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Abstract

In this paper, a numerical solution of singularly perturbed
BVPs (SPBVPs) using an optimal fitted one-step integration
scheme via initial value method is present. The original
second order SPBVP is replaced by an asymptotically
approximate first order initial value singularly perturbed
problem (IVSPP) and solved using an optimal fitted one-step
integration scheme. The error analysis is present. Some
SPBVPs are solved and the numerical results confirm that the
suggested method is accurate and efficient in solving the
considered problems.
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I. INTRODUCTION

Singularly perturbed boundary value problems (SPBVPs) are
common in applied sciences and engineering. They often
occur in, for example, fluid dynamics, quantum mechanics,
chemical reactions, electrical networks, etc. A well-known
fact is that the solution of such problems has a multiscale
character, i.e. there are thin transition layers where the
solution varies very rapidly, while away from the layers the
solution behaves regularly and varies slowly. For a detailed
discussion on the analytical and numerical treatment of
SPBVPs we may refer the reader to the books of O’Malley
[1], Doolan et al. [2], Roos et al. [3], Miller et al. [4] and
references therein [5-25] . In this paper, a numerical solution
of singularly perturbed BVPs (SPBVPs) using an optimal
fitted one-step integration scheme via initial value method is
present. The original second order SPBVP is replaced by an
asymptotically approximate first order initial value singularly
perturbed problem (IVSPP) and solved by using an optimal
fitted one-step integration scheme. The error analysis is
present. Some SPBVPs are solved and the numerical results
confirm that the suggested method is accurate and efficient in
solving the considered SPBVPs.

I1. DESCRIPTION OF THE METHOD
Consider the two point second order SPBVP

gy"+p(x)y'+a(x,y)=h(x), xe[01],

with boundary conditions

1)

995

Yy =a and y(@Q) =2, (2

Where 0 < ¢ « 1, aand g are given constants, p(x),
g(x,y)and h(x) are assumed to be sufficiently continuously
differentiable functions, and p(x)>M > 0for x €[0,1] where

M is some positive constant. Under these assumptions, the
problem (1-2) has a solution which, in general, displays a
boundary layer of width O(s)at x =0.

Following the same procedure suggested by El-Zahar and EL-
Kabeir [9], equation (1) can be written as

'

ey"+(p(x)y) =F(x.y), (3)
where F(x,y)=hX)+p'(xX)y —q(x,y).
Now, let u(x) be the solution of the reduced problem
p(x)u’+q(x,u)=h(x), (4)
with initial condition u@) = 3.
Also, Eq. (4) can be written as
(POxu) =F(x,u), (5)

where F(x,u)=h(Xx)+p’'(x)u —q(x,u).

Subtracting Eq.(5) from Eq.(3) and integrating the resulting
equation , we have

[

d2 d x(d
S o - ] [ eme e,

ds?
(6)
where
E :LX(F(s,y(s))—F(s,u(s)))ds . ™
From (6) and (7), we get
gy'+p(X)y =p(xu+K+E, y(0)=«a, (8)

where

K =(ey')+pE)(Y6)-UuE))),, =&y'®
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Lemma 1. Let y(x) and u(x)be respectively the solutions
of the SPBVP (1-2) and the reduced problem (4), then

ly (x)-u(x)|<C (g+e‘MX’g), x €[0,1] .
Proof. See (J. Lorenz [13], theorem 3).

Lemma 2. Let y (x) be the solution of the SPBVP (1-2), then
‘y(m)(x)‘sc (1+5‘ e™ ""9) ,x €[0,1], m=0,1,2,.
Proof. See (R. Vulanovic [14], theorem1).

With the help of these lemmas 1 and 2 we can prove the
following theorem.

Theorem 1. Lety(x),u(x) and w (x) be respectively the

solutions of the SPBVP (1-2), the reduced problem (4) and the
following initial-value problem

aw '+ p(xw =pxu (9)
with initial condition w (0) =« .
Then,

lyx)-wx)<Ce, vxe[0ol.

Proof. From Eq.(7) and by using lemma 1 we get the
following bounded error

E| :le (F(s.y(s))-F(s.u(s)))ds

£I1X(|Fy 5.9)|yE)-uE))ds <Ce,  (10)

where, & lies between u(x) and y (x).

Let m=1in lemma 2, then we get the following bounded
error

|K|=|ey'@®|<Ce. (11)
Therefore, Eq.(8) becomes
ey'+p(x)y =p(x)u+0(e), y(0)=«a, (12)

To estimate the error involved in the solution w (x ) of Eq. (9)
we proceed as follows

Let z(x)=y(x)—w (x).Then z(x) satisfies the following
VP

e2'(xX)+px)z(x)=0(¢) , z(0)=0, (13)
where, ¢ lies between w (x) and y (x).
By integrating Eq. (13), it can be shown that
|z(x)| =y (x)-w (x)|<Ce .
The proof of theorem 1 is completed.

Thus, by Theorem 1 the solution of the two-point boundary

996

value problem (1-2) is approximated by that of the first order
initial value problem (9).

We solve the initial value problem (9) by using an optimal
fitted finite difference one-step integration scheme as given in
next section.

I11. EXPONENTIALLY FITTED ONE-STEP SCHEME

Discretizing SPIVP (9) by the Exponentially Fitted One-Step
Scheme (EFFD) derived by Salama and Bakr [15] results in
the following optimal fitted one-step integration scheme

(otpB Wy a=oloB W) =Fiul .0, @)

wherew,=a, h=1/N ,0<j <N -1, p=hlg,
B =[p(xj)+p(Xj.0) |12, o(pB;) = pB; /exp(pp;) -1

o(=pp;)=pp; II1-exp(=pp;)].

Theorem 2. Let w (x) be the solution of SPIVP (9) and W ;

be the numerical solution obtained by the two-term recurrence
relation (17). Then, at each mesh point x., we have the

following error estimate:

W (x;)-w | <C min(h? &), (18)

where C is independent of j ,¢ andh .

Proof. See Salama and Bakr [15], and Doolan et al. [2]

Theorem 3. Let y (x) be the solution of SPBVP (1) and W ;

be the numerical solution obtained by the two-term recurrence
relation (17). Then, at each mesh point X;, we have the

following error estimate:

|y(xj)—wj|§C(g+min(h2,g)), (19)

where C is independent of j ,& andh .

Proof. We have
|y(xj)—wj |§|y(xj)—w(xj)|+|w(xj)—wj |

By applying Theorem 1 and Theorem 2 to the right hand side
of the above inequality, we get

|y (x;)-w;|<C (g+min(h2,g))

The proof of Theorem 3 is completed

IV. NUMERICAL RESULTS

In this section, five SPBVPs are solved to illustrate the
accuracy of the method. These SPBVPs have been discussed
in the literature and their approximate solutions are available
for comparison. To get more information about the behavior
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of the solution in the boundary layer region, the solution is
computed for h =2¢ over a narrow region X ; €[0,20¢]and

h = 0.10ver the outer region X ; € (20¢,1] at different values
ofe

Example 1. Consider the following homogeneous SPBVP
[10,21]

gy"(x)+y'(x)-y(x)=0, x €[0,1], (20)

with boundary conditions y (0)=1and y (1) =1. The exact
solution is given by

€M 1™ +(@1-eM)em

m;

y(x)=

—eM '

where

m, = (-1+I+4¢)/ (2¢) and m, = (-1—L+4¢)/ (2).

The solution error |y(Xi )W |oo of Example 1 is shown in
Table 1 at different values of the perturbation parameter ¢ .

Example 2. Consider the following non-homogenous SPBVP
from fluid dynamics for fluid of small viscosity [22]

ey"X)+y’'(x)=1+2x, x €[0,1] , (21)

with boundary conditionsy (0)=0and y ()=1. The exact
solution is given by

(26 —)(1-e /%) |

y(x)=x(X +1-2¢&)+ 7

The solution error of Example 2 is shown in Table 2 at
different values of the perturbation parameter ¢ .

Table 1. Solution error of Example 1 at different values &

Nodes £=10"3 =107 £=10"° £=10"°

2 2.4663e-4 2.4658e-5 2.4657e-6 2.4659-7
de 4.2781e-4 4.2787e-5 4.2788e-6 4.2790e-7
6e 4.7247e-4 4.7244e-5 4.7244e-6 4.7246e-7
8¢ 4.8140e-4 4.8120e-5 4.8118e-6 4.8120e-7
10¢ 4.8317e-4 4.8277e-5 4.8273e-6 4.8275e-7
12¢ 4.8365e-4 4.8306e-5 4.8300e-6 4.8301e-7
14¢ 4.8391e-4 4.8312e-5 4.8304e-6 4.8305e-7
16¢ 4.8414e-4 4.8315e-5 4.8305e-6 4.8306e-7
18¢ 4.8436e-4 4.8318e-5 4.8305e-6 4.8306e-7
20s 4.8458e-4 4.8320e-5 4.8305e-6 4.8306e-7
0.1 3.6535e-4 3.6586e-5 3.6591e-6 3.6593e-7
0.2 3.5889e-4 3.5941e-5 3.5946e-6 3.5948e-7
0.3 3.4704e-4 3.4755e-5 3.4760e-6 3.4763e-7
0.4 3.2873e-4 3.2923e-5 3.2928¢e-6 3.2931e-7
0.5 3.0274e-4 3.0321e-5 3.0326e-6 3.0328e-7
0.6 2.6765e-4 2.6808e-5 2.6812e-6 2.6814e-7
0.7 2.2184e-4 2.2220e-5 2.2224e-6 2.2226e-7
0.8 1.6344e-4 1.6372e-5 1.6374e-6 1.6376e-7
0.9 9.0308e-5 9.0466e-6 9.0482e-7 9.0489¢e-8
1.0 0 0 0 0
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Table 2. Solution error of Example 2 at different values &

Nodes £=10"3 e=1074 £=10" £=10"°
2¢ 1.9965e-3 1.9997e-4 2.0000e-5 2.0000e-6
4e 2.2644e-3 2.2700e-4 2.2706e-5 2.2707e-6
6¢ 2.2982e-3 2.3064e-4 2.3072e-5 2.3073e-6
8¢ 2.3004e-3 2.3111e-4 2.3121e-5 2.3122e-6
10¢ 2.2984e-3 2.3115e-4 2.3128e-5 2.3129e-6
12¢ 2.2957e-3 2.3113e-4 2.3128e-5 2.3130e-6
14e 2.2930e-3 2.3110e-4 2.3128e-5 2.3130e-6
16¢ 2.2902e-3 2.3108e-4 2.3128e-5 2.3130e-6
18¢ 2.2875e-3 2.3105e-4 2.3128e-5 2.3130e-6
20¢ 2.2847e-3 2.3102e-4 2.3128e-5 2.3130e-6
0.1 1.8000e-3 1.8000e-4 1.8000e-5 1.8000e-6
0.2 1.6000e-3 1.6000e-4 1.6000e-5 1.6000e-6
0.3 1.4000e-3 1.4000e-4 1.4000e-5 1.4000e-6
0.4 1.2000e-3 1.2000e-4 1.2000e-5 1.2000e-6
0.5 1.0000e-3 1.0000e-4 1.0000e-5 1.0000e-6
0.6 8.0000e-4 8.0000e-5 8.0000e-6 8.0000e-7
0.7 6.0000e-4 6.0000e-5 6.0000e-6 6.0000e-7
0.8 4.0000e-4 4.0000e-5 4.0000e-6 4.0000e-7
0.9 2.0000e-4 2.0000e-5 2.0000e-6 2.0000e-7
1.0 0 0 0 1.1102e-16

Table 3. Solution error of Example 3 at different values &

Nodes e=10"° e=10" £=10"° £=107°
2¢ 6.7803e-5 6.7681e-6 6.7669e-7 6.7668e-8
de 7.7279e-5 7.6871e-6 7.6830e-7 7.6826e-8
6e 7.8859e-5 7.8144e-6 7.8073e-7 7.8066e-8
8¢ 7.9370e-5 7.8345e-6 7.8244e-7 7.8234e-8

10¢ 7.9737e-5 7.8402e-6 7.8270e-7 7.8257e-8
12¢ 8.0085e-5 7.8439e-6 7.8276e-7 7.8260e-8
l4e 8.0433e-5 7.8473e-6 7.8280e-7 7.8261e-8
16¢ 8.0782e-5 7.8507e-6 7.8284e-7 7.8261e-8
18¢ 8.1133e-5 7.8541e-6 7.8287e-7 7.8262e-8
20¢e 8.1486e-5 7.8575e-6 7.8290e-7 7.8262e-8
0.1 0 0 0 0
0.2 0 0 0 0
0.3 0 0 0 0
0.4 0 0 0 0
0.5 0 0 0 0
0.6 0 0 0 0
0.7 0 0 0 0
0.8 0 0 0 0
0.9 0 0 0 0
1.0 0 0 0 0
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Example3. Consider the variable coefficient SPBVP [23,24]
" X ’ 1
gy (X)ﬂ{l—gjy (X)—EY(X):OJ xe[01] , (22)

with boundary conditionsy (0)=0and y (1)=1. The exact
solution is approximated in [24] as

1 o (X2 14)e

2

By considering the given problem solution as our exact
solution, Tables 3 presents the maximum absolute error
|y(xi)—Wi|wfor the numerical solution of Example 3 at

1
Y(X)Zﬂ—

different values of ¢.

Example 4.Consider the non-linear SPBVP [21]
ey "(x)+2y'(x)+e¥Y®) =0, x €[0,1] (23)

with boundary conditions y(0)=0and y@) =1 The

problem (23) has a uniformly valid approximation [21] for
comparison,

y (x) =log, (2/ (1+x)) - (log, 2)e 2% .

The solution error of Example 4 is shown in Table 4 at
different values of the perturbation parameter ¢ .

Table 4. Solution error of Example 4 at different values &

Nodes £=10"3 =107 £=10"" £=10"°
2 3.6595e-5 3.6628e-6 3.6631e-7 3.6631e-8
de 3.7192e-5 3.7291e-6 3.7301e-7 3.7302e-8
6e 3.7130e-5 3.7296e-6 3.7313e-7 3.7314e-8
8¢ 3.7057e-5 3.7289¢e-6 3.7312e-7 3.7314e-8

10¢ 3.6983e-5 3.7281e-6 3.7311e-7 3.7314e-8
12¢ 3.6910e-5 3.7274e-6 3.7311e-7 3.7314e-8
14¢ 3.6837e-5 3.7266e-6 3.7310e-7 3.7314e-8
16¢ 3.6765e-5 3.7259¢e-6 3.7309e-7 3.7314e-8
182 3.6692e-5 3.7252e-6 3.7308e-7 3.7314e-8
20& 3.6620e-5 3.7244e-6 3.7308e-7 3.7314e-8
0.1 0 0 0 0
0.2 0 0 0 0
0.3 0 0 0 0
0.4 0 0 0 0
0.5 0 0 0 0
0.6 0 0 0 0
0.7 0 0 0 0
0.8 0 0 0 0
0.9 0 0 0 0
1.0 0 0 0 0
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Table 5. Solution error of Example 5 at different values &

Nodes £=1073 =107 £=10"" £=10"°
2¢ 2.6959%e-4 2.7056e-5 2.7066e-6 2.7067e-7
4g 1.5996e-4 1.6069¢e-5 1.6077e-6 1.6078e-7
6s 2.7986e-4 2.8225e-5 2.8249¢e-6 2.8251e-7
8¢ 3.0348e-4 3.0715e-5 3.0752e-6 3.0756e-7

10¢ 3.0676e-4 3.1157e-5 3.1206e-6 3.1211e-7
12¢ 3.0630e-4 3.1222e-5 3.1282e-6 3.1288e-7
14z 3.0522e-4 3.1222e-5 3.1293e-6 3.1300e-7
16¢ 3.0404e-4 3.1211e-5 3.1294e-6 3.1302e-7
18¢ 3.0284e-4 3.1199e-5 3.1293e-6 3.1302e-7
20¢& 3.0166e-4 3.1187e-5 3.1292e-6 3.1302e-7
0.1 0 0 0 0
0.2 0 0 0 0
0.3 0 0 0 0
0.4 0 0 0 0
05 0 0 0 0
0.6 0 0 0 0
0.7 0 0 0 0
0.8 0 0 0 0
0.9 0 0 0 0
1.0 0 0 0 0

Example 5.Consider the non-linear SPBVP [25] given by

gy "(X)+y'()+(y(x))* =0 x e[0,1]

with boundary conditions y(0)=0and y(@) =05 . The

problem (24) has a uniformly valid approximation [25] for
comparison,

(24)

e—x/a

A+x)? "

1
X)=——
y(x) 1+x

The solution error of Example 5 is shown in Table 5 at
different values of the perturbation parameter &. The
numerical results show that the proposed method
approximates the exact solution very well. Moreover, the
numerical solution improves in accuracy as the perturbation
parameter ¢ tends to zero.

V. CONCLUSIONS

In this paper, a numerical solution of SPBVPs having left end
boundary layer is presented using an optimal fitted one-step
integration scheme via initial value method. The original
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second order SPBVP is replaced by an asymptotically
approximate first order 1\VSPP and solved by an optimal fitted
one-step integration scheme. The error analysis is present.
Several SPBVPs are solved and the numerical results show
that the proposed method approximates the exact solution
very well. Moreover, the numerical solution improves in
accuracy as the perturbation parameter ¢ tends to zero.
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