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IMAGE DENOISING METHODS FOR NEW TVL1 MODELS WITH IMPULSE NOISE†

JAE HEON YUN∗

Abstract:
In this paper, we first propose two TVL1 variational problems
for restoring images degraded by impulse noise, and then
we propose two fixed-point-like methods for solving the
new proposed TVL1 problems. Numerical experiments
for several test images corrupted by impulse noise and
several damaged images overlying with texts are provided
to demonstrate the efficiency and reliability of the proposed
fixed-point-like methods. Numerical results show that two
fixed-point-like methods for solving the new TVL1 problems
perform significantly better in the image quality measured
by PSNR than a fixed-point method for solving an existing
TVL1 problem.

1. INTRODUCTION

In this paper, we consider image denoising problems degraded
by impulse noise. Impulse noise is often generated by
malfunctioning pixels in camera senses, faulty memory
locations in hardware, or erroneous transmission. Two
common types of impulse noise are salt-and-pepper noise
and random-valued noise. Assume that an intensity range
of an image is [dmin, dmax]. Salt-and-pepper noise corrupts
a portion of pixels with only two values of dmin or dmax
while keeping other pixels unaffected. For random-valued
noise, a portion of pixels is corrupted in the same manner as
salt-and-pepper noise except that the corrupted pixels can take
any random value between dmin and dmax.
We first introduce the operator vec which transforms a matrix
C ∈ RM×N into a long vector c ∈ R` by stacking the
columns of C from left to right, that is,

c = vec(C) = (cT∗1, c
T
∗2, . . . , c

T
∗N )T ∈ R`

where c∗i is the ith column of C and ` = MN . Let us assume
that the true image U has an N × N square array. Then the
original image U is represented by a long vector u = vec(U)

of size m = N2. In this paper, we assume that a noisy image
f ∈ Rm is represented by

f = u+ η (1.1)

where u ∈ Rm is the original image and η ∈ Rm denotes
the impulse noise. Then for salt-and-pepper noise, the noisy
image f = (fi) ∈ Rm is defined as

fi =


dmin with probability s

2

dmax with probability s
2

ui with probability 1− s
,

where s is the noise level of the salt-and-pepper noise. Our
objective of this paper is to restore u from the noisy image f
as well as possible.
The classic TVL1 model for recovering a true image u from
a noisy image f with impulse noise is given by the following
variational problem with the l1-norm data fidelity term and
total variational regularization term

min {‖u− f‖1 + ρ‖u‖TV : u ∈ Γ} , (1.2)

where ρ > 0 is a regularization parameter, Γ is a closed
convex subset of Rm and ‖u‖TV denotes the total variation
(TV) of u. There are two possible definitions for ‖u‖TV; one
is the anisotropic TV, and the other is the isotropic TV. In this
paper, we only consider the isotropic TV of u ∈ Rm which is
defined by

‖u‖TV =

m∑
i=1

‖(∇u)i‖2 =

m∑
i=1

∥∥∥∥ ( (∇xu)i
(∇yu)i

) ∥∥∥∥
2

, (1.3)

where the discrete gradient operator O : Rm → R2m is
defined as follows:

(Ou)i = ((Oxu)i, (Oyu)i)
T for each i = 1, 2, . . . ,m

with

(Oxu)i =

{
0 , if i mod N = 1,

ui − ui−1, if i mod N 6= 1,

and (Oyu)i =

{
0 , if i ≤ N,

ui − ui−N , if i > N.

Note that if `1-norm is used instead of `2-norm in Equation
(1.3), then the resulting TV norm is anisotropic. The convex
subset Γ of Rm associated with a given vector f ∈ Rm and a
proper subset Λ of {1, 2, . . . ,m} is given by

Γ = { y ∈ Rm |MΛ y = MΛ f }, (1.4)

1991 Mathematics Subject Classification. 94A08, 54E05, 49Q20, 35M85.
Key words and phrases. TVL1 problems, fixed-point-like method, image denoising, impulse noise, image inpainting.
†This work was supported by the National Research Foundation of Korea(NRF) funded by the Korea government(MSIT) (No. 2019R1F1A1060718).
∗Corresponding author. Department of Mathematics, College of Natural Sciences, Chungbuk National University, Cheongju, Korea 28644. E-mail:

gmjae@chungbuk.ac.kr.

686



International Journal of Engineering Research and Technology. ISSN 0974-3154 Vol.13, No.4 (2020), pp. 686-698
c© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.4.2020.686-698

where MΛ is an m×m diagonal matrix with diagonal entries
1 for indices in Λ and 0 otherwise.
In last decades, the problem of solving the classical TVL1
model (1.2) has been studied by many researchers (see [2, 3,
4, 5, 6, 8, 10, 11, 12] and the references therein). It was shown
in [5, 8, 10, 11] that the TVL1 model works successfully
in recovering blurred images corrupted by impulse noise.
Notice that the TVL1 model has many difficulties in finding
its solutions both mathematically and numerically since both
the l1-norm data fidelity and regularization terms are not
differentiable.
Recently, Lu et al. [7] proposed a fixed-point method for
solving the following TVL1 variational problem

min

{
‖u− f‖1 +

λ

2
‖u‖22 + ρ‖u‖TV : u ∈ Γ

}
, (1.5)

where λ and ρ are positive numbers. They showed that the
fixed point method performs remarkably better in the image
quality measured by PSNR and preserves more features than
FTVd (Fast total variation deconvolution) proposed in [11] at
the expense of much increase in computational time. This
approach motivates us to propose the following two TVL1
variational problems

min

{
‖u− f‖1 +

λ

2
‖Du‖22 + ρ‖u‖TV : u ∈ Γ

}
, (1.6)

min {‖u− f‖1 + λ‖Du‖2 + ρ‖u‖TV : u ∈ Γ} , (1.7)

where D = −∆ and ∆ denotes a discrete Laplacian
operator. Under the reflexive boundary condition, the discrete
Laplacian operator is represented by a singular matrix in
Rm×m (see Section 6).
Notice that the TVL1 problem (1.5) has a unique solution
since its objective function is strictly convex, while the TVL1
problems (1.6) and (1.7) may not have a unique solution since
its objective functions are just convex, not strictly convex.
By using the indicated function of the convex set Γ which
is defined by

ιΓ(u) =

{
0 if u ∈ Γ

∞ if u 6∈ Γ
,

the constrained minimization problems (1.5), (1.6) and
(1.7) can be transformed into the following equivalent
unconstrained minimization problems

min

{
‖u− f‖1 +

λ

2
‖u‖22 + ρ‖u‖TV + ιΓ(u) : u ∈ Rm

}
,

(1.8)

min

{
‖u− f‖1 +

λ

2
‖Du‖22 + ρ‖u‖TV + ιΓ(u) : u ∈ Rm

}
,

(1.9)
min {‖u− f‖1 + λ‖Du‖2 + ρ‖u‖TV + ιΓ(u) : u ∈ Rm} .

(1.10)
This paper is organized as follows. In Section 2, we provide
some definitions and useful properties which are fundamental
tools for developing numerical algorithms for solving the

image denoising problems (1.6) and (1.7). In Section 3,
we briefly review the fixed-point method for the TVL1
problem (1.5) proposed by Lu et al. [7]. In Section 4, we
propose a fixed-point-like method, using proximal operators,
for solving the new proposed TVL1 problem (1.6). In Section
5, we propose a fixed-point-like method, using proximal
operators, for solving the new proposed TVL1 problem
(1.7). In Section 6, we provide numerical experiments for
several test images corrupted by salt-and-pepper impulse
noise and several damaged images overlying with texts in
order to demonstrate the efficiency and reliability of two
fixed-point-like methods for solving the TVL1 problems (1.6)
and (1.7). Lastly we provide some concluding remarks.

2. PRELIMINARIES

Some definitions and useful results which we refer to later in
this paper are provided below. We first provide the proximal
operator introduced by Moreau [9].

Definition 2.1. Let ψ : Rm → R∪{+∞} be a proper, convex
and lower semi-continuous (l.s.c) function. The proximal
operator of ψ at v ∈ Rm is defined by

proxψ(v) = arg min

{
1

2
‖ u− v ‖22 +ψ(u) : u ∈ Rm

}
.

(2.1)

Definition 2.2. Let ψ : Rm → R∪{+∞} be a proper, convex
and l.s.c function. The subdifferential of ψ at v ∈ Rm is
defined by

∂ψ(v) = {y ∈ Rm : ψ(z) ≥ ψ(v)+ < y, z − v >, ∀z ∈ Rm} .
(2.2)

Elements in ∂ψ(v) are called subgradeients.

It is well-known that subdifferential of a convex function ψ
is a set-valued mapping from Rm into a nonempty convex
compact set in Rm [1]. We now present three examples for
which we can explicitly calculate the proximal operators.

Example 2.3. Let || · ||1 and || · ||2 be the l1-norm and l2-norm
defined on Rm, respectively. For any λ > 0 and v ∈ Rm

prox 1
λ‖·‖1

(v) = max

{
|v| − 1

λ
, 0

}
. ∗ sign(v),

prox 1
λ‖·‖2

(v) = max

{
‖v‖2 −

1

λ
, 0

}
v

‖v‖2
,

where |v| denotes elementwise absolute value of the vector v
and .∗ denotes the elementwise multiplication.

Example 2.4. Let Γ be the convex subset of Rm which is
defined by (1.4). For any λ > 0 and v ∈ Rm

prox 1
λ ιΓ

(v) = MΛf + (I −MΛ)(v),

where ιΓ denotes the indicated function of the convex set Γ

and I denotes an identity matrix of order m.
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Notice that the isotropic TV of u ∈ Rm defined by (1.3) can
be expressed as

‖u‖TV = (ϕ ◦B)(u), (2.3)

where ϕ : R2m → R is a convex function defined by

ϕ(v) =

m∑
i=1

∥∥∥∥( vi
vm+i

)∥∥∥∥
2

for each v = (vi) ∈ R2m

and B is a d×m matrix which represents a discrete gradient
operator O with m = N2 and d = 2m (see Section 6).
The next example gives the proximal operator of the convex
function ψ = 1

λϕ on R2m which is called the generalized
shrinkage formula, where λ > 0.

Example 2.5. If ψ = 1
λϕ and v = (vi) ∈ R2m, then

prox 1
λϕ

(v) =

m∏
i=1

(
prox 1

λ‖·‖2

(
vi

vm+i

))
,

where
∏

denotes Cartesian product of vector spaces.

The following theorem outlines a relationship between
the proximal operator and the subdifferential of a convex
function.

Theorem 2.6 ([7, 9]). If ψ is a proper, convex and l.s.c.
function on Rm and v ∈ Rm, then

y ∈ ∂ψ(v) ⇔ v = proxψ(v+y) ⇔ y = (I−proxψ)(v+y),

(2.4)
where I denotes an identity operator on Rm.

3. REVIEW OF FIXED-POINT ALGORITHM FOR
(1.5)

In this section, we briefly review the fixed-point method
proposed in [7] for solving the TVL1 problem (1.5). The
problem (1.5), which is equivalent to (1.8), can be expressed
as

min

{
‖u− f‖1 +

λ

2
‖u‖22 + ρ(ϕ ◦B)(u) + ιΓ(u) : u ∈ Rm

}
,

(3.1)
where λ > 0, ρ > 0, and ϕ and B are defined the same as
in (2.3). Using Fermat rule in convex analysis for model (3.1)
and relation ∂(ϕ ◦B) = BT ◦ (∂ϕ) ◦B, we have

0 ∈
(
∂

1

λ
‖ · ‖1

)
(u−f)+ρBT

(
∂

1

λ
ϕ

)
(Bu)+u+

1

λ
∂ιΓ(u).

(3.2)
From relation (3.2), for any α, β, γ > 0 we can choose a
vector a ∈ ∂( 1

αλ‖ ·‖1)(u−f), a vector b ∈ ∂( 1
βλϕ)(Bu) and

a vector c ∈ ∂( 1
γ ιΓ)(u) satisfying

αa+ ρβBT b+ u+
γ

λ
c = 0. (3.3)

By Theorem 2.6, the inclusions a ∈ ∂( 1
αλ‖ · ‖1)(u − f),

b ∈ ∂( 1
βλϕ)(Bu) and c ∈ ∂( 1

γ ιΓ)(u) lead to

a =
(
I − prox 1

αλ‖·‖1

)
(u− f + a) , (3.4)

b =
(
I − prox 1

βλϕ

)
(Bu+ b) , (3.5)

u = prox 1
γ ιΓ

(u+ c). (3.6)

Note that ιΓ(·) = δ ιΓ(·) for any δ > 0. Setting γ = λ in
Equation (3.3) yields

c = −u− αa− ρβBT b. (3.7)

Substituting (3.7) into (3.6) and then applying Example 2.4 to
Equation (3.6), one obtains

u = MΛf + (I −MΛ)(−αa− ρβBT b). (3.8)

From Equations (3.4), (3.5) and (3.8), Lu et al. [7] proposed
the following fixed point method, called Algorithm 1, for
solving the TVL1 problem (1.5).

Algorithm 1 Fixed-point method for the TVL1 problem
(1.5)

1: Given degraded image f , choose positive parameters α, β, λ, ρ
2: Initialization : u0 = 0, a0 = 0 and b0 = 0

3: for k = 0 to maxit do
4: ak+1 =

(
I − prox 1

αλ
‖·‖1

) (
uk − f + ak

)
5: bk+1 =

(
I − prox 1

βλ
ϕ

) (
Buk + bk

)
6: uk+1 =MΛf + (I −MΛ)

(
− αak+1 − ρβBT bk+1

)
7: if ‖u

k+1−uk‖2
‖uk+1‖2

< tol then
8: Stop
9: end if

10: end for

For all algorithms considered in this paper,maxit denotes the
maximum number of iterations and tol denotes the tolerance
value of the stopping criterion.

4. FIXED-POINT-LIKE METHOD FOR THE TVL1
PROBLEM (1.6)

In this section, we propose a fixed-point-like method, using
the proximal operators, for solving the new proposed TVL1
variational problem (1.6). The problem (1.6), which is
equivalent to (1.9), can be expressed as

min

{
‖u− f‖1 +

λ

2
‖Du‖22 + ρ(ϕ ◦B)(u) + ιΓ(u) : u ∈ Rm

}
,

(4.1)
where λ > 0, ρ > 0, and ϕ and B are defined the same
as in (2.3). Using Theorem 2.6, we can obtain the following
property for a solution to the TVL1 problem (4.1).

Theorem 4.1. If ϕ is a real-valued convex function on Rd, B
is an d ×m matrix, and u is a solution to the TVL1 problem
(4.1), then for any α, β > 0 there exist vectors a ∈ Rm and
b ∈ Rd such that

a =
(
I − prox 1

α‖·‖1
)

(u− f + a) , (4.2)

b =
(
I − prox ρ

βϕ

)
(Bu+ b) , (4.3)
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u = MΛf + (I −MΛ)
(
u− a− 1

α
(λDTDu+ βBT b)

)
.

(4.4)

Conversely, if there exist positive numbers α, β, a ∈ Rm, b ∈
Rd and u ∈ Rm satisfying Equations (4.2) to (4.4), then u is
a solution to the TVL1 problem (4.1).

Proof. We assume that u ∈ Rm is a solution to the TVL1
problem (4.1). By the Fermat rule in convex analysis for
problem (4.1) and using the relations ∂(ϕ◦B) = BT ◦(∂ϕ)◦
B, we have

0 ∈ (∂‖ · ‖1)(u− f) + λDTDu+ ρBT (∂ϕ)(Bu) + ∂ιΓ(u).

(4.5)
From relation (4.5), for any α, β, γ > 0 we can choose a
vector a ∈ ∂( 1

α‖ · ‖1)(u − f), a vector b ∈ ∂( ρβϕ)(Bu)

and a vector c ∈ ∂( 1
γ ιΓ)(u) satisfying

αa+ λDTDu+ βBT b+ γ c = 0. (4.6)

By Theorem 2.6, the inclusions a ∈ ∂( 1
α‖·‖1)(u−f) and b ∈

∂( ρβϕ)(Bu) lead to Equations (4.2) and (4.3), respectively.
The inclusion c ∈ ∂( 1

γ ιΓ)(u) means

u = prox 1
γ ιΓ

(u+ c). (4.7)

Setting γ = α in Equation (4.6) yields

c = −a− 1

α
(λDTDu+ βBT b). (4.8)

Substituting (4.8) into (4.7) and then applying Example 2.4 to
Equation (4.7), Equation (4.4) is obtained.
Conversely, suppose that there exist α, β, a ∈ Rm, b ∈ Rd

and u ∈ Rm satisfying Equations (4.2) to (4.4). Again, by
Theorem 2.6, Equations (4.2) and (4.3) ensure that a ∈ ∂( 1

α‖·
‖1)(u − f) and b ∈ ∂( ρβϕ)(Bu), respectively. In addition,
Equation (4.4) means u = prox 1

α ιΓ

(
u − a − 1

α (λDTDu +

βBT b)
)
. Then Theorem 2.6 implies

−a− 1

α
(λDTDu+ βBT b) ∈ ∂(

1

α
ιΓ)(u). (4.9)

From relation (4.9), it can be easily seen that relation (4.5)
holds. Hence u ∈ Rm is a solution to the TVL1 problem
(4.1). �

From Equations (4.2) to (4.4) of Theorem 4.1, we can obtain
a fixed-point-like method, called Algorithm 2, using the
proximal operators for the TVL1 problem (1.6).

Algorithm 2 Fixed-point-like method for the TVL1
problem (1.6)

1: Given degraded image f , choose positive parameters α, β, λ, ρ
2: Initialization : u0 = 0, a0 = 0 and b0 = 0

3: for k = 0 to maxit do
4: ak+1 =

(
I − prox 1

α
‖·‖1

)(
uk − f + ak

)
5: bk+1 =

(
I − prox ρ

β
ϕ

)(
Buk + bk

)
6: uk+1 = MΛf + (I −MΛ)

(
uk − ak+1 − 1

α
(λDTDuk +

βBT bk+1)
)

7: if ‖u
k+1−uk‖2
‖uk+1‖2

< tol then
8: Stop
9: end if

10: end for

The following theorem provides a convergence analysis for
Algorithm 2.

Theorem 4.2. Let {an}, {bn} and {un} be sequences
generated by Algorithm 2. If we can find two consecutive
vectors uk and uk+1 such that uk+1 = uk for some positive
values of α, β, λ and ρ, then uk+1 is a solution to the TVL1
problem (1.6).

Proof. Substituting Equations (4.2) and (4.3) into Equation
(4.4), one obtains

u = MΛf + (I −MΛ)
(
u−

(
I − prox 1

α‖·‖1
)
(u− f + a)

− 1

α

(
λDTDu+ βBT

(
I − prox ρ

βϕ

)
(Bu+ b)

))
.

(4.10)

From Theorem 4.1, it can be easily seen that if u, a and b
satisfy (4.10) for some positive values of α, β, λ and ρ, then
u is a solution to the TVL1 problem (1.6). In Algorithm 2, if
uk+1 = uk for some positive values of α, β, λ and ρ, then we
have

ak+1 =
(
I − prox 1

α‖·‖1
)(
uk+1 − f + ak

)
, (4.11)

bk+1 =
(
I − prox ρ

βϕ

)(
Buk+1 + bk

)
. (4.12)

Substituting Equations (4.11) and (4.12) into line 6 of
Algorithm 2, one obtains

uk+1 =MΛf + (I −MΛ)
(
uk+1 −

(
I − prox 1

α
‖·‖1

)
(uk+1 − f + ak)

−
1

α

(
λDTDuk+1 + βBT

(
I − prox ρ

β
ϕ

)
(Buk+1 + bk)

))
.

(4.13)

From Equation (4.13), it can be seen that uk+1, ak and bk

satisfy (4.10) for some positive values of α, β, λ and ρ. Hence
uk+1 is a solution to the TVL1 problem (1.6). �

Theorem 4.2 gives an idea of how to stop Algorithm 2. In
practical applications, we do not have to find uk+1 which is
equal to uk. Instead, we need to find uk+1 which is reasonably
close to uk. Hence we have used the following stopping
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criterion in Algorithm 2

‖uk+1 − uk‖2
‖uk+1‖2

< tol,

where tol is a suitably chosen small tolerance value.

5. FIXED-POINT-LIKE METHOD FOR THE TVL1
PROBLEM (1.7)

In this section, we propose a fixed-point-like method, using
the proximal operators, for solving the new proposed TVL1
variational problem (1.7). The problem (1.7), which is
equivalent to (1.10), can be expressed as

min {‖u− f‖1 + λ‖Du‖2 + ρ(ϕ ◦B)(u) + ιΓ(u) : u ∈ Rm} ,
(5.1)

where λ > 0, ρ > 0, and ϕ and B are defined the same
as in (2.3). Using Theorem 2.6, we can obtain the following
property for a solution to the TVL1 problem (5.1).

Theorem 5.1. If ϕ is a real-valued convex function on Rd, B
is an d ×m matrix, and u is a solution to the TVL1 problem
(5.1), then for any α, β, γ > 0 there exist vectors a, c ∈ Rm

and b ∈ Rd such that

a =
(
I − prox 1

α‖·‖1
)

(u− f + a) , (5.2)

b =
(
I − prox ρ

βϕ

)
(Bu+ b) , (5.3)

c =
(
I − prox 1

γ ‖·‖2
)

(Du+ c) , (5.4)

u = MΛf + (I −MΛ)
(
u− a− 1

α
(λγDT c+ βBT b)

)
.

(5.5)

Conversely, if there exist positive numbers α, β, γ and vectors
a, c ∈ Rm, b ∈ Rd, and u ∈ Rm satisfying Equations (5.2) to
(5.5), then u is a solution to the TVL1 problem (5.1).

Proof. We assume that u ∈ Rm is a solution to the TVL1
problem (5.1). By the Fermat rule in convex analysis for
problem (5.1), we can obtain

0 ∈ (∂‖·‖1)(u−f)+BT (∂ρϕ) (Bu)+λDT (∂‖·‖2)(Du)+∂ιΓ(u).

(5.6)
From relation (5.6), for any α, β, γ > 0 we can choose
a vector a ∈ ∂( 1

α‖ · ‖1)(u − f), b ∈ ∂( ρβϕ)(Bu), c ∈
∂( 1

γ ‖ · ‖2)(Du) and d ∈ ∂( 1
δ ιΓ)(u) satisfying

αa+ βBT b+ γλDT c+ δ d = 0. (5.7)

Hence Equation (5.5) holds. By Theorem 2.6, the inclusions
a ∈ ∂( 1

α‖ · ‖1)(Ku − f), b ∈ ∂( ρβϕ)(Bu) and c ∈ ∂( 1
γ ‖ ·

‖2)(Du) lead to Equations (5.2), (5.3) and (5.4), respectively.
The inclusion d ∈ ∂( 1

δ ιΓ)(u) means

u = prox 1
δ ιΓ

(u+ c). (5.8)

Setting δ = α in Equation (5.7) yields

d = −a− 1

α
(λγDT c+ βBT b). (5.9)

Substituting (5.9) into (5.8) and then applying Example 2.4 to
Equation (5.8), Equation (5.5) is obtained.
Conversely, suppose that there exist α, β, γ > 0, a, c, u ∈
Rm, and b ∈ Rd satisfying Equations (5.2) to (5.5). By
Theorem 2.6, Equations (5.2) to (5.4) ensure that a ∈
∂( 1

α‖ · ‖1)(u − f), b ∈ ∂( ρβϕ)(Bu) and c ∈ ∂( 1
γ ‖ ·

‖2)(Du), respectively. In addition, Equation (5.5) means
u = prox 1

α ιΓ

(
u− a− 1

α (λγDT c+ βBT b)
)
. Then Theorem

2.6 implies

−a− 1

α
(λγDT c+ βBT b) ∈ ∂(

1

α
ιΓ)(u). (5.10)

From relation (5.10), it can be easily seen that relation (5.6)
holds. Hence u ∈ Rm is a solution to the TVL1 problem
(5.1). �

From Equations (5.2) to (5.5) of Theorem 5.1, we can obtain
a fixed-point-like method, called Algorithm 3, using the
proximal operators for the TVL1 problem (1.7).

Algorithm 3 Fixed-point-like method for the TVL1
problem (1.7)

1: Given degraded image f , choose positive parameters
α, β, γ, λ, ρ

2: Initialization : u0 = 0, a0 = 0, b0 = 0 and c0 = 0

3: for k = 0 to maxit do
4: ak+1 = (I − prox 1

α
‖·‖1)

(
uk − f + ak

)
5: bk+1 = (I − prox ρ

β
ϕ)
(
Buk + bk

)
6: ck+1 = (I − prox 1

γ
‖·‖2)

(
Duk + ck

)
7: uk+1 =MΛf + (I −MΛ)

(
uk − ak+1 − 1

α
(λγDT ck+1 +

βBT bk+1)
)

8: if ‖u
k+1−uk‖2
‖uk+1‖2

< tol then
9: Stop

10: end if
11: end for

The following theorem provides a convergence analysis for
Algorithm 3.

Theorem 5.2. Let {an}, {bn}, {cn} and {un} be sequences
generated by Algorithm 3. If we can find two consecutive
vectors uk and uk+1 such that uk+1 = uk for some positive
values of α, β, γ, λ and ρ, then uk+1 is a solution to the TVL1
problem (1.7).

Proof. Substituting Equations (5.2) to (5.4) into Equation
(5.5), one obtains

u =MΛf + (I −MΛ)
(
u−

(
I − prox 1

α
‖·‖1

)
(u− f + a)

− 1

α

(
λγDT (I − prox 1

γ
‖·‖2

)
(Du+ c)

+βBT
(
I − prox ρ

β
ϕ

)
(Bu+ b)

))
.

(5.11)

Theorem 5.1 implies that if u, a, b and c satisfy (5.11) for
some positive values of α, β, γ, λ and ρ, then u is a solution
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to the TVL1 problem (1.7). In Algorithm 3, if uk+1 = uk for
some positive values of α, β, γ, λ and ρ, then we have

ak+1 =
(
I − prox 1

α‖·‖1
)(
uk+1 − f + ak

)
, (5.12)

bk+1 =
(
I − prox ρ

βϕ

)(
Buk+1 + bk

)
, (5.13)

ck+1 =
(
I − prox 1

γ ‖·‖2
)(
Duk+1 + ck

)
. (5.14)

Substituting Equations (5.12) to (5.14) into line 7 of
Algorithm 3, one obtains

uk+1 =MΛf + (I −MΛ)
(
uk+1 −

(
I − prox 1

α
‖·‖1

)
(uk+1 − f + ak)

−
1

α

(
λγDT

(
I − prox 1

γ
‖·‖2

) (
Duk+1 + ck

)
+βBT

(
I − prox ρ

β
ϕ

)
(Buk+1 + bk)

))
.

(5.15)

Equation (5.15) implies that uk+1, ak, bk and ck satisfy (5.11)
for some positive values of α, β, γ, λ and ρ. Hence uk+1 is a
solution to the TVL1 problem (1.7). �

Theorem 5.2 also gives an idea of how to stop Algorithm
3. Thus Algorithm 3 has the same stopping criterion as
Algorithm 2.

6. NUMERICAL EXPERIMENTS

In this section, we provide numerical performance results for
Algorithms 1 to 3. In Section 2, it was shown that the isotropic
TV of u ∈ Rm can be represented by ||u||TV = (ϕ ◦ B)(u),
where ϕ andB are defined the same as in (2.3). LetDx = Dy

be the first order backward finite difference matrix of order N
defined by

Dx = Dy =


0 0 · · · · · · 0
−1 1 · · · · · · 0

...
. . . . . . . . .

...
0 · · · −1 1 0
0 · · · 0 −1 1

 .

Then B can be expressed as a d×m matrix given by

B =

(
IN ⊗Dx

Dy ⊗ IN

)
,

where ⊗ denotes the Kronecker product, IN denotes the
identity matrix of order N , m = N2 and d = 2m. Under the
reflexive boundary condition, the discrete negative Laplacian
operator D = −∆ can be represented by a singular m × m
matrix (IN ⊗ Dxx + Dyy ⊗ IN ), where Dxx = Dyy is the
second order finite difference matrix of order N defined by

Dxx = Dyy =


1 −1 · · · · · · 0
−1 2 −1 · · · 0

...
. . . . . . . . .

...
0 · · · −1 2 −1
0 · · · 0 −1 1

 .

In order to illustrate the efficiency and reliability of two
fixed-point-like methods, called Algorithms 2 and 3, for
solving the new proposed TVL1 problems (1.6) and (1.7),
we provide numerical results for four test images such as
Cameraman, Lena, House and Boat (see Figure 1). The pixel
size of four test images is 256×256. All numerical tests have
been performed using Matlab R2019a on a personal computer
with 3.2GHz CPU and 8GB RAM. maxit is set to 500 for
all algorithms, and tol is set to 1 × 10−5 (for Algorithm 1),
1× 10−4 (for Algorithm 2) or 2× 10−3 (for Algorithm 3).
To evaluate the quality of the restored images, we use the peak
signal-to-noise ratio (PSNR) between the restored image and
original image which is defined by

PSNR = 10 log10

N2 ·max
i,j
|uij |2

‖U − Ũ‖2F


where ‖ · ‖F refers to the Frobenius norm, U and Ũ are the
original and restored images with size N × N , respectively.
Also uij stands for the value of original image U at the pixel
point (i, j) andN2 is the total number of pixels. It is generally
true that the larger PSNR value stands for the better quality of
restored image.
For all numerical experiments, we have used the test images
with an intensity range of [0, 1]. For all test problems, we
choose the degraded test images which are corrupted by
salt-and-pepper impulse noise with noise levels 60% or 80%.
In Tables 1 to 4, P0 represents the PSNR values for the noisy
images f , Alg denotes the algorithm to be used, Cam denotes
the Cameraman image, PSNR represents the PSNR value for
the restored image, Iter denotes the number of iterations,
and CPU denotes the elapsed CPU time in seconds. All
parameters α, β, γ, λ and ρ are chosen as the best one by
numerical tries. The convex set Γ is generated from an index
set Λ which contains indices corresponding to the intact part
of the original image u = vec(U).
Tables 1 and 2 contain numerical results of Algorithms 1
to 3 for noisy images with 60% and 80% salt-and-pepper
noises, respectively. Tables 3 and 4 contain numerical results
of Algorithms 1 to 3 for two different types of overlying
images. Figure 1 shows the true images for Cameraman,
Lena, House and Boat. Figures 2 and 3 show the images
restored by Algorithms 1 to 3 for noisy images with 60%

and 80% salt-and-pepper noise, respectively. Figures 4 and
5 show the images inpainted by Algorithms 1 to 3 for two
different types of overlying images, respectively.
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TABLE 1. Numerical results for image denoising problems with 60% salt-and-pepper noise

Image P0 Alg α β γ λ ρ tol PSNR Iter CPU

1 0.0001 0.0001 0.001 2500 1× 10−5 26.08 55 0.81

Cam 7.21 2 150 3.5 4.9 2.0 1× 10−4 26.70 167 3.86

3 600 250 1.25 0.4 30 2× 10−3 26.78 208 5.19

1 0.0001 0.0001 0.001 2500 1× 10−5 27.91 54 0.81

Lena 7.20 2 150 3.5 4.9 2.0 1× 10−4 28.51 155 3.58

3 600 250 1.25 0.4 30 2× 10−3 28.56 148 3.65

1 0.0001 0.0001 0.001 2500 1× 10−5 31.62 55 0.82

House 7.13 2 150 3.5 4.9 2.0 1× 10−4 33.18 180 4.15

3 600 250 1.25 0.4 30 2× 10−3 33.42 237 5.88

1 0.0001 0.0001 0.001 2500 1× 10−5 26.87 55 0.82

Boat 6.85 2 150 3.5 4.9 2.0 1× 10−4 27.49 159 3.66

3 600 250 1.25 0.4 30 2× 10−3 27.70 175 4.36

TABLE 2. Numerical results for image denoising problems with 80% salt-and-pepper noise

Image P0 Alg α β γ λ ρ tol PSNR Iter CPU

1 0.0001 0.0001 0.001 2500 1× 10−5 23.30 120 1.82

Cam 5.95 2 150 3.5 4.7 2.0 1× 10−4 23.71 315 7.20

3 600 250 1.25 0.4 30 2× 10−3 23.78 260 6.38

1 0.0001 0.0001 0.001 2500 1× 10−5 25.10 116 1.74

Lena 5.93 2 150 3.5 4.7 2.0 1× 10−4 25.57 291 6.65

3 600 250 1.25 0.4 30 2× 10−3 25.84 186 4.54

1 0.0001 0.0001 0.001 2500 1× 10−5 27.96 123 1.87

House 5.84 2 150 3.5 4.7 2.0 1× 10−4 28.98 363 8.27

3 600 250 1.25 0.4 30 2× 10−3 29.62 329 8.17

1 0.0001 0.0001 0.001 2500 1× 10−5 23.80 119 1.80

Boat 5.59 2 150 3.5 4.7 2.0 1× 10−4 23.99 291 6.67

3 600 250 1.25 0.4 30 2× 10−3 24.28 206 5.15

TABLE 3. Numerical results for image inpainting problems with overlying images beginning with words “The term”

Image P0 Alg α β γ λ ρ tol PSNR Iter CPU

1 0.0001 0.0001 0.001 2500 1× 10−5 36.77 52 0.72

Cam 18.50 2 150 50 2.0 16 1× 10−4 37.14 200 4.24

3 150 50 0.12 2.0 13.5 2× 10−3 37.84 237 5.47

1 0.0001 0.0001 0.001 2500 1× 10−5 37.49 52 0.68

Lena 16.86 2 150 50 2.0 16 1× 10−4 38.11 163 3.44

3 150 50 0.12 2.0 13.5 2× 10−3 39.14 173 3.98

1 0.0001 0.0001 0.001 2500 1× 10−5 40.32 52 0.67

House 16.89 2 150 50 2.0 16 1× 10−4 40.34 244 5.17

3 150 50 0.12 2.0 13.5 2× 10−3 40.62 286 6.59

1 0.0001 0.0001 0.001 2500 1× 10−5 35.62 51 0.67

Boat 15.74 2 150 50 2.0 16 1× 10−4 35.58 189 3.99

3 150 50 0.12 2.0 13.5 2× 10−3 36.44 185 4.27
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TABLE 4. Numerical results for image inpainting problems with overlying images beginning with words
“Cross-Correlation”

Image P0 Alg α β γ λ ρ tol PSNR Iter CPU

1 0.0001 0.0001 0.001 2500 1× 10−5 34.35 30 0.38

Cam 16.81 2 150 50 2.0 16 1× 10−4 34.47 153 3.28

3 150 50 0.12 2.0 13.5 2× 10−3 35.13 188 4.33

1 0.0001 0.0001 0.001 2500 1× 10−5 38.95 30 0.38

Lena 17.26 2 150 50 2.0 16 1× 10−4 39.43 121 2.57

3 150 50 0.12 2.0 13.5 2× 10−3 39.57 133 3.08

1 0.0001 0.0001 0.001 2500 1× 10−5 41.26 30 0.37

House 18.46 2 150 50 2.0 16 1× 10−4 42.77 168 3.58

3 150 50 0.12 2.0 13.5 2× 10−3 42.88 227 5.24

1 0.0001 0.0001 0.001 2500 1× 10−5 37.57 30 0.37

Boat 17.42 2 150 50 2.0 16 1× 10−4 37.26 146 3.11

3 150 50 0.12 2.0 13.5 2× 10−3 38.59 163 3.76

As can be seen in Tables 1 to 4, Algorithm 3 for the TVL1
problem (1.7) restores the true image best, and Algorithm 1
for the TVL1 problem (1.5) restores the true image worst in
almost all cases. That is, Algorithm 3 yields the highest PSNR
values, and Algorithm 1 yields the lowest PSNR values in
almost all cases. Algorithm 3 for the TVL1 problem (1.7)
restores the true image significantly better than Algorithm 2

for the TVL1 problem (1.6), but Algorithm 3 takes more CPU
time than Algorithm 2 except for 80% salt-and-pepper noise.
Also observe that Algorithm 1 restores the true image worse
than Algorithms 2 and 3, but it takes much less CPU time than
Algorithms 2 and 3. Based on numerical results, Algorithm
3 for solving the new TVL1 problem (1.7) is preferred over
Algorithms 1 and 2.

Cameraman image Lena image House image Boat image

FIGURE 1. True images for Cameraman, Lena, House and Boat
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60% noisy image Denoising by Algorithm 1 Denoising by Algorithm 2 Denoising by Algorithm 3

60% noisy image Denoising by Algorithm 1 Denoising by Algorithm 2 Denoising by Algorithm 3

60% noisy image Denoising by Algorithm 1 Denoising by Algorithm 2 Denoising by Algorithm 3

60% noisy image Denoising by Algorithm 1 Denoising by Algorithm 2 Denoising by Algorithm 3

FIGURE 2. Image denoising for noisy images with 60% salt-and-pepper noise
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80% noisy image Denoising by Algorithm 1 Denoising by Algorithm 2 Denoising by Algorithm 3

80% noisy image Denoising by Algorithm 1 Denoising by Algorithm 2 Denoising by Algorithm 3

80% noisy image Denoising by Algorithm 1 Denoising by Algorithm 2 Denoising by Algorithm 3

80% noisy image Denoising by Algorithm 1 Denoising by Algorithm 2 Denoising by Algorithm 3

FIGURE 3. Image denoising for noisy images with 80% salt-and-pepper noise
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Overlying image Inpainting by Algorithm 1 Inpainting by Algorithm 2 Inpainting by Algorithm 3

Overlying image Inpainting by Algorithm 1 Inpainting by Algorithm 2 Inpainting by Algorithm 3

Overlying image Inpainting by Algorithm 1 Inpainting by Algorithm 2 Inpainting by Algorithm 3

Overlying image Inpainting by Algorithm 1 Inpainting by Algorithm 2 Inpainting by Algorithm 3

FIGURE 4. Image inpainting for damaged images overlying with texts
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Overlying image Inpainting by Algorithm 1 Inpainting by Algorithm 2 Inpainting by Algorithm 3

Overlying image Inpainting by Algorithm 1 Inpainting by Algorithm 2 Inpainting by Algorithm 3

Overlying image Inpainting by Algorithm 1 Inpainting by Algorithm 2 Inpainting by Algorithm 3

Overlying image Inpainting by Algorithm 1 Inpainting by Algorithm 2 Inpainting by Algorithm 3

FIGURE 5. Image inpainting for damaged images overlying with texts

7. CONCLUSION

In this paper, we proposed two new TVL1 variational
problems (1.6) and (1.7) for restoring images degraded by
impulse noise, and then we proposed two fixed-point-like
methods, called Algorithms 2 and 3, for solving the new
TVL1 problems (1.6) and (1.7). Numerical experiments
showed that Algorithms 2 and 3 for solving the new proposed
TVL1 problems (1.6) and (1.7) perform better in the image
quality measured by PSNR than Algorithm 1 for solving
the existing TVL1 problem (1.5). In addition, Algorithm 3
restores the true image significantly better than Algorithm

2, but Algorithm 3 takes more CPU time than Algorithm 2
for most cases. Hence, it can be concluded that Algorithm
3 for solving the new TVL1 problem (1.7) is preferred over
Algorithms 1 and 2.
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