
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 6 (2020), pp. 1110-1119

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.6.2020.1110-1119

1110

Mesh Simplification Algorithms for Rendering Performance

Hongle Li1, Seongki Kim2

1 Ph.D., Students, Dept. of Computer Engineering, Keimyung University, 1095, Dalgubeol-daero, Dalseo-gu, Daegu, Republic of Korea.

ORCID: 0000-0001-7857-1020

2 Assistant Professor, Division of SW Convergence, Sangmyung University, Seoul, South Korea.

ORCID: 0000-0002-2664-3632

Abstract

In virtual worlds simulated by computers, all objects consist of

complex 3D meshes, and it is important to simplify the meshes

for rendering performance while maximally maintaining the

original geometry. This research conducts a series of studies on

the simplification of the triangular mesh model and proposes

four different simplified algorithms and two hybrid algorithms.

All of these algorithms are based on vertex aggregation, vertex

removal, and iterative edge folding, and the common principle

is to reduce vertex data in the original model that is not

important to the model geometry. After reducing the data, the

point cloud is retriangulated. This research implements these

six algorithms and conducts an experiment. With the

simplification algorithms in this paper, rendering performance

improves by 25% ~ 35% while maintaining the geometry of the

model to the greatest extent. To the best of our knowledge, the

proposed algorithms in this paper (VT, FAD, SS, VTD, FASS)

are the world-first.

Keywords: Triangular mesh, Mesh reconstruction, Mesh

simplification, Model rendering

I. INTRODUCTION

To render a 3D scene into generally used 2D devices such as

monitors and HMDs (head-mounted displays), triangles have

been widely used because of their high efficiency during

rendering and have succeeded in games, VR (virtual reality),

AR (augmented reality), simulation, and other fields. However,

the detailed triangular mesh models usually require computers

to deal with complex and large quantities of data, which

decreases application rendering performance.

In many cases, such as rendering or simulation, it is not always

necessary to use the highest complexity model to render all

parts of a scene. For example, distant mountains, rivers, and

other backgrounds in game scenes and nongazing objects in

foveated rendering do not have to be rendered with the full

details. For example, in a scene from the PUBG

(PlayerUnknown's Battlegrounds) game, when the player

operated game sprite advances toward a target, objects around

the sprite, whether it is a house, box, or grass, should be

rendered in detail, but the mountains and rivers far from the

sprite do not need to be carefully rendered due to their long

distances. It is enough to coarsely render these objects in scenes

where the user will not notice. Similarly, in foveated rendering,

the objects that the human eye looks at should be rendered in

more detail. Objects that the human eye does not focus on do

not need a detailed rendering, which can improve computing

performance and reduce the computational burden of the

calculations.

As a result, it is important to choose the appropriate complexity

according to the needs of actual rendering and to effectively

simplify the triangular mesh model under the premise of

keeping as much of the original geometry as possible for the

rendering performance [1, 2].

In the past 50 years, a series of representative algorithms and

technical theories have emerged for mesh simplification [1-2,

4-6, 13-17]. Classifying many mesh simplification algorithms

according to the simplified features, the mesh simplification

algorithms can be largely categorized into the following: the

adaptive subdivision algorithm, the geometric element removal

method, and the simplified sampling algorithm. The adaptive

subdivision algorithm [6] achieves the goal of simplifying the

model by generating edge points and moving the original

vertices, continuously approximating, and finally generating a

smooth surface with a continuous tangent plane. The geometric

element removal method [7] deletes the geometric elements

inside the mesh model according to the topology and geometric

characteristics of the model mesh and the specified geometric

elements to reduce the number of vertices to achieve the effect

of model simplification. The simplified sampling algorithm [8]

defines the probability distribution function based on the local

geometric eigenvalues of the model, determines the triangles to

be addressed, and adjusts the internal triangles of the mesh

model to achieve the goal of simplification. Among them, the

geometric element removal method is quite mature after

previous studies, and it is one of the algorithms with relatively

high simplification efficiency [2], but additionally, the previous

algorithms are relatively limited. Therefore, based on the

premise of geometric element removal, this study proposes

some new ideas.

This research offers the following major contributions to 3D

geometry research. First, this research proposes four different

mesh simplification algorithms and two hybrid simplification

algorithms based on the geometric element deletion method

from three aspects. Second, this research proposes the FAD

algorithm based on vertex removal and the SS algorithm based

on spatial vertex clustering. Third, this paper studies and

proposes a hybrid algorithm that combines different algorithms.

These hybrid algorithms are merged based on the algorithms

that have been proposed before. Compared to a single

algorithm, the degree of grid optimization is improved, the

hybrid algorithms complement each other, and the performance

of these algorithms is almost the same as the performance of a

single algorithm.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 6 (2020), pp. 1110-1119

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.6.2020.1110-1119

1111

This paper is organized as follows. Section 2 introduces the

background of the algorithms and related works. Section 3

implements four independent algorithms and the two hybrid

algorithms according to the order of algorithm proposals.

Section 4 evaluates the six algorithms separately and compares

the test data to prove the functions and describe the advantages

and disadvantages of the algorithms. Section 5 summarizes the

results of the algorithms.

II. RELATED WORK

The essence of mesh simplification is to minimize the number

of triangles and vertices of the original model while

maintaining as many of the features of the original model as

possible. Therefore, it usually includes two principles: the

principle of minimum vertices, which minimizes the number of

fixed points of the simplified model given the upper error limit;

the principle of minimum errors is to minimize the error

between the simplified model and the original model given the

number of vertices of the simplified model [9]. The minimum

error refers to the error of the overall model calculated by

expressing each edge of the original model with a fixed metric

value, and comparing the metric value of each simplified side;

the smaller the error, the closer the simplified model geometry

is to the original model. Combined with the research results in

the field of mesh simplification, geometric element deletion

methods mainly include the vertex clustering method, vertex

removal method, iterative edge contraction method, and

triangle contraction method. Figure 1 shows each method.

Vertex clustering aggregates two or more vertices in a mesh

model. In 1993, Ressignac et al. proposed a vertex clustering

method in [13], which has a profound impact on the subsequent

improvement of the algorithm.

[13] used a bounding box to surround the original model and

then divided the bounding box into several regions; then, the

vertices of the original mesh model fall into these subdivided

regions. After this subdivision, on the premise of not affecting

the basic geometry, the vertices in the unified region are

merged to the greatest extent.

Vertex removal removes some vertices. In 1992, Schroeder et

al. [14] proposed a classic deletion algorithm, which defined

the standard of vertex deletion as the distance from the vertex

to the plane or edge. If the distance is less than the specified

threshold, the vertex is deleted; otherwise, the vertex is retained.

A hole can be created at the position where the vertex is

removed. After that, the hole should be recovered.

Because the removal condition is single, the original model is

largely changed, especially in the sharp parts of the original

model. It is difficult to maintain the original contour features

because it only addresses the distance between the vertex and

the surrounding planes or edge and does not consider the angle

between the vertex and the surrounding planes. In addition, the

degree of model simplification in this algorithm is often

difficult to determine. In different positions of the same mesh

model, due to different levels of detail, different control

thresholds are usually required.

Most of the subsequent algorithms attempted to improve these

issues. For example, a curvature-based algorithm was proposed

in [10], and a new algorithm based on the half-edge structure

was proposed in [11].

Iterative edge/triangle contraction iteratively reduces the edge

or triangles. During the calculation of each iteration, two

endpoints of the selected edge are gradually decreased to a

single vertex, and the triangle that meets the requirements is

decreased to a new vertex instead of the original triangle. The

newly generated fixed points are combined with the vertices of

the original model, and retriangulation is performed.

QEM (quadratic error metrics) [5] is the most representative

algorithm among these methods. This algorithm calculates a

quadratic error matrix for each vertex in the original mesh

model and calculates the cost of edge folding in the mesh and

the position of generating new vertices according to the error

matrix; then, the folding operation is performed according to

the folding cost from small to large. The new error matrix

generated by the folding is the sum of the secondary error

matrices of the two vertices of the folded edge. However,

because only the cost of edge contraction is considered in the

implementation of this method, the QEM algorithm generates

many narrow and long triangular faces, so it is insufficient for

maintaining the detailed features of the original model [15].

a. Vertex clustering

b. Vertex removal

c. Iterative edge contraction

d. Triangle contraction

Fig. 1. Simplified classification of meshes based on

geometric elements

e.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 6 (2020), pp. 1110-1119

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.6.2020.1110-1119

1112

III. ALGORITHM DESCRIPTION

The six different mesh reduction algorithms proposed in this

paper are as follows: the "vertex triplex (VT)" algorithm based

on vertex clustering; the "face angle dependency (FAD)"

algorithm based on vertex removal; the "intervertex distance

dependence (IVDD)" algorithm based on iterative edge

contraction; "Spherical Scanning (SS)" algorithm that uses

vertex clustering and iterative edge contraction; the "vertex

triplex distance (VTD)" algorithm and the "face angle spherical

scanning (FASS)" algorithm based on the advantages and

disadvantages of each algorithm. In this section, this research

describes the basic ideas of these six algorithms.

III.I Vertex Triplex (VT)

The core of this algorithm is to calculate the center of the

circumcircle of the triangle. The center of the triangle’s

circumcircle is a point with an equal distance from the three

vertices of the triangle (as shown in Figure 2). Therefore, if the

three vertices of each triangle in the original triangular mesh

model are aggregated into their circumscribed circle centers,

the resulting point will be evenly distributed on the original

model.

During the implementation of the algorithm, this research

divided it into three steps: first, load the triangular mesh model,

and second, calculate the position of the circumscribed circle

center of each triangular mesh according to the triangular mesh

relationship existing in the model. The triangle mesh units are

aggregated into the center of the circumscribed circle. Finally,

all the triangular meshes are retriangulated.

In this research, it is assumed that the coordinates of the three

points in space are P1(x1, y1, z1) , P2(x2, y2, z2) , and

P3(x3, y3, z3). The analysis shows that two constraints need to

be met to calculate the circumcenter of a triangle: three points

are coplanar, and the distances from the three points to the

space center coordinates are equal. Then, 4 free terms and 4

equations can be obtained from these two constraints, so the

following four linear equations (1), (2), (3), and (4) can be listed

and solved using the elimination method. This research

assumes that the coordinates of the center of the circle to be

calculated are (x0, y0, z0), and the radius is R. For a three-point

coplanar constraint, the plane equation determined by three

points in space is

|

𝑥 𝑦
𝑥1 𝑦1

𝑧 1
𝑧1 1

𝑥2 𝑦2

𝑥3 𝑦3

𝑧2 1
𝑧3 1

| = 0

⇒ 𝐴1𝑥 + 𝐵1𝑦 + 𝐶1𝑧 + 𝐷1 = 0 (4)

𝐴1 = 𝑦1 ∗ 𝑧2 − 𝑦1 ∗ 𝑧3 − 𝑧1 ∗ 𝑦2 + 𝑧1 ∗ 𝑦3 + 𝑦2 ∗ 𝑧3 − 𝑦3

∗ 𝑧2

𝐵1 = −𝑥1 ∗ 𝑧2 + 𝑥1 ∗ 𝑧3 + 𝑧1 ∗ 𝑥2 − 𝑧1 ∗ 𝑥3 − 𝑥2 ∗ 𝑧3 + 𝑥3

∗ 𝑧2

𝐶1 = 𝑥1 ∗ 𝑦2 − 𝑥1 ∗ 𝑦3 − 𝑦1 ∗ 𝑥2 + 𝑦1 ∗ 𝑥3 + 𝑥2 ∗ 𝑦3 − 𝑥3

∗ 𝑦2

𝐷1 = −𝑥1 ∗ 𝑦2 ∗ 𝑧3 + 𝑥1 ∗ 𝑦3 ∗ 𝑥2 + 𝑥2 ∗ 𝑦1 ∗ 𝑧3 − 𝑥3 ∗ 𝑦1

∗ 𝑧2 − 𝑥2 ∗ 𝑦3 ∗ 𝑧1 + 𝑥3 ∗ 𝑦2 ∗ 𝑧1

The constraints of equal distance from the three points to the

center of the circle can also obtain the following equations:

{

𝑅2 = (𝑥1 − 𝑥)2 + (𝑦1 − 𝑦)2 + (𝑧1 − 𝑧)2 (1)

𝑅2 = (𝑥2 − 𝑥)2 + (𝑦2 − 𝑦)2 + (𝑧2 − 𝑧)2 (2)

𝑅2 = (𝑥3 − 𝑥)2 + (𝑦3 − 𝑦)2 + (𝑧3 − 𝑧)2 (3)

The linear equations about the coordinates of the center of the

circle can be obtained by eliminating the above four linear

equations:

[

𝐴1

𝐴2

𝐵1 𝐶1

𝐵2 𝐶2

𝐴3 𝐵3 𝐶3

] [
𝑥
𝑦
𝑧

] + [

𝐷1

𝐷2

𝐷3

] = 0

The calculated center coordinates are:

[

𝑥0

𝑦0

𝑧0

] = − [

𝐴1

𝐴2

𝐴3

𝐵1

𝐵2

𝐵3

𝐶1

𝐶2

𝐶3

]

−1

[

𝐷1

𝐷2

𝐷3

]

The radius is:

𝑅 = √(𝑥1 − 𝑥0)2 + (𝑦1 − 𝑦0)2 + (𝑧1 − 𝑧0)2

Using the equations, the eccentric coordinates of each triangle

in the model can be efficiently obtained, and finally, a point

composed of eccentric coordinates can be generated. These

points together constitute the point cloud data of the model, but

the newly generated point cloud data do not include

triangulated index data. Compared with other triangulation

algorithms, Delaunay's triangulation algorithm has the

following advantages: these triangles are as equiangular as

possible, thus eliminating the potential numerical accuracy

problems caused by slender triangles; ensure that any point on

the surface is as close to the node as possible; triangulation is

not related to the order of processing points; and faster

processing speed [12]. Therefore, this research study

retriangulates the points using Delaunay triangulation.

III.II FAD (Face Angle Dependency)

The FAD algorithm is based on the idea of vertex removal. It is

implemented by calculating the angle between the triangle

Fig. 2. Schematic diagram of a triangle outer center

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 6 (2020), pp. 1110-1119

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.6.2020.1110-1119

1113

surfaces associated with the vertices. This research divides the

implementation of the algorithm into three steps:

1) Query and calculate the angle between all triangle faces in

the model related to the current vertex

2) Evaluate and adjust the current vertex based on the

specified threshold conditions

3) Triangularize the holes generated after data adjustment

Querying and calculating the angle between triangular faces is

the first step in this algorithm. When calculating the angle

between the triangle faces, the index data of other vertices

related to the currently selected vertex are extracted into the

memory container by traversing the vertex number as a unit.

After finding the corresponding 3D coordinates through the

index data, the normal information of the triangle is calculated.

Finally, the normal information is calculated in pairs to obtain

the size of the included angle, and the included angle data are

stored separately.

There are many methods for calculating the included angle, and

in [16, 17], similar research was conducted on the FAD

algorithm. However, in [16,17], the research only determined

the included angle of the plane related to the current vertex, and

all the included angles were larger than the threshold, and then

the next operation was performed. The new FAD algorithm

proposed in this paper can control the simplified process

according to the two conditions of the area and the angle of the

plane related to the current vertex. In this paper, this research

uses the same algorithm, and it is also the simplest and most

understandable method for calculating the included angle. That

is, by using two intersecting vectors on a plane, you can find

normal vector information (normal) perpendicular to the two

vectors. Taking three points in the space as P1(x1, y1, z1) ,

 P2(x2, y2, z2) , P3(x3, y3, z3) and setting the normal to

(d𝑥, d𝑦 , d𝑧), the normal meets the following equation:

(x2 − x1) ∗ d𝑥 + (y2 − y1) ∗ d𝑦 + (z2 − z1) ∗ d𝑧 = 0

(x3 − x1) ∗ d𝑥 + (y3 − y1) ∗ d𝑦 + (z3 − z1) ∗ d𝑧 = 0

(x3 − x2) ∗ d𝑥 + (y3 − y2) ∗ d𝑦 + (z3 − z2) ∗ d𝑧 = 0

After solving the system of equations to obtain the plane

normal vector from the above equation, the angle from the

angle of the vector can be finally calculated:

cos θ =
𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2

√𝑥1
2+𝑦1

2 + 𝑧1
2 ∗ √𝑥2

2+𝑦2
2 + 𝑧2

2

From the above equation, the magnitude of the normal angle

(as shown in Figure 3) can be obtained. Finally, the number of

included angles between adjacent triangular faces obtained by

this method is stored in the corresponding memory container.

Through the calculation of the first step, a container is obtained

to store information on the normal angles of all triangular faces.

The smaller the normal angle of the face, the larger the included

angle between the faces. Therefore, the main judgment basis of

this algorithm is also based on the size relationship between the

current included angle and a given threshold to determine

whether the currently processed vertices should be retained or

removed. In this process, this research uses the method of

traversing the storage angle container for evaluation. When the

included angle of all faces related to the selected vertex is less

than the threshold, the vertex is marked as removable, and the

vertex coordinates of the point are set to a specific value. Then,

after all vertex traversals are completed, the specific value is

deleted in the container. At this point, because the vertex is

deleted, a hole is formed in this part. Finally, this algorithm uses

Delaunay triangulation to retriangulate [12].

III.III IVDD (Intervertex Distance Dependence)

The basic idea of the iterative edge folding simplification

algorithm is to fold the edges in the grid according to certain

criteria. As shown in Figure 4, the dotted line is the edge to be

folded, and the two related endpoints (P1, P2) are folded into a

new vertex P0 according to the criteria specified to modify the

topology in the mesh model. To complete the simplification of

the number of vertices, the model simplification operation is

completed. One simplification in this process can reduce one

edge and two triangular faces compared to the original model.

The third algorithm proposed in this research is the IVDD

algorithm, which is a new algorithm based on iterative edge

folding. Therefore, it also preserves its high-efficiency

characteristics, and at the same time, folds the adjacent and

nearer vertices in the original model, so that the size of each

triangular surface in the model tends to be similar, the effect of

balancing the triangles is achieved, which makes the display of

the model smoother (see test content in Section 3 for details).

In the specific implementation of the IVDD algorithm, the

implementation of this algorithm is also divided into three

stages. First, select the vertices and traverse the mesh model to

obtain all other vertices related to the selected vertex. Second,

fold the edge formed by the two closer vertices in space and

calculate the center point coordinates from the two vertices to

Fig. 3. Normal angle calculation and normal angle

Fig. 4. Illustration of edge folding

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 6 (2020), pp. 1110-1119

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.6.2020.1110-1119

1114

replace the original two vertices. Finally, retriangulate the

current part with the new vertex as the center.

In this algorithm, the most important aspect is the edge folding

process in the second step. In this process, this research first

selects the vertices in the same way as the previous algorithm

and uses the two points in the same triangle as the reference to

calculate the distance between the two points. If the distance

between one vertex and the other two vertices is less than the

threshold, all three sides are folded, and the newly generated

vertex is the circumcircle center of the original triangle. Then,

the circumscribed circle center coordinates are used to replace

the coordinate values of all three vertices that appear in the

subsequent data. If the distance between a vertex and one of the

triangles is less than the specified threshold, then this research

calculates the coordinates of the center point of the two vertices.

The center coordinates are used to replace the original values

of these two vertices to fold the edges between the two vertices.

For the calculation of the distance between two points in space

and the coordinates of the center point of two points, only a

simple mathematical calculation is required. This research

directly applies the distance formula between two points in

space:

𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2

The vertex distance d can be calculated, and this d value is the

judgment basis of this algorithm. For the coordinates of the

center points of the two vertices in the space, the x-axis

component, the y-axis component, and the z-axis component of

the two vertices are added, and then the average value on the

respective coordinate axes is used to obtain the center point

coordinate value.

Finally, in this algorithm, all original data are also modified to

obtain point cloud coordinate data composed of the modified

data. Finally, this algorithm also retriangulates the points using

Delaunay triangulation [12].

III.IV SS (Spherical Scanning)

The SS algorithm is a vertex clustering method from the 2D

plane to 3D space. In 2D plane vertex clustering, a mesh of a

specified size is usually used to map the original vertex

information to this mesh map. If multiple vertices fall into the

same vertex at the same time as shown in Figure 5, the vertices

falling into the same grid are aggregated into one vertex.

Continue iteratively in the same way, detecting and querying

all vertices included in the model until all points are not in the

same grid.

Similarly, this algorithm extends the vertex clustering method

of the 2D plane to the 3D space. Imagine that there is now

model A. In 3D space, this algorithm does not use meshes for

mapping but uses a sphere with a certain radius to perform a

"movement scan" in the order of vertices on the original mesh

model; at the same time, after moving to a vertex, the distances

between the vertex and the surrounding vertices are calculated.

If the surrounding vertices and the currently scanned vertices

are in the "sphere", two or more vertices that fall into the same

sphere are merged into a new vertex, as shown in Figure 6. The

generation of new vertices is not performed in one way, and

multiple methods are combined to generate the optimal new

vertex coordinates. Finally, this algorithm retriangulates the

changes in the geometry or mesh structure of the vertices.

III.V Hybrid Algorithm

In the design of the hybrid algorithm, this research mainly

complements and combines the advantages and disadvantages

of the algorithm. The VT algorithm has proven that although

the vertex distribution of the simplified triangle model is more

uniform, it does not have the ability to handle some special edge

processing separately. The IVDD algorithm removes similar

vertices or replaces them with center point coordinates.

Therefore, the size of the triangles inside the geometry also

tends to be similar, which can balance the triangles for special

edges. Based on this, the research of hybrid algorithms is

implemented by combining these two algorithms.

Similarly, the FAD algorithm proves that it can avoid the

feature of extremely irregular triangles in the simplified model.

In contrast, the SS algorithm based on vertex clustering in 3D

space has a simple, clear, and fast simplification. However,

after it folds the straight line or triangle in the mesh model, that

is, the degradation of the triangle into line segments/vertices,

the "protruding/tip" part of the mesh topology cannot be

maintained well (for details, please refer to the content of the

experimental part in Section 4). Therefore, the two algorithms

are complementary and combined, and the result will be better

than a single simplified algorithm.

(a) Before simplification (b) After simplification

Fig. 5. Vertex clustering based on a 2D plane

Fig. 6. Vertex clustering of the space sphere scanning

algorithm

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 6 (2020), pp. 1110-1119

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.6.2020.1110-1119

1115

III.V.I VTD (Vertex Triplex Distance)

To implement this hybrid algorithm, the core ideas of the VT

algorithm and IVDD algorithm and the important steps in the

algorithm construction process are introduced in the previous

section, so in this section, we mainly introduce how to merge

the algorithms to implement the hybrid algorithm. These two

different algorithms have different approaches.

After loading the mesh model into the program and storing it in

a memory container, the vertex coordinates of the triangle are

read according to the order of the vertex index data of the model.

The previous method simplified the three vertices into one

vertex (coordinates of the outer point of the triangle), but the

method merged and folded the triangle vertices in different

cases.

Assume that the three vertices of the triangle relationship in the

space are P1, P2, and P3, as shown in Figure 7. After reading the

triangle data, first, use the distance formula between the two

points in the space:

𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2

Calculate the distances d12 , d13 , and d23 between the three

vertices. If the values of the three distances are all smaller than

the specified threshold, then the three vertices P1, P2, and P3 are

merged with the original three vertices into the circumscribed

circle center coordinate C0 of the triangle according to the VT

algorithm. If the distances d12 , d13 and d23 of the three

vertices are not all smaller than the specified threshold, edge

folding is performed according to the following procedure.

First, if the distance d12 between the vertices P1 and P2 is less

than or equal to the threshold, then further compare the sizes of

the distances d13 and d23 between the vertices P1 , P3 and

vertices P2 , P3 . When d13 is larger than d23 , the newly

generated vertex C0 is taken from the coordinates of the center

point between vertices P1 and P3. Conversely, if d13 is smaller

than d23, the coordinates of the newly generated vertex 𝐶0 are

replaced by the coordinates of the center point between the

vertices P2 and P3. Using the same principle, if d13 is less than

the specified threshold, the distance between the other two

vertices is determined, and the two vertices with the larger

vertices are merged into their center point coordinates

according to the distance. The same applies to the calculation

and data replacement process of d23.

III.V.II FASS (Face Angle Spherical Scanning)

For the FASS algorithm, since the FAD algorithm is based on

vertex removal and the SS algorithm is based on vertex

aggregation, its main purpose is to reduce the number of

vertices in the model. Therefore, in the fusion process of the

two algorithms, this algorithm first uses FAD to determine

whether any vertices should be removed. Then SS is used to

perform vertex clustering on all vertices, which can reduce the

number of vertices in the triangle model to a greater extent.

In the implementation of the specific algorithm, after the model

is loaded and the data are read, all relevant vertex indexes of

the current reference vertex are determined according to the

process of the FAD algorithm, and all indices are stored in the

memory container. Then, the included angle of the triangular

surface formed by these vertices is calculated and the

relationship between these included angles and the specified

angle threshold are compared. If all the included angles are

greater than the specified included angle threshold, then in the

original mesh model, the "bulge" of the transition where the

current vertex sits is relatively small, or the part is not a "tip"

part, then the vertex at that position is directly deleted.

Additionally, the SS algorithm is used to determine the

remaining vertices. When there are vertices in the remaining

vertices that fall into the same ball, all the vertices inside the

ball are merged into one vertex to replace the original vertex in

the ball.

IV. IMPLEMENTATION AND RESULT

The suggested algorithms were tested for their rendering

performance. To obtain results, this research designed 14 sets

of controlled trials and simplified and rendered performance

tests were performed using a complex Stanford’s bunny model.

Each set of experiments was performed 10 times on two

different machines.

IV.I Test Environment

First, before the test started, this research selected two

computers with different configurations as the test environment;

the configurations are shown in Table 1.

Table 1. Configuration of the test PCs

PC 1

CPU Intel Core i7-8750H CPU @ 2.20 GHz

Memory 16 GB

OS Windows 10 Enterprise Edition X64

GPU NVIDIA GeForce GTX 1060

PC 2

CPU Intel Core i3-4170 CPU @ 3.70 GHz

Memory 4 GB

OS Windows 10 Education X64

GPU Intel HD Graphics 4400

Fig. 7. Vertex simplification between different vertex

spacings

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 6 (2020), pp. 1110-1119

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.6.2020.1110-1119

1116

IV.II Test Models

This research used Stanford’s bunny as the test model.

Stanford’s bunny mesh model has the characteristics of

complex details, small morphology, and dense spatial

distribution. The model’s vertex and triangulations are

summarized in Table 2 below.

Table 2. Raw model information

Item Stanford’s Bunny

Vertex 34,032

Vertex index 196,890

Triangles 65,630

IV.III Test Results

If the model is rendered directly on the screen, the rendering

speed of the model is limited by the refresh rate of the computer

screen. Therefore, this paper uses off-screen rendering (FBO

rendering) for all tests to reduce the interference of external

factors on the rendering efficiency measurement. After the test

started, this research first performed off-screen rendering of the

original models of the two test models and then wrote the off-

screen rendered images to the local hard disk (the overall and

locally rendered images are shown in Figure 8 below). Then,

we recorded the number of vertices and triangles remaining

after reduction by different algorithms in this research and also

recorded the total time of 1,000 renderings from the 100th to

the 1,100th in the rendering process and calculated the average

rendering time, as shown in Table 5.

For the off-screen rendering of the original model, after testing

on two differently configured PCs, to ensure the accuracy of

the data obtained from the test, this research performed 10 tests

on the same parameters. In the test, the average time

consumption of the 100th to 1,100th rendering was calculated

and recorded. The results are summarized in Table 3 below.

In Table 3, on PC1, using Stanford’s bunny mesh model as the

basic off-screen rendering, 1,000 renderings required an

average of 27.29 msec, and the frame rate reached 36,743 FPS;

on PC2, rendering 1,000 frames, the average time was 81.29

msec, reaching 12,302 FPS.

IV.IV Performance Results

In terms of rendering efficiency, from the perspective of

rendering FPS, the improvement of the VT algorithm is the

most obvious on PC1 or PC2 (see Figures 9 and 10 for details).

Figure 11 and Figure 12 show the percentage increase in the

rendering rate of each algorithm under different parameter

conditions and on different PCs.

Fig. 9. Performance increase FPS of Stanford’s bunny model

on PC 1

Fig. 10. Performance increase FPS of Stanford’s bunny model

on PC 2

0

2000

4000

6000

8000

10000

12000

14000

Parameter 1 Parameter 2 Parameter 3 Parameter 4
VT FAD IVDD SS VID FASS

0
1000
2000
3000
4000
5000
6000
7000

Parameter 1 Parameter 2 Parameter 3 Parameter 4

VT FAD IVDD SS VID FASS

Table 3. The average time taken to render 1,000

primitives on different PCs

Item Stanford’s Bunny

PC 1 27.29

PC 2 81.29

unit is msec

Fig. 8. Panorama effect (top) and local details (bottom)

rendered by the original model

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 6 (2020), pp. 1110-1119

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.6.2020.1110-1119

1117

Fig. 11. Efficiency improvement when rendering Stanford’s

bunny model on PC 1

Fig. 12. Efficiency improvement when rendering Stanford’s

bunny model on PC 2

From the test data in the chart, the algorithm proposed in this

paper greatly contributes to rendering efficiency and can

effectively reduce the rendering time of the model on the

computer. In general, the average efficiency of the six

algorithms overall improved by approximately 26%. (See

Figure 9 for details).

IV.V Rendering Results

Whether it is a single simplified algorithm or a final hybrid

algorithm, the algorithm can quickly simplify and improve

rendering speed while preserving the geometry to the greatest

extent. Taking the FASS algorithm as an example and

comparing Figure 13, it also has good detail processing ability.

The mesh topology of the "protruding/tip" part of the mesh can

well preserve the original geometry. The bunny's ears, chin, tail

and other parts are very clear after simplification, as shown in

Figure 13. In rendering, the performance is significantly

improved.

Original VT

FAD (Included angle <= 30°) FAD (Included angle <= 150°)

IVDD (Distance = 0.0011) IVDD (Distance = 0.0013)

12
14
16
18
20
22
24
26
28

Parameter 1 Parameter 2 Parameter 3 Parameter 4

VT FAD IVDD SS VTD FASS

27

29

31

33

35

Parameter 1 Parameter 2 Parameter 3 Parameter 4

VT FAD IVDD SS VTD FASS

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 6 (2020), pp. 1110-1119

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.6.2020.1110-1119

1118

SS (Radius = 0.0012) SS (Radius = 0.0014)

VTD (Distance = 0.0011) VTD (Distance = 0.0013)

FASS (Radius = 0.0012 & angle < 30°) FASS (Radius = 0.0012 & angle < 150°)

FASS (Radius = 0.0014 & angle < 30°) FASS (Radius = 0.0014 & angle < 150°)

Fig. 13. Rendered details of bunny ears

For the rendering of Stanford's bunny models, from the above

comparative data, the overall effect of the hybrid algorithm is

close to that of a single algorithm. When rendering a bunny

model, the hybrid algorithm still shows the oversimplification

problem shown in Figure 13 only in the bunny's ears. In Figure

13, it is clear that the rendering level of the bunny ears is not

very clear, but it is not difficult to compare Figure 13 and

Figure 8 to find that the visual effect is improved compared

with the simplification of a single algorithm. When using the

IVDD algorithm to simplify, if the distance between the

vertices is set to 0.0013, the simplified model also shows the

problem of oversimplification in the bunny ears, which seems

to be different from the original model, and this problem also

has a certain impact on the VTD algorithm.

V. CONCLUSION

In this paper, this research described various algorithms for

mesh simplification and to control the simplification process by

setting different thresholds. From the results of a control group

test on two computers with different configurations, it can be

seen that in the VT algorithm, the average model rendering

speed improved by 30.32%; in the FAD algorithm, the average

rendering speed improved by 25.76%. Similarly, using the

simplified model of the IVDD algorithm, rendering efficiency

improved by 25.56%. Finally, in the SS algorithm, the

simplified model rendering efficiency improved by an average

of 23.97%. It can be seen that the improvement ratio of these

four single algorithms on rendering efficiency is basically

stable between 23% and 30%. In the last two hybrid algorithms,

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 6 (2020), pp. 1110-1119

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.6.2020.1110-1119

1119

rendering efficiency also improved by 22.71% and 23.38%.

Although these two hybrid algorithms decrease in terms of

rendering efficiency, the rendered results are smoother, and the

details are preserved well. These several algorithms have met

the original expectation that rendering efficiency will increase

by nearly 20%, and the grid of the model is effectively

simplified while the original geometry of the grid model is

maximally maintained.

Since there is still room for improvement in these algorithms,

subsequent research will make certain improvements to

eliminate defects. Additionally, these algorithms will be

applied to research on gaze point rendering technology of VR

devices in subsequent research to expand the research scope.

ACKNOWLEDGEMENTS

This research was supported by NRF in Korea (NRF-

2017R1A1A1A05069806). SeongKi Kim is the corresponding

author.

REFERENCES

[1] Michael J. DeHaemer, Michael J. Zyda. Simplification

of objects rendered by polygonal approximations.

Computer Graphics. 1991; 25(2): 175-184.

[2] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W.

Stuetzle. Mesh optimization. in Procceedings of the

SIGGRAPH' 93, 1993; 27(c):19-26.

[3] M. Garland, P. S. Heckbert. Surface Simplification

Using quardric Error Metrics. in Procceedings of the

SIGGRAPH' 97. 1997; PP(c):209-216.

[4] Z. G. Pan, X. H. Ma, J. Y. Shi. Overview of Multiple

Level of Detail Creation. Journal of Image and Graphics.

1998; 23(c):104-106.

[5] L. B. Feng, D. Y. Luo. Research on 3D Model LOD

Algorithm. Computer Technology and Development.

2010; 20(c):97-100.

[6] J. B. Pan. Adaptive subdivision research for triangular

mesh. Computer Engineering and Applications. 2011;

47(c):186-187.

[7] R. Zhang. Research of Triangle Mesh Simplification

Algorithm Based on Quadric Error Metrics. Xihua

University Master Dedree Thesis. 2018.

[8] Y. Zhao, C Zhou, C Wang. Feature Preserved Mesh

Simplification Algorithm Based on Stochastic

Sampling. Computer Science. 2011; 38(c):249-251.

[9] J. Cohen, A. Varshney, D. Manocha, D. Manocha.

Simplification Envelopes. in Procceedings of the

SIGGRAPH '96. 1996; PP(c):119-128.

[10] W. Li, Y. F. Chen, Z. C. Wang, W. D. Zhao, L. Chen.

An Improved Decimation of Triangle Meshes Based on

Curvature. Rough Sets and Knowledge Technology.

2014; PP(c):260-271.

[11] J. Han, Q. J. Zhao, Z. G. Sun. Decimation of triangle

meshes based on half-edge structure. Journal of System

Simulation. 2006.

[12] C. Moenning, N. A. Dodgson. A new point cloud

simplification algorithm. International conference on

information, Imaging, and Image Processing(VIIP

2003). 2003.

[13] J. Rossignac, P. Borrel. Multi-resolution 3D

approximations for rendering complex scenes.

Geometric Modeling in Computer Graphics. 1993;

PP(c):455-465.

[14] W. J. Schroeder, J. A. Zarge, W. E. Lorensen.

Decimation of Triangle Meshes. ACM SIGGRAPH

Computer Graphics. 1997; 26(2):65-70.

[15] S. J. Li, X. T. Jiang, H. Tang. High-quality simplified

algorithm of texture model for detailed features

preserving. in Application Research of Computers.

2018; 37(c).

[16] H. L. Li, S. K. Kim. Triangular Mesh Simplification

based on Surface Angle. MITA2019. 2019; PP(c):143-

146.

[17] H. L. Li, S. K. Kim. A Novel Mesh Simplification

Method Based on Vertex Removal Using Surface Angle.

IJERT2019. 2019; 12(c)1313-1320.

