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Abstract 

In this paper, a numerical solution of singularly perturbed 

BVPs (SPBVPs) using an optimal fitted one-step integration 

scheme via initial value method is present. The original 

second order SPBVP is replaced by an asymptotically 

approximate first order initial value singularly perturbed 

problem (IVSPP) and solved using an optimal fitted one-step 

integration scheme. The error analysis is present. Some 

SPBVPs are solved and the numerical results confirm that the 

suggested method is accurate and efficient in solving the 

considered problems. 

Keywords: Singularly perturbed BVPs, Initial value methods, 

Exponentially fitted finite difference schemes. 

 

I. INTRODUCTION 

Singularly perturbed boundary value problems (SPBVPs) are 

common in applied sciences and engineering. They often 

occur in, for example, fluid dynamics, quantum mechanics, 

chemical reactions, electrical networks, etc. A well-known 

fact is that the solution of such problems has a multiscale 

character, i.e. there are thin transition layers where the 

solution varies very rapidly, while away from the layers the 

solution behaves regularly and varies slowly. For a detailed 

discussion on the analytical and numerical treatment of  

SPBVPs we may refer the reader to the books of O’Malley 

[1], Doolan et al. [2], Roos et al. [3], Miller et al. [4] and 

references therein [5-25] . In this paper, a numerical solution 

of singularly perturbed BVPs (SPBVPs) using an optimal 

fitted one-step integration scheme via initial value method is 

present. The original second order SPBVP is replaced by an 

asymptotically approximate first order initial value singularly 

perturbed problem (IVSPP) and solved by using an optimal 

fitted one-step integration scheme. The error analysis is 

present. Some SPBVPs are solved and the numerical results 

confirm that the suggested method is accurate and efficient in 

solving the considered SPBVPs. 

 

II. DESCRIPTION OF THE METHOD  

Consider the two point second order SPBVP   

( ) ( , ) ( ), [0,1]y yp x q x y h x x       ,        (1)                                                        

with boundary conditions 

(0)y   and (1)y  ,                                 (2) 

Where 0 <  ≪ 1,  and   are given constants, ( )p x ,

( , )q x y and ( )h x are assumed to be sufficiently continuously 

differentiable functions, and ( ) 0p x M  for [0,1]x  where 

M is some positive constant. Under these assumptions, the 

problem (1-2) has a solution which, in general, displays a 

boundary layer of width ( )O  at 0x  . 

Following the same procedure suggested by El-Zahar and EL-

Kabeir [9], equation (1) can be written as 

 ( ) ( , )y p x y F x y


   ,                              (3) 

where ( , ) ( ) ( ) ( , )F x y h x p x y q x y   .  

Now, let ( )u x  be the solution of the reduced problem 

( ) ( , ) ( )p x u q x u h x   ,                              (4) 

with initial condition (1)u  .                                                                   

Also, Eq. (4) can be written as  

 ( ) ( , )p x u F x u

  ,                                    (5)                                                                        

where ( , ) ( ) ( ) ( , )F x u h x p x u q x u   .     

Subtracting Eq.(5) from Eq.(3) and integrating the resulting 

equation , we have 

   
2

21 1

( )
( ) ( ) ( ) ( )

x xd y s d d
p s y s ds p s u s ds E

dx dxds

   

         
  , 

(6) 

where 

 
1

( , ( )) ( , ( ))
x

E F s y s F s u s ds  .                       (7)                                                  

From (6) and (7), we get  

( ) ( )y p x y p x u K E     ,  (0)y  ,                  (8)                                                                     

where 

  
1

( ) ( ) ( ) ( ) (1)
s

K y s p s y s u s y 
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Lemma 1. Let ( )y x  and ( )u x be respectively the solutions 

of the SPBVP (1-2) and the reduced problem (4), then 

 /( ) ( ) , [0,1]M xy x u x C e x     . 

Proof. See (J. Lorenz [13], theorem 3).  

Lemma 2. Let ( )y x be the solution of the SPBVP (1-2), then 

 ( ) /( ) 1 , [0,1], 0,1,2,.m m M xy x C e x m         . 

Proof. See (R. Vulanovic [14], theorem1). 
 

With the help of these lemmas 1 and 2 we can prove the 

following theorem. 

Theorem 1. Let ( )y x , ( )u x  and ( )w x be respectively the 

solutions of the SPBVP (1-2), the reduced problem (4) and the 

following initial-value problem  

( ) ( )w p x w p x u     ,                                             (9) 

with initial condition (0)w  . 

Then,                

                        ( ) ( )y x w x C    ,        [0,1]x  . 

Proof.  From Eq.(7) and by using lemma 1 we get the 

following bounded error 

 
1

( , ( )) ( , ( )) ,
x

E F s y s F s u s ds   

 
1

( , ) ( ) ( )
x

yF s y s u s ds C    ,      (10) 

 where,   lies between ( )u x  and ( )y x . 

Let 1m  in lemma 2, then we get the following bounded 

error 

(1)K y C   .                                    (11) 

Therefore, Eq.(8) becomes 

( ) ( ) ( )y p x y p x u O    ,  (0)y  ,                 (12)                                                                    

To estimate the error involved in the solution ( )w x of Eq. (9) 

we proceed as follows 

Let ( ) ( ) ( )z x y x w x  .Then ( )z x satisfies the following 

IVP 

( ) ( ) ( ) ( )z x p x z x O     , (0) 0z  ,               (13)  

where,   lies between ( )w x  and ( )y x . 

By integrating Eq. (13), it can be shown that 

                        ( ) ( ) ( )z x y x w x C     . 

The proof of theorem 1 is completed.  

Thus, by Theorem 1 the solution of the two-point boundary 

value problem (1-2) is approximated by that of the first order 

initial value problem (9). 

We solve the initial value problem (9) by using an optimal 

fitted finite difference one-step integration scheme as given in 

next section. 

 

III. EXPONENTIALLY FITTED ONE-STEP SCHEME 

Discretizing SPIVP (9) by the Exponentially Fitted One-Step 

Scheme (EFFD) derived by Salama and Bakr [15] results in 

the following optimal fitted one-step integration scheme 

 1 1( ) ( ) ( )j j j j j jp w p w p u x
h


       ,            (17) 

where 0w  , 1/h N , 0 1j N   , /h  , 

1( ) ( ) / 2j j jp p x p x 
    , ( ) / [exp( ) 1]j j jp p p      

( ) / [1 exp( )]j j jp p p       .              

Theorem 2. Let ( )w x  be the solution of SPIVP (9) and jw  

be the numerical solution obtained by the two-term recurrence 

relation (17). Then, at each mesh point jx , we have the 

following error estimate: 

2( ) min( , )j jx w C hw   ,                                   (18)  

where C  is independent of j ,   and h . 

Proof. See Salama and Bakr [15], and Doolan et al. [2] 

Theorem 3. Let ( )y x  be the solution of SPBVP (1) and jw  

be the numerical solution obtained by the two-term recurrence 

relation (17). Then, at each mesh point jx , we have the 

following error estimate: 

 2( ) min( , )j jy x w C h    ,                      (19) 

where C  is independent of j ,   and h . 

Proof. We have 

( ) ( ) ( ) ( )j j j j j jy x w y x w x w x w    
 

By applying Theorem 1 and Theorem 2 to the right hand side 

of the above inequality, we get 

 2( ) min( , )j jy x w C h   
. 

The proof of Theorem 3 is completed 

 

IV. NUMERICAL RESULTS 

In this section, five SPBVPs are solved to illustrate the 

accuracy of the method. These SPBVPs have been discussed 

in the literature and their approximate solutions are available 

for comparison. To get more information about the behavior 
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of the solution in the boundary layer region, the solution is 

computed for 2h   over a narrow region [0,20 ]jx  and 

0.1h  over the outer region (20 ,1]jx   at different values 

of    

Example 1. Consider the following homogeneous SPBVP 

[10,21] 

( ) ( ) ( ) 0, [0,1]y x y x y x x      ,                  (20) 

with boundary conditions (0) 1y  and (1) 1y  . The exact 

solution is given by 

2 1 1 2

2 1

( 1) (1 )
( )

m m x m m x

m m

e e e e
y x

e e

  



, 

where    

1 2( 1 1 4 ) / (2 ) and ( 1 1 4 ) / (2 ).m m            

The solution error ( )i iy x w


 of Example 1 is shown in 

Table 1 at different values of the perturbation parameter  . 

Example 2. Consider the following non-homogenous SPBVP 

from fluid dynamics for fluid of small viscosity [22]  

( ) ( ) 1 2 , [0,1]y x y x x x       ,                (21)  

with boundary conditions (0) 0y  and (1) 1y  . The exact 

solution is given by 

/

1/

(2 1)(1 )
( ) ( 1 2 )

1

xe
y x x x

e












 
   


. 

The solution error of Example 2 is shown in Table 2 at 

different values of the perturbation parameter  . 

 

Table 1. Solution error of Example 1 at different values   

Nodes 310   410   510   610   

2  366..2e-4 366..2e-5 366..2e-6 366..2e-7 

4  663224e-4 663222e-5 663222e-6 663224e-7 

6  662362e-4 662366e-5 662366e-6 66236.e-7 

8  662464e-4 662434e-5 662442e-6 662434e-7 

10  662242e-4 662322e-5 662322e-6 66232.e-7 

12  6622..e-4 66224.e-5 662244e-6 662244e-7 

14  662224e-4 662243e-5 662246e-6 66224.e-7 

16  662646e-4 66224.e-5 66224.e-6 66224.e-7 

18  66262.e-4 662242e-5 66224.e-6 66224.e-7 

20  6626.2e-4 662234e-5 66224.e-6 66224.e-7 

464 26..2.e-4 26..2.e-5 26..24e-6 26..22e-7 

463 26.222e-4 26.264e-5 26.26.e-6 26.262e-7 

0.3 266246e-4 2662..e-5 2662.4e-6 2662.2e-7 

0.4 263222e-4 263232e-5 263232e-6 263224e-7 

0.5 264326e-4 264234e-5 26423.e-6 264232e-7 

0.6 36.2..e-4 36.242e-5 36.243e-6 36.246e-7 

0.7 363426e-4 363334e-5 363336e-6 36333.e-7 

0.8 46.266e-4 46.223e-5 46.226e-6 46.22.e-7 

0.9 264242e-5 2646..e-6 264623e-7 264622e-8 

1.0 4 4 4 4 
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Table 2. Solution error of Example 2 at different values   

Nodes 310   410   510   610   

2  4622..e-3 462222e-4 364444e-5 364444e-6 

4  363.66e-3 363244e-4 36324.e-5 363242e-6 

6  363223e-3 3624.6e-4 362423e-5 362422e-6 

8  362446e-3 362444e-4 362434e-5 362433e-6 

10  363226e-3 36244.e-4 362432e-5 362432e-6 

12  3632.2e-3 362442e-4 362432e-5 362424e-6 

14  363224e-3 362444e-4 362432e-5 362424e-6 

16  363243e-3 362442e-4 362432e-5 362424e-6 

18  36322.e-3 36244.e-4 362432e-5 362424e-6 

20  363262e-3 362443e-4 362432e-5 362424e-6 

464 462444e-3 462444e-4 462444e-5 462444e-6 

463 46.444e-3 46.444e-4 46.444e-5 46.444e-6 

0.3 466444e-3 466444e-4 466444e-5 466444e-6 

0.4 463444e-3 463444e-4 463444e-5 463444e-6 

0.5 464444e-3 464444e-4 464444e-5 464444e-6 

0.6 264444e-4 264444e-5 264444e-6 264444e-7 

0.7 .64444e-4 .64444e-5 .64444e-6 .64444e-7 

0.8 664444e-4 664444e-5 664444e-6 664444e-7 

0.9 364444e-4 364444e-5 364444e-6 364444e-7 

1.0 4 4 4 464443e-16 

 

Table 3. Solution error of Example 3 at different values   

Nodes 310   410   510   610   

2  .62242e-5 .62.24e-6 .62..2e-7 .62..2e-8 

4  262322e-5 26.224e-6 26.224e-7 26.23.e-8 

6  2622.2e-5 262466e-6 262422e-7 2624..e-8 

8  262224e-5 26226.e-6 262366e-7 262326e-8 

10  262222e-5 262643e-6 262324e-7 2623.2e-8 

12  26442.e-5 262622e-6 26232.e-7 2623.4e-8 

14  264622e-5 262622e-6 262324e-7 2623.4e-8 

16  264223e-5 262.42e-6 262326e-7 2623.4e-8 

18  264422e-5 262.64e-6 262322e-7 2623.3e-8 

20  26462.e-5 262.2.e-6 262324e-7 2623.3e-8 

464 4 4 4 4 

463 4 4 4 4 

0.3 4 4 4 4 

0.4 4 4 4 4 

0.5 4 4 4 4 

0.6 4 4 4 4 

0.7 4 4 4 4 

0.8 4 4 4 4 

0.9 4 4 4 4 

1.0 4 4 4 4 
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Example3. Consider the variable coefficient SPBVP [23,24] 

1
( ) 1 ( ) ( ) 0; [0,1]

2 2

x
y x y x y x x

 
      

 
  ,        (22) 

 with boundary conditions (0) 0y  and (1) 1y  . The exact 

solution is approximated in [24] as 

2( /4)/1 1
( )

2 2

x xy x e
x

  
  

By considering the given problem solution as our exact 

solution, Tables 3 presents the maximum absolute error 

( )i iy x w


 for the numerical solution of Example 3 at 

different values of  . 

Example 4.Consider the non-linear SPBVP [21]  

( )( ) 2 ( ) 0, [0,1]y xy x y x e x                    (23) 

with boundary conditions (0) 0y  and (1) 1y   . The 

problem (23) has a uniformly valid approximation [21] for 

comparison, 

2 /( ) log (2 / (1 )) (log 2) x
e ey x x e    . 

The solution error of Example 4 is shown in Table 4 at 

different values of the perturbation parameter  . 

 

Table 4. Solution error of Example 4 at different values   

Nodes 310   410   510   610   

2  26..2.e-5 26..32e-6 26..24e-7 26..24e-8 

4  262423e-5 262324e-6 262244e-7 262243e-8 

6  262424e-5 26232.e-6 262242e-7 262246e-8 

8  2624.2e-5 262322e-6 262243e-7 262246e-8 

10  26.222e-5 262324e-6 262244e-7 262246e-8 

12  26.244e-5 262326e-6 262244e-7 262246e-8 

14  26.222e-5 2623..e-6 262244e-7 262246e-8 

16  26.2..e-5 2623.2e-6 262242e-7 262246e-8 

18  26..23e-5 2623.3e-6 262242e-7 262246e-8 

20  26..34e-5 262366e-6 262242e-7 262246e-8 

464 4 4 4 4 

463 4 4 4 4 

0.3 4 4 4 4 

0.4 4 4 4 4 

0.5 4 4 4 4 

0.6 4 4 4 4 

0.7 4 4 4 4 

0.8 4 4 4 4 

0.9 4 4 4 4 

1.0 0 4 4 4 
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Table 5. Solution error of Example 5 at different values   

Nodes 310   410   510   610   

2  36.2.2e-4 3624..e-5 3624..e-6 3624.2e-7 

4  46.22.e-4 46.4.2e-5 46.422e-6 46.422e-7 

6  36222.e-4 36233.e-5 362362e-6 3623.4e-7 

8  264262e-4 26424.e-5 2642.3e-6 2642..e-7 

10  264.2.e-4 2644.2e-5 26434.e-6 264344e-7 

12  264.24e-4 264333e-5 264323e-6 264322e-7 

14  264.33e-4 264333e-5 264322e-6 264244e-7 

16  264646e-4 264344e-5 264326e-6 264243e-7 

18  264326e-4 264422e-5 264322e-6 264243e-7 

20  2644..e-4 264422e-5 264323e-6 264243e-7 

464 4 4 4 4 

463 4 4 4 4 

0.3 4 4 4 4 

0.4 4 4 4 4 

0.5 4 4 4 4 

0.6 4 4 4 4 

0.7 4 4 4 4 

0.8 4 4 4 4 

0.9 4 4 4 4 

1.0 4 4 4 4 

 

Example 5.Consider the non-linear SPBVP [25] given by 

  
2

( ) ( ) ( ) 0 [0,1]y x y x y x x               (24) 

with boundary conditions (0) 0y  and (1) 0.5y   . The 

problem (24) has a uniformly valid approximation [25] for 

comparison, 

/

2

1
( )

1 (1 )

xe
y x

x x



 
 

. 

The solution error of Example 5 is shown in Table 5 at 

different values of the perturbation parameter  . The 

numerical results show that the proposed method 

approximates the exact solution very well. Moreover, the 

numerical solution improves in accuracy as the perturbation 

parameter   tends to zero.  

 

V. CONCLUSIONS 

In this paper, a numerical solution of SPBVPs having left end 

boundary layer is presented using an optimal fitted one-step 

integration scheme via initial value method. The original 

second order SPBVP is replaced by an asymptotically 

approximate first order IVSPP and solved by an optimal fitted 

one-step integration scheme. The error analysis is present. 

Several SPBVPs are solved and the numerical results show 

that the proposed method approximates the exact solution 

very well. Moreover, the numerical solution improves in 

accuracy as the perturbation parameter   tends to zero.  
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