent algorithms attempted to improve these 

issues. For example, a curvature-based algorithm was proposed 

in [10], and a new algorithm based on the half-edge structure 

was proposed in [11]. 

Iterative edge/triangle contraction iteratively reduces the edge 

or triangles. During the calculation of each iteration, two 

endpoints of the selected edge are gradually decreased to a 

single vertex, and the triangle that meets the requirements is 

decreased to a new vertex instead of the original triangle. The 

newly generated fixed points are combined with the vertices of 

the original model, and retriangulation is performed. 

QEM (quadratic error metrics) [5] is the most representative 

algorithm among these methods. This algorithm calculates a 

quadratic error matrix for each vertex in the original mesh 

model and calculates the cost of edge folding in the mesh and 

the position of generating new vertices according to the error 

matrix; then, the folding operation is performed according to 

the folding cost from small to large. The new error matrix 

generated by the folding is the sum of the secondary error 

matrices of the two vertices of the folded edge. However, 

because only the cost of edge contraction is considered in the 

implementation of this method, the QEM algorithm generates 

many narrow and long triangular faces, so it is insufficient for 

maintaining the detailed features of the original model [15]. 

 

a. Vertex clustering 

 

b. Vertex removal 

 

c. Iterative edge contraction 

 

d. Triangle contraction 

Fig. 1. Simplified classification of meshes based on 

geometric elements 

e.  
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III.  ALGORITHM DESCRIPTION 

The six different mesh reduction algorithms proposed in this 

paper are as follows: the "vertex triplex (VT)" algorithm based 

on vertex clustering; the "face angle dependency (FAD)" 

algorithm based on vertex removal; the "intervertex distance 

dependence (IVDD)" algorithm based on iterative edge 

contraction; "Spherical Scanning (SS)" algorithm that uses 

vertex clustering and iterative edge contraction; the "vertex 

triplex distance (VTD)" algorithm and the "face angle spherical 

scanning (FASS)" algorithm based on the advantages and 

disadvantages of each algorithm. In this section, this research 

describes the basic ideas of these six algorithms. 

 

III.I    Vertex Triplex (VT) 

The core of this algorithm is to calculate the center of the 

circumcircle of the triangle. The center of the triangle’s 

circumcircle is a point with an equal distance from the three 

vertices of the triangle (as shown in Figure 2). Therefore, if the 

three vertices of each triangle in the original triangular mesh 

model are aggregated into their circumscribed circle centers, 

the resulting point will be evenly distributed on the original 

model. 

During the implementation of the algorithm, this research 

divided it into three steps: first, load the triangular mesh model, 

and second, calculate the position of the circumscribed circle 

center of each triangular mesh according to the triangular mesh 

relationship existing in the model. The triangle mesh units are 

aggregated into the center of the circumscribed circle. Finally, 

all the triangular meshes are retriangulated. 

In this research, it is assumed that the coordinates of the three 

points in space are P1(x1, y1, z1) ,  P2(x2, y2, z2) , and 

P3(x3, y3, z3). The analysis shows that two constraints need to 

be met to calculate the circumcenter of a triangle: three points 

are coplanar, and the distances from the three points to the 

space center coordinates are equal. Then, 4 free terms and 4 

equations can be obtained from these two constraints, so the 

following four linear equations (1), (2), (3), and (4) can be listed 

and solved using the elimination method. This research 

assumes that the coordinates of the center of the circle to be 

calculated are (x0, y0, z0), and the radius is R. For a three-point 

coplanar constraint, the plane equation determined by three 

points in space is 

|

𝑥 𝑦
𝑥1 𝑦1

𝑧 1
𝑧1 1

𝑥2 𝑦2

𝑥3 𝑦3

𝑧2 1
𝑧3 1

| = 0 

⇒ 𝐴1𝑥 + 𝐵1𝑦 + 𝐶1𝑧 + 𝐷1 = 0          (4) 

𝐴1 =  𝑦1 ∗ 𝑧2 − 𝑦1 ∗ 𝑧3 − 𝑧1 ∗  𝑦2 +  𝑧1 ∗ 𝑦3 + 𝑦2 ∗ 𝑧3 − 𝑦3

∗ 𝑧2 

𝐵1 = −𝑥1 ∗ 𝑧2 + 𝑥1 ∗ 𝑧3 + 𝑧1 ∗ 𝑥2 −  𝑧1 ∗ 𝑥3 − 𝑥2 ∗ 𝑧3 + 𝑥3

∗ 𝑧2 

𝐶1 = 𝑥1 ∗ 𝑦2 − 𝑥1 ∗ 𝑦3 − 𝑦1 ∗ 𝑥2 + 𝑦1 ∗ 𝑥3 + 𝑥2 ∗ 𝑦3 − 𝑥3

∗ 𝑦2 

𝐷1 = −𝑥1 ∗ 𝑦2 ∗ 𝑧3 + 𝑥1 ∗ 𝑦3 ∗ 𝑥2 + 𝑥2 ∗ 𝑦1 ∗ 𝑧3 − 𝑥3 ∗ 𝑦1

∗ 𝑧2 − 𝑥2 ∗ 𝑦3 ∗ 𝑧1 + 𝑥3 ∗ 𝑦2 ∗ 𝑧1 

The constraints of equal distance from the three points to the 

center of the circle can also obtain the following equations: 

{

𝑅2 = (𝑥1 − 𝑥)2 + (𝑦1 − 𝑦)2 + (𝑧1 − 𝑧)2                 (1)

𝑅2 = (𝑥2 − 𝑥)2 + (𝑦2 − 𝑦)2 + (𝑧2 − 𝑧)2                 (2)

𝑅2 = (𝑥3 − 𝑥)2 + (𝑦3 − 𝑦)2 + (𝑧3 − 𝑧)2                 (3)

 

The linear equations about the coordinates of the center of the 

circle can be obtained by eliminating the above four linear 

equations: 

[

𝐴1

𝐴2

𝐵1 𝐶1

𝐵2 𝐶2

𝐴3 𝐵3 𝐶3

] [
𝑥
𝑦
𝑧

] + [

𝐷1

𝐷2

𝐷3

] = 0 

The calculated center coordinates are: 

[

𝑥0

𝑦0

𝑧0

] = − [

𝐴1

𝐴2

𝐴3

𝐵1

𝐵2

𝐵3

𝐶1

𝐶2

𝐶3

]

−1

[

𝐷1

𝐷2

𝐷3

] 

The radius is: 

𝑅 = √(𝑥1 − 𝑥0)2 + (𝑦1 − 𝑦0)2 + (𝑧1 − 𝑧0)2 

Using the equations, the eccentric coordinates of each triangle 

in the model can be efficiently obtained, and finally, a point 

composed of eccentric coordinates can be generated. These 

points together constitute the point cloud data of the model, but 

the newly generated point cloud data do not include 

triangulated index data. Compared with other triangulation 

algorithms, Delaunay's triangulation algorithm has the 

following advantages: these triangles are as equiangular as 

possible, thus eliminating the potential numerical accuracy 

problems caused by slender triangles; ensure that any point on 

the surface is as close to the node as possible; triangulation is 

not related to the order of processing points; and faster 

processing speed [12]. Therefore, this research study 

retriangulates the points using Delaunay triangulation. 

 

III.II    FAD (Face Angle Dependency) 

The FAD algorithm is based on the idea of vertex removal. It is 

implemented by calculating the angle between the triangle 

 

Fig. 2. Schematic diagram of a triangle outer center 
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surfaces associated with the vertices. This research divides the 

implementation of the algorithm into three steps: 

1) Query and calculate the angle between all triangle faces in 

the model related to the current vertex 

2) Evaluate and adjust the current vertex based on the 

specified threshold conditions 

3) Triangularize the holes generated after data adjustment 

Querying and calculating the angle between triangular faces is 

the first step in this algorithm. When calculating the angle 

between the triangle faces, the index data of other vertices 

related to the currently selected vertex are extracted into the 

memory container by traversing the vertex number as a unit. 

After finding the corresponding 3D coordinates through the 

index data, the normal information of the triangle is calculated. 

Finally, the normal information is calculated in pairs to obtain 

the size of the included angle, and the included angle data are 

stored separately. 

There are many methods for calculating the included angle, and 

in [16, 17], similar research was conducted on the FAD 

algorithm. However, in [16,17], the research only determined 

the included angle of the plane related to the current vertex, and 

all the included angles were larger than the threshold, and then 

the next operation was performed. The new FAD algorithm 

proposed in this paper can control the simplified process 

according to the two conditions of the area and the angle of the 

plane related to the current vertex. In this paper, this research 

uses the same algorithm, and it is also the simplest and most 

understandable method for calculating the included angle. That 

is, by using two intersecting vectors on a plane, you can find 

normal vector information (normal) perpendicular to the two 

vectors. Taking three points in the space as P1(x1, y1, z1) , 

 P2(x2, y2, z2) , P3(x3, y3, z3)  and setting the normal to 

(d𝑥, d𝑦 , d𝑧), the normal meets the following equation: 

(x2 − x1) ∗ d𝑥 + (y2 − y1) ∗ d𝑦 + (z2 − z1) ∗ d𝑧 = 0 

(x3 − x1) ∗ d𝑥 + (y3 − y1) ∗ d𝑦 + (z3 − z1) ∗ d𝑧 = 0 

(x3 − x2) ∗ d𝑥 + (y3 − y2) ∗ d𝑦 + (z3 − z2) ∗ d𝑧 = 0 

After solving the system of equations to obtain the plane 

normal vector from the above equation, the angle from the 

angle of the vector can be finally calculated: 

cos θ =  
𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2

√𝑥1
2+𝑦1

2 + 𝑧1
2 ∗ √𝑥2

2+𝑦2
2 + 𝑧2

2
 

From the above equation, the magnitude of the normal angle 

(as shown in Figure 3) can be obtained. Finally, the number of 

included angles between adjacent triangular faces obtained by 

this method is stored in the corresponding memory container. 

Through the calculation of the first step, a container is obtained 

to store information on the normal angles of all triangular faces. 

The smaller the normal angle of the face, the larger the included 

angle between the faces. Therefore, the main judgment basis of 

this algorithm is also based on the size relationship between the 

current included angle and a given threshold to determine 

whether the currently processed vertices should be retained or 

removed. In this process, this research uses the method of 

traversing the storage angle container for evaluation. When the 

included angle of all faces related to the selected vertex is less 

than the threshold, the vertex is marked as removable, and the 

vertex coordinates of the point are set to a specific value. Then, 

after all vertex traversals are completed, the specific value is 

deleted in the container. At this point, because the vertex is 

deleted, a hole is formed in this part. Finally, this algorithm uses 

Delaunay triangulation to retriangulate [12]. 

 

III.III    IVDD (Intervertex Distance Dependence) 

The basic idea of the iterative edge folding simplification 

algorithm is to fold the edges in the grid according to certain 

criteria. As shown in Figure 4, the dotted line is the edge to be 

folded, and the two related endpoints (P1, P2) are folded into a 

new vertex P0 according to the criteria specified to modify the 

topology in the mesh model. To complete the simplification of 

the number of vertices, the model simplification operation is 

completed. One simplification in this process can reduce one 

edge and two triangular faces compared to the original model. 

The third algorithm proposed in this research is the IVDD 

algorithm, which is a new algorithm based on iterative edge 

folding. Therefore, it also preserves its high-efficiency 

characteristics, and at the same time, folds the adjacent and 

nearer vertices in the original model, so that the size of each 

triangular surface in the model tends to be similar, the effect of 

balancing the triangles is achieved, which makes the display of 

the model smoother (see test content in Section 3 for details). 

In the specific implementation of the IVDD algorithm, the 

implementation of this algorithm is also divided into three 

stages. First, select the vertices and traverse the mesh model to 

obtain all other vertices related to the selected vertex. Second, 

fold the edge formed by the two closer vertices in space and 

calculate the center point coordinates from the two vertices to 

 

Fig. 3. Normal angle calculation and normal angle 

 

Fig. 4. Illustration of edge folding 



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 6 (2020), pp. 1110-1119 

© International Research Publication House.  https://dx.doi.org/10.37624/IJERT/13.6.2020.1110-1119 

1114 

replace the original two vertices. Finally, retriangulate the 

current part with the new vertex as the center. 

In this algorithm, the most important aspect is the edge folding 

process in the second step. In this process, this research first 

selects the vertices in the same way as the previous algorithm 

and uses the two points in the same triangle as the reference to 

calculate the distance between the two points. If the distance 

between one vertex and the other two vertices is less than the 

threshold, all three sides are folded, and the newly generated 

vertex is the circumcircle center of the original triangle. Then, 

the circumscribed circle center coordinates are used to replace 

the coordinate values of all three vertices that appear in the 

subsequent data. If the distance between a vertex and one of the 

triangles is less than the specified threshold, then this research 

calculates the coordinates of the center point of the two vertices. 

The center coordinates are used to replace the original values 

of these two vertices to fold the edges between the two vertices. 

For the calculation of the distance between two points in space 

and the coordinates of the center point of two points, only a 

simple mathematical calculation is required. This research 

directly applies the distance formula between two points in 

space: 

𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 

The vertex distance d can be calculated, and this d value is the 

judgment basis of this algorithm. For the coordinates of the 

center points of the two vertices in the space, the x-axis 

component, the y-axis component, and the z-axis component of 

the two vertices are added, and then the average value on the 

respective coordinate axes is used to obtain the center point 

coordinate value. 

Finally, in this algorithm, all original data are also modified to 

obtain point cloud coordinate data composed of the modified 

data. Finally, this algorithm also retriangulates the points using 

Delaunay triangulation [12]. 

 

III.IV    SS (Spherical Scanning) 

The SS algorithm is a vertex clustering method from the 2D 

plane to 3D space. In 2D plane vertex clustering, a mesh of a 

specified size is usually used to map the original vertex 

information to this mesh map. If multiple vertices fall into the 

same vertex at the same time as shown in Figure 5, the vertices 

falling into the same grid are aggregated into one vertex. 

Continue iteratively in the same way, detecting and querying 

all vertices included in the model until all points are not in the 

same grid. 

Similarly, this algorithm extends the vertex clustering method 

of the 2D plane to the 3D space. Imagine that there is now 

model A. In 3D space, this algorithm does not use meshes for 

mapping but uses a sphere with a certain radius to perform a 

"movement scan" in the order of vertices on the original mesh 

model; at the same time, after moving to a vertex, the distances 

between the vertex and the surrounding vertices are calculated. 

If the surrounding vertices and the currently scanned vertices 

are in the "sphere", two or more vertices that fall into the same 

sphere are merged into a new vertex, as shown in Figure 6. The 

generation of new vertices is not performed in one way, and 

multiple methods are combined to generate the optimal new 

vertex coordinates. Finally, this algorithm retriangulates the 

changes in the geometry or mesh structure of the vertices. 

 

III.V    Hybrid Algorithm 

In the design of the hybrid algorithm, this research mainly 

complements and combines the advantages and disadvantages 

of the algorithm. The VT algorithm has proven that although 

the vertex distribution of the simplified triangle model is more 

uniform, it does not have the ability to handle some special edge 

processing separately. The IVDD algorithm removes similar 

vertices or replaces them with center point coordinates. 

Therefore, the size of the triangles inside the geometry also 

tends to be similar, which can balance the triangles for special 

edges. Based on this, the research of hybrid algorithms is 

implemented by combining these two algorithms. 

Similarly, the FAD algorithm proves that it can avoid the 

feature of extremely irregular triangles in the simplified model. 

In contrast, the SS algorithm based on vertex clustering in 3D 

space has a simple, clear, and fast simplification. However, 

after it folds the straight line or triangle in the mesh model, that 

is, the degradation of the triangle into line segments/vertices, 

the "protruding/tip" part of the mesh topology cannot be 

maintained well (for details, please refer to the content of the 

experimental part in Section 4). Therefore, the two algorithms 

are complementary and combined, and the result will be better 

than a single simplified algorithm. 

 

(a) Before simplification       (b) After simplification 

Fig. 5. Vertex clustering based on a 2D plane 

 

Fig. 6. Vertex clustering of the space sphere scanning 

algorithm 
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III.V.I     VTD (Vertex Triplex Distance) 

To implement this hybrid algorithm, the core ideas of the VT 

algorithm and IVDD algorithm and the important steps in the 

algorithm construction process are introduced in the previous 

section, so in this section, we mainly introduce how to merge 

the algorithms to implement the hybrid algorithm. These two 

different algorithms have different approaches. 

After loading the mesh model into the program and storing it in 

a memory container, the vertex coordinates of the triangle are 

read according to the order of the vertex index data of the model. 

The previous method simplified the three vertices into one 

vertex (coordinates of the outer point of the triangle), but the 

method merged and folded the triangle vertices in different 

cases. 

Assume that the three vertices of the triangle relationship in the 

space are P1, P2, and P3, as shown in Figure 7. After reading the 

triangle data, first, use the distance formula between the two 

points in the space: 

𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 

Calculate the distances d12 , d13 , and d23  between the three 

vertices. If the values of the three distances are all smaller than 

the specified threshold, then the three vertices P1, P2, and P3 are 

merged with the original three vertices into the circumscribed 

circle center coordinate C0 of the triangle according to the VT 

algorithm. If the distances d12 , d13  and d23  of the three 

vertices are not all smaller than the specified threshold, edge 

folding is performed according to the following procedure. 

First, if the distance d12 between the vertices P1 and P2 is less 

than or equal to the threshold, then further compare the sizes of 

the distances d13  and d23  between the vertices P1 , P3  and 

vertices P2 , P3 . When d13  is larger than d23 , the newly 

generated vertex C0 is taken from the coordinates of the center 

point between vertices P1 and P3. Conversely, if d13 is smaller 

than d23, the coordinates of the newly generated vertex 𝐶0 are 

replaced by the coordinates of the center point between the 

vertices P2 and P3. Using the same principle, if d13 is less than 

the specified threshold, the distance between the other two 

vertices is determined, and the two vertices with the larger 

vertices are merged into their center point coordinates 

according to the distance. The same applies to the calculation 

and data replacement process of d23. 

III.V.II       FASS (Face Angle Spherical Scanning) 

For the FASS algorithm, since the FAD algorithm is based on 

vertex removal and the SS algorithm is based on vertex 

aggregation, its main purpose is to reduce the number of 

vertices in the model. Therefore, in the fusion process of the 

two algorithms, this algorithm first uses FAD to determine 

whether any vertices should be removed. Then SS is used to 

perform vertex clustering on all vertices, which can reduce the 

number of vertices in the triangle model to a greater extent. 

In the implementation of the specific algorithm, after the model 

is loaded and the data are read, all relevant vertex indexes of 

the current reference vertex are determined according to the 

process of the FAD algorithm, and all indices are stored in the 

memory container. Then, the included angle of the triangular 

surface formed by these vertices is calculated and the 

relationship between these included angles and the specified 

angle threshold are compared. If all the included angles are 

greater than the specified included angle threshold, then in the 

original mesh model, the "bulge" of the transition where the 

current vertex sits is relatively small, or the part is not a "tip" 

part, then the vertex at that position is directly deleted. 

Additionally, the SS algorithm is used to determine the 

remaining vertices. When there are vertices in the remaining 

vertices that fall into the same ball, all the vertices inside the 

ball are merged into one vertex to replace the original vertex in 

the ball. 

 

IV.     IMPLEMENTATION AND RESULT 

The suggested algorithms were tested for their rendering 

performance. To obtain results, this research designed 14 sets 

of controlled trials and simplified and rendered performance 

tests were performed using a complex Stanford’s bunny model. 

Each set of experiments was performed 10 times on two 

different machines. 

 

IV.I    Test Environment 

First, before the test started, this research selected two 

computers with different configurations as the test environment; 

the configurations are shown in Table 1. 

Table 1. Configuration of the test PCs 

PC 1 

CPU Intel Core i7-8750H CPU @ 2.20 GHz 

Memory 16 GB 

OS Windows 10 Enterprise Edition X64 

GPU NVIDIA GeForce GTX 1060 

PC 2 

CPU Intel Core i3-4170 CPU @ 3.70 GHz 

Memory 4 GB 

OS Windows 10 Education X64 

GPU Intel HD Graphics 4400 

 

Fig. 7. Vertex simplification between different vertex 

spacings 
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IV.II    Test Models 

This research used Stanford’s bunny as the test model. 

Stanford’s bunny mesh model has the characteristics of 

complex details, small morphology, and dense spatial 

distribution. The model’s vertex and triangulations are 

summarized in Table 2 below. 

Table 2. Raw model information 

Item Stanford’s Bunny 

Vertex 34,032 

Vertex index 196,890 

Triangles 65,630 

 

IV.III   Test Results 

If the model is rendered directly on the screen, the rendering 

speed of the model is limited by the refresh rate of the computer 

screen. Therefore, this paper uses off-screen rendering (FBO 

rendering) for all tests to reduce the interference of external 

factors on the rendering efficiency measurement. After the test 

started, this research first performed off-screen rendering of the 

original models of the two test models and then wrote the off-

screen rendered images to the local hard disk (the overall and 

locally rendered images are shown in Figure 8 below). Then, 

we recorded the number of vertices and triangles remaining 

after reduction by different algorithms in this research and also 

recorded the total time of 1,000 renderings from the 100th to 

the 1,100th in the rendering process and calculated the average 

rendering time, as shown in Table 5. 

For the off-screen rendering of the original model, after testing 

on two differently configured PCs, to ensure the accuracy of 

the data obtained from the test, this research performed 10 tests 

on the same parameters. In the test, the average time 

consumption of the 100th to 1,100th rendering was calculated 

and recorded. The results are summarized in Table 3 below. 

In Table 3, on PC1, using Stanford’s bunny mesh model as the 

basic off-screen rendering, 1,000 renderings required an 

average of 27.29 msec, and the frame rate reached 36,743 FPS; 

on PC2, rendering 1,000 frames, the average time was 81.29 

msec, reaching 12,302 FPS. 

 

IV.IV   Performance Results 

In terms of rendering efficiency, from the perspective of 

rendering FPS, the improvement of the VT algorithm is the 

most obvious on PC1 or PC2 (see Figures 9 and 10 for details). 

Figure 11 and Figure 12 show the percentage increase in the 

rendering rate of each algorithm under different parameter 

conditions and on different PCs. 

 

Fig. 9. Performance increase FPS of Stanford’s bunny model 

on PC 1 

 

Fig. 10. Performance increase FPS of Stanford’s bunny model 

on PC 2 
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Table 3. The average time taken to render 1,000 

primitives on different PCs 

Item Stanford’s Bunny 

PC 1 27.29 

PC 2 81.29 

unit is msec 

 

Fig. 8. Panorama effect (top) and local details (bottom) 

rendered by the original model 
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Fig. 11. Efficiency improvement when rendering Stanford’s 

bunny model on PC 1 

 

Fig. 12. Efficiency improvement when rendering Stanford’s 

bunny model on PC 2 

From the test data in the chart, the algorithm proposed in this 

paper greatly contributes to rendering efficiency and can 

effectively reduce the rendering time of the model on the 

computer. In general, the average efficiency of the six 

algorithms overall improved by approximately 26%. (See 

Figure 9 for details). 

 

IV.V   Rendering Results 

Whether it is a single simplified algorithm or a final hybrid 

algorithm, the algorithm can quickly simplify and improve 

rendering speed while preserving the geometry to the greatest 

extent. Taking the FASS algorithm as an example and 

comparing Figure 13, it also has good detail processing ability. 

The mesh topology of the "protruding/tip" part of the mesh can 

well preserve the original geometry. The bunny's ears, chin, tail 

and other parts are very clear after simplification, as shown in 

Figure 13. In rendering, the performance is significantly 

improved. 
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SS (Radius = 0.0012) SS (Radius = 0.0014) 

  
VTD (Distance = 0.0011) VTD (Distance = 0.0013) 

  
FASS (Radius = 0.0012 & angle < 30°) FASS (Radius = 0.0012 & angle < 150°) 

  
FASS (Radius = 0.0014 & angle < 30°) FASS (Radius = 0.0014 & angle < 150°) 

Fig. 13. Rendered details of bunny ears 

 

For the rendering of Stanford's bunny models, from the above 

comparative data, the overall effect of the hybrid algorithm is 

close to that of a single algorithm. When rendering a bunny 

model, the hybrid algorithm still shows the oversimplification 

problem shown in Figure 13 only in the bunny's ears. In Figure 

13, it is clear that the rendering level of the bunny ears is not 

very clear, but it is not difficult to compare Figure 13 and 

Figure 8 to find that the visual effect is improved compared 

with the simplification of a single algorithm. When using the 

IVDD algorithm to simplify, if the distance between the 

vertices is set to 0.0013, the simplified model also shows the 

problem of oversimplification in the bunny ears, which seems 

to be different from the original model, and this problem also 

has a certain impact on the VTD algorithm. 

V.   CONCLUSION 

In this paper, this research described various algorithms for 

mesh simplification and to control the simplification process by 

setting different thresholds. From the results of a control group 

test on two computers with different configurations, it can be 

seen that in the VT algorithm, the average model rendering 

speed improved by 30.32%; in the FAD algorithm, the average 

rendering speed improved by 25.76%. Similarly, using the 

simplified model of the IVDD algorithm, rendering efficiency 

improved by 25.56%. Finally, in the SS algorithm, the 

simplified model rendering efficiency improved by an average 

of 23.97%. It can be seen that the improvement ratio of these 

four single algorithms on rendering efficiency is basically 

stable between 23% and 30%. In the last two hybrid algorithms, 
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rendering efficiency also improved by 22.71% and 23.38%. 

Although these two hybrid algorithms decrease in terms of 

rendering efficiency, the rendered results are smoother, and the 

details are preserved well. These several algorithms have met 

the original expectation that rendering efficiency will increase 

by nearly 20%, and the grid of the model is effectively 

simplified while the original geometry of the grid model is 

maximally maintained. 

Since there is still room for improvement in these algorithms, 

subsequent research will make certain improvements to 

eliminate defects. Additionally, these algorithms will be 

applied to research on gaze point rendering technology of VR 

devices in subsequent research to expand the research scope. 
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