
International Journal of Engineering Research and Technology. ISSN 0974-3154 Vol.13, No.4 (2020), pp. 668-674

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.4.2020.668-674

668

Cellular Automata Implemented on FPGA Based on Totalistic

Rules for Deterministic Systems

Alexander Bautista-Torres1, Edgar Alexander Bautista-Aleman2 and Helbert Eduardo Espitia-Cuchango3

1,2,3Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia.

Abstract

This paper presents the design and implementation of a

cellular automata based on totalistic rules for dynamic

deterministic systems. The implementation is made on FPGA

and the simulation results are shown via a software user

interface. With this development, the parallelism of the FPGA

is used for the simulation of dynamic systems by means of

cellular automata. The results show that the proposed system

obtains the simulation of the dynamic system using less time

than conventional software of cellular automata.

Keywords: Cellular automata, dynamic system, FPGA,

simulation.

I. INTRODUCTION

Commonly, phenomena and interactions among the different

parts of a system (namely physical, biological, etc.) are

described in models that in a global manner, explain the

behavior of each part. Even though such approximations can

be technically appropriate, those lack of viability in terms of

implementation. In this regard, cellular automata arise as an

alternative for the simulation in these models taking a group

of cells at different stages as a start point and an upgrade rule

aiming the prediction of behavior in time of a particular

system.

Cellular Automata CA were initially proposed in the fifties by

John von Neumann [1] and Konrad Zuse [2] and later

developed in the eighties by the physicist Stephen Wolfram

[3]. A CA is considered a dynamic system in discrete time in

which the interactions among cells are governed by an

upgrade or transition rule [4]. In itself, the concept of CA is

associated with concepts like space and locality of influence

[5], [6], and is widely employed in the simulation of dynamic

systems of a different order (physics biology, sociology, and

chemistry, among others) [4], [7], [8].

Currently, there are software applications that allow executing

cellular automata of diverse kinds (NETLOGO, SPASIM,

STARLOGO, SR-CA [9]). Such applications are useful when

the number of evolutions and/or the number of cellular stages

is small; nevertheless, when some of these parameters arise,

the execution time of the CA gradually increases depending

on the software type of sequential processing [4], which tends

to be inefficient when having considerable increments [10].

There are several implementations of CA built on FPGA

(Field Programmable Gate Array) [10-18]. Some of them pose

models to evaluate and improve the performance while others

employ code generators based on a high-level language to get

VHDL/VERILOG code for a particular CA.

These implementations result to be more efficient when

executed on parallel processing platforms than when using

software applications [10], especially when the number of

evolutions and/or stages of the CA arise; however, those lack

versatility for the absence of a suitable graphic interface to

visualize results and change the parameters of the simulation

of the CA, moreover, it is necessary that the user interact with

tools of FPGA/C++ [13].

Consequently, this document proposes the design of hardware

architecture of a CA for a maximum size of 10.000 cells,

which is executed in a time considerably less extended than

when using software applications and dynamically displaying

the results using software designed with Java. This

architecture is applied to CA deterministic based on totalistic

Boolean rules and cells of four stages aiming the most optimal

usage of the parallelism of the FPGA for the simulation of

dynamic systems through cellular automata.

II. METHODOLOGY

This section describes the design and implementation of the

system for a simulation of cellular automata on FPGA,

including the revision of the concepts of cellular automata, the

tool for developing the FPGA, and lastly, the design and

implementation of the cellular automaton is displayed in detail.

II.I Cellular Automata

A cellular automaton refers to a discrete dynamic system

formed by a set of cells distributed in a grid which have a

finite set of stages that change according to an upgrade rule

applied in steps of discrete time [19]. CAs are uniform since

the cells are upgraded from the same set of rules, parallel

since all the cells evolve simultaneously, and local since the

further stage of each cell depends on its current stage and the

stage of the neighbors [4]. Fig. 1 shows the graphic

representation of a single cellular automaton.

International Journal of Engineering Research and Technology. ISSN 0974-3154 Vol.13, No.4 (2020), pp. 668-674

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.4.2020.668-674

669

The CA execution algorithm consists of three steps. First, the

assignment of initial stages to the cells, second, the execution

of the transition rule on each one, and third, the cells upgrade

according to the result obtained in the second step [19].

This process must be executed concurrently on the cells [10].

Every time that these three steps are made represents the

accomplishment an evolution process.

Fig. 1. Grid of cells or cells of a cellular automaton.

CAs can be classified according to their rules in deterministic

and probabilistic, or according to the spatial distribution in

one-dimensional, two-dimensional, or three-dimensional; thus,

the main components of a CA are grid, cells [3], transition

rules [4], neighborhood [20], and border conditions [21]. For

practical issues, this document considers two-dimension,

deterministic CAs, and border conditions fixed or recurring.

II.II Development Tool

While implementing the CA the parallelism is aimed during

the execution, therefore, the Micro Blaze Development Kit

Spartan-3E1600E card was employed which is a robust

development platform that allows multiple projects of a

different kind. The board has an FPGA Spartan3E with 1600K

gates. It also includes a Flash Xilinx platform, USB interfaces

and parallels for programing JTAG with multiple

configuration options for the FPGA using an Intel Strata Flash

and a Serial Flash ST [22].

II.III Cellular Automaton Design

Two principles are necessary for the design of the hardware

architecture: first, the number of cells, which is required to be

large enough to have a wider concept of the dynamic of the

behavior, and second, the time interval between two

consecutive evolutions (time of evolution) that needs to be as

small as possible to accelerate the execution (especially when

the number of evolutions is high).

From the perspective of the hardware employed in the

proposed architecture, each cell of the CA needs to have an

arithmetic-logic unit for solving the rule of transition stages

which would demand a large number of hardware resources,

making almost impossible implementing a CA of 100X100

cells in an FPGA Spartan-3E1600E.

Thus, for solving this issue a semi-parallel processing

architecture is proposed which executes blocks of 100 cells in

a recurring way.

II.IV System General Architecture

The system consists of a software and hardware module

interacting exchanging information on the process of

execution of the CA. Fig. 2 presents a system general diagram

of blocks.

Fig. 2. Cellular automaton block composition.

II.V Software Module

This includes an application developed using Java, this

module communicates with the FPGA using RS232 to

transmit and receive information of the CA. The graphic

interface permits the user simulate and configure the

parameters in the CA (number of evolutions, type of

neighborhood whether Von Neumman or Moore and 100X100

maximum size); likewise, it allows visualizing the results after

a set of evolutions programed.

II.VI Hardware Module

This module includes an FPGA SPARTAN3E1600 and

contains algorithms programmed in VHDL for the execution

of the CA and communication processes with the software.

Internally, the module is composed by the block of

communications, which is established by a half-duplex

channel between the FPGA and the software module through

the RS232, and ASCII character commands; next is the

processing information block that codes and decodes the

signals interchanging with the software module and the

cellular automaton block in charge of the execution. Fig. 3

shows the way of operation of the blocks.

Fig. 3. Composition of the hardware module.

International Journal of Engineering Research and Technology. ISSN 0974-3154 Vol.13, No.4 (2020), pp. 668-674

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.4.2020.668-674

670

II.VII Cellular Automaton Architecture

The architecture here presented is designed for executing four

CA based on deterministic models with totalistic rules of

maximum four stages. Fig. 4 presents a diagram of the

internal distribution of this block.

Fig. 4. Composition of the cellular automaton block.

Fig. 4 shows the RAM Unit Memory (RAM-UM) which

storages the cells current and future stages in two volatile

memory spaces, the Unit of Control of Memory (UCM) is also

seen, this is in charge of the reading/writing processes, and the

Arithmetic Logic Unit (ALU) corresponding to a one-

dimensional of a hundred (100) cells based on logical-

mathematical algorithms that concurrently execute one of the

four CA.

II.VIII Execution Process

The evolutive process of a CA is made of three steps: Reading

of the current stage in each and the surrounding cells,

calculations of the future stage of each cell through the CA

model, and data update of the different stages of each cell.

These processes are sequential and are executed concurrently

on a one-dimensional vector. The maximum length of the

vector is 100 cells; however, it varies according to the CA

executed. This process is repeated sequentially as many times

as the size of the CA indicates. In cases where the CA is

50X80, the sector may have 50 cells and the three steps would

be repeated 80 times. Fig. 5 shows an example of this

situation.

Fig. 5. CA execution process by sectors.

In Fig. 5, the example displays a CA of 10X10 whose upgrade

rule is the game of life, green cells are neighbors of the CA

extremes and define the border conditions; Fig. 5-a presents

the CA with zero evolutions in a time 𝑡 , while Fig. 5-b

exposes the same CA with one evolution. The step from zero

to one evolution happens in a time equals to 𝑡 + 12𝑘, 𝑘 is the

product of the lapse of the clock signal multiplied by the

number of clock cycles used when performing the three

processes.

Likewise, the time taken by a CA for a single step is given by:

𝑇𝐸𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑡0 + (𝑁 + 2) ∙ 𝑇𝐶𝑙𝑜𝑐𝑘 ∙ 𝑁𝐶𝑦𝑐𝑙𝑒𝑠 (1)

Here, 𝑡0 is the instant where the automaton starts another

evolution, 𝑡0 which means the lapse of the system clock which

comes of the Central Processing Unit (CPU) of the FPGA, and

𝑁𝐶𝑦𝑐𝑙𝑒𝑠 is the number of cycles employed in the execution of

read-write processes and cells upgrade. Such implementation

takes place with a 100 MHz clock. To manage the two

memory spaces during the CA process is necessary to

consider that each evolution uses one memory space to read

the current stages and the other to write the future stages; thus,

it is proposed that the memory space limited by 0X00 and

0X65 (0 and 101) is employed to read the current stages when

the number of evolutions is even, and to write the future

stages when the number of evolutions is odd. On the other

hand, the memory space two, limited by 0X66 and 0XCB is

used in reading mode when the number of evolutions is odd

and in writing mode when even. When the first evolution

takes place, initial stages of the CA must be written in the

memory space 1; Table 1 shows the ranges of different

directions and the possibilities.

Table 1. Memory space configurations.

Range of

Directions

Even

Evolutions

Odd

Evolutions

Memory

Space

0X00-0X65 Read Write One

0X66-0XCB Write Read Two

According to this, there must be the same number of

consecutive evolutions and iterations in accordance with the

number of sectors in the grid. Below the review of the steps

taken in each iteration:

Step one: Read and store the stages of the cells of a sector

which is the same number of iterations, that is, iteration one is

chosen from sector one, iteration two is chosen from sector

two, and so on.

Step two: Next, read and store the stages of the cells hosted in

the previous sector and next to the chosen sector. This is done

to obtain eight neighbors for each cell of the selected sector in

step 1. Reading operations made in step 1 and 2 are made in

the reading sector of the memory space.

 Step three: After obtaining the stages of the cells located in

the selected sector with those of the neighbors, calculations

and storage can be made on the future stage of the cells using

the general transition rule.

International Journal of Engineering Research and Technology. ISSN 0974-3154 Vol.13, No.4 (2020), pp. 668-674

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.4.2020.668-674

671

Step four: Once obtained the future stage of the cells, such

stages are written in the same memory space predetermined

for writing.

According to this, each iteration needs to generate four

different directions that vary according to parameters of the

number of evolutions and the number of the sector selected in

each iteration; where 𝑁 represents the evolution stage while 𝑆

is the number of the sector selected in each iteration, thus,

four directions may be generalized as:

𝐴𝐷𝐷𝑆𝑒𝑐𝑟(𝑁, 𝑆) = {
𝑆, 𝑁 = 2𝑛 − 1

𝑆 + 102, 𝑁 = 2𝑛

𝐴𝐷𝐷𝑣𝑒𝑐1(𝑁, 𝑆) = {
𝑆 − 1, 𝑁 = 2𝑛 − 1

(𝑆 − 1) + 102, 𝑁 = 2𝑛

𝐴𝐷𝐷𝑣𝑒𝑐2(𝑁, 𝑆) = {
𝑆 + 1, 𝑁 = 2𝑛 − 1

(𝑆 + 1) + 102, 𝑁 = 2𝑛

𝐴𝐷𝐷𝑆𝑒𝑐𝑤(𝑁, 𝑆) = {
𝑆 + 102, 𝑁 = 2𝑛 − 1

𝑆, 𝑁 = 2𝑛

 (2)

Where 𝑛 ∈ 𝑍+ and 𝐴𝐷𝐷𝑆𝑒𝑐𝑟 is the direction of the sector

memory. Meanwhile, 𝐴𝐷𝐷𝑣𝑒𝑐1 and 𝐴𝐷𝐷𝑣𝑒𝑐2 are the directions

of memory from where the neighbors of the cells are obtained

and 𝐴𝐷𝐷𝑆𝑒𝑐𝑤 is the direction of the sector where the future

stages of the cells of the sector selected are written. Table 2

displays value ranges that can take the aforementioned

directions whether the number of evolutions is even or odd for

the CA implemented.

Table 2. Range of directions in each iteration.

Direction
Range of directions for

even evolutions

Range of directions for

odd evolutions

ADDsecr 0X67 - 0XCA 103 - 202 0X01 - 0X64 1 - 100

AADvec1 0X66 - 0XC9 102 - 201 0X00 - 0X63 0 - 99

ADDvec2 0X68 - 0XD5 104 - 203 0X02 - 0X65 2 - 101

ADDsecw 0X01 - 0X64 1 - 100 0X67 - 0XCA 103 - 202

III. RESULTS

Firstly, the comparison is made using conventional software

to simulate cellular automata. Later, as an example, the results

delivered for one of the models implemented are qualitatively

shown using graphics and a table containing the associated

characteristics with the respective simulation.

The execution of the experiments considered different

automata models like:

 Model 1: Lotka-Volterra (predator-prey).

 Model 2: Greenberg and Hastings.

 Model 3: Population growth with limited resources.

III.I Execution Time

Software SR-CA is employed aiming to have a comparison

for the time employed in the execution, this software is widely

used for cellular automaton [9]. This applet is developed using

Java since this permits a set of predetermined rules, including

the virtual life game; this software includes nine

predetermined square grids with 16X16 as minimum and

4096X4096 as the maximum size.

Using it as a pattern of comparison includes the average

measurement of the time employed by the software to

complete an evolution; for this purpose, a fixed lapse of 10

seconds is considered then counting the numbers of evolutions

achieved during that lapse. Table 3 shows different

measurements with this tool.

Table 3. Time evaluation of the software SR-CA.

Time 10 sec 10 sec 10 sec 10 sec 10 sec

Evolutions 7526 7552 7742 7292 7451

Time 10 sec 10 sec 10 sec 10 sec 10 sec

Evolutions 7417 7380 7574 7517 7403

According to the experimental data in Table 3, the average

number of evolutions is 7485,4; therefore, the average lapse of

one evolution is 1,33 milliseconds.

Meanwhile, Table 4 shows the times employed for an

evolution in the system developed for the models considered.

Table 4. Times of one evolution of the models in

microseconds.

Execution

1

Execution

2

Execution

3

Execution

4

Model 1 13,194 15,057 13,624 13,243

Model 2 17,597 11,047 10,959 10,595

Model 3 17,597 11,047 10,959 11,047

From Table 4, considering that the average time for execution

is 12,997 microseconds, and the time taken by the software is

1,336 milliseconds, then, it is observable the advantage

provided by an architecture dedicated only for performing

simulations on cellular automata.

III.II Greenberg and Hastings Simulation Model

Greenberg and Hasting developed a model with cellular

automata simulation the reaction of Belousov-Zhabotinsky,

the model employs four neighbors [23], the possible stages are

{0, 1, 2} where:

 0 is the rest stage or global equilibrium.

 1 or 2 is the active stage.

 3 represent the refractory stage.

The last one is characteristics since once achieved the finite

automata will be insensitive to neighbors and unable to

activate them. The transition rule was established by

International Journal of Engineering Research and Technology. ISSN 0974-3154 Vol.13, No.4 (2020), pp. 668-674

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.4.2020.668-674

672

Greenberg and Hasting in the original model [23] according to

the expression:

𝑐𝑖,𝑗(𝑡 + 1) = 𝑅[𝑐𝑖,𝑗(𝑡)] +

𝐷[𝑐𝑖−1,𝑗(𝑡), 𝑐𝑖+1,𝑗(𝑡), 𝑐𝑖,𝑗−1(𝑡), 𝑐𝑖,𝑗+1(𝑡)] (3)

Where,

𝑅 = {
2, 𝑖𝑓 𝑐𝑖,𝑗(𝑡) = 1

0, 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4)

𝐷 = {
𝑘, 𝑖𝑓 𝑐𝑖,𝑗(𝑡) = 0

0, 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5)

In equation (5) 𝑘 = 1 if there is at least one active neighbor

cell in the Von Neumman neighborhood, otherwise, 𝑘 = 0. It

is noteworthy that 𝑅 refers to the process of reaction and 𝐷 to

the process of diffusion of the equation reaction-diffusion of

Greenberg and Hastings.

Multiple stages of refractory and excitement can be present

when employing Greenberg and Hastings model. The

simulations made of this model are performed using a resting

0 stage, two stages of excitement 1, 2, and a refractory stage

3.

Fig. 6 displays the configuration of initial stages where the

blue cells represent the resting stage, magenta cells the stage

of excitement, and the green cells represent the refractory

stage. It is noteworthy that the neighborhood of Von

Neumman and constant border conditions were used for the

simulation.

Fig. 6. Configuration of initial stages.

The results obtained after subduing the initial pattern to ten

evolutions are shown in Fig. 7 where it is observed how the

waves are generated in the center of the grid and move toward

the exterior part of it in a way that allows clear identification

of the processes of reaction-diffusion of the model Greenberg

and Hastings. Note that the pattern of spatial distribution

shows certain homogeneity in the central part which is shown

in the wave shape.

Fig. 7. Spatial distribution after 10 evolutions.

After 63 evolutions, Fig. 9 shows how the waves are

generated from the center of the grid and move toward the

external part. Here, the diffusion characteristic in the

Greenberg and Hastings model is more notorious displaying

also homogeneity in the wave generated from the central

pattern of the grid. Note how the changes mold the expanded

wave starting from the cells in the excitement stage. There is

also a great density of cells in the refractory stage that pose a

prompt stabilization of the expanded wave.

Fig. 8. Spatial distribution after 63 evolutions.

Fig. 8 shows that the waves are produced from the center of

the grid and move toward the external part after 100

evolutions, no refractory-stage cells are observed in the

central part and the homogeneity is preserved starting from

the central pattern of the grid.

Fig. 9. Spatial distribution after 100 evolutions.

For 100 evolutions, Fig. 10 displays an identical pattern

respect from Fig. 9, which indicates that the wav arrived to a

International Journal of Engineering Research and Technology. ISSN 0974-3154 Vol.13, No.4 (2020), pp. 668-674

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.4.2020.668-674

673

stable state; therefore, both processes of reaction and diffusion

remain constant.

Fig. 10. Spatial distribution after 1000 evolutions.

Table 5 shows the results of the simulations previously

mentioned for the Greenberg and Hastings model, connecting

the number of cells in the resting stage to each evolution,

active excited, and refractory. Also, considering the results of

the same table and the times calculated in Table 4 (using a

software for the simulation of cellular automata), it is

noteworthy the benefit obtained from having a distributed

system FPGA for the automaton simulation.

These results also allow observing that the systems achieve

the respective evolutions of the automaton.

Table 5. Data of the model of Greenberg and Hastings.

Pattern

Evol
Repose Active Excited Refractory

T-1 Evol

(µsec)

Pattern

1

50x50

0 2119 270 42 69 0

10 1973 213 278 250 17,597

63 812 650 596 646 11,047

100 848 612 648 596 10,959

1000 848 612 648 596 10,595

VI. CONCLUSIONS

This work permits to observe the parallel nature of CAs.

These are useful tools to simulate the behavior of some

dynamic systems subjected to certain initial conditions.

The execution of the cellular automaton in an absolutely

parallel architecture demands a great number of hardware

resources since for each cell an arithmetic-logic unit is

necessary, among other requirements for executing the proper

operations.

The tools for the development provided by Xilinx in its

environment are useful for partial implementation of the CA

since on numerous occasions the FPGA counts with DDR-

SDRAM (Double Data Rate Synchronous Dynamic Random

Access Memory) and SD (Secure Digital) memories, among

others that require suitable management.

The convergence of the software application and hardware

development allowed the creation of a tool with strengths in

both sides, having a user interface to interact with the tool and

hardware platform that optimizes the execution time of the

cellular automaton.

An improvement of the system may well modify the standard

of communication to optimize the connection between the

modules of software and hardware as there exists a more

universal standard than RS-232 such as USB and TCP/IP.

Acknowledgements

The authors express their gratitude to the Facultad de

Ingeniería de la Universidad Distrital Francisco José de

Caldas.

REFERENCES

[1] J. von Neumann, Theory of self-reproducing automata,

(University of Illinois Press, Urbana, 1966).

[2] K. Zuse, Rechnender raum, (Vieweg+teubner Verlag,

1969).

[3] S. Wolfram, Statistical mechanics of cellular automata,

Reviews of Modern Physics, 55(3), 1983, 601-644.

[4] J. Schiff, Cellular Automata: A discrete view of the

world, (Wiley, 2007).

[5] R. Lahoz, Bioinformática: simulación, vida artificial e

inteligencia artificial, (Ediciones Díaz de Santos, 2004).

[6] J. Gómez, Comportamiento no-trivial en autómatas

celulares, Tesis, Centro de Investigación y de Estudios

Avanzados del I.P.N. México, 2000.

[7] C. Guan, P. G. Rowe, Should big cities grow?

Scenario-based cellular automata urban growth

modeling and policy applications, Journal of Urban

Management, 5(2), 2016, 65-78.

[8] M. Guidolin, A. Chen, B. Ghimire, E. Keedwell, S.

Djordjević, D. Savić, A weighted cellular automata 2D

inundation model for rapid flood analysis,

Environmental Modelling & Software, 84, 2016, 378-

394.

[9] T. Tyler, Cellular Automata Links, [Online accessed

2020], Available: http://cell-auto.com/links/

[10] M. Halbach, R. Hoffmann, Implementing cellular

Automata in FPGA Logic, in 18th International Parallel

and Distributed Processing Symposium, Santa Fe,

USA, 2004.

[11] I. Dogaru, R. Dogaru, A comparative study of several

2D cellular automata implementations in FPGA, in

International Symposium on Fundamentals of Electrical

Engineering (ISFEE), Bucharest, Romania, 2014, 1-4.

[12] W. Huang, General purpose cellular automata

programming, Master of Science thesis, Department of

Computer Science, Iowa State University, 2002.

International Journal of Engineering Research and Technology. ISSN 0974-3154 Vol.13, No.4 (2020), pp. 668-674

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.4.2020.668-674

674

[13] T. Kobori, T. Maruyama, T. Hoshino, A cellular

automata system with FPGA, in 9th Annual IEEE

Symposium on Field-Programmable Custom

Computing Machines, Rohnert Park, USA, 2001, 120-

129.

[14] J.L. Weston, P. Le, FPGA implementation of cellular

automata spaces using a CAM based cellular

architecture, in IEEENASA/ESA Conference on

Adaptive Hardware and Systems, Noordwijk,

Netherlands, 2008, 315-322.

[15] S. Murtaza, A.G. Hoekstra, P.M.A. Sloot, Performance

modeling of 2D cellular automata on FPGA, in IEEE

International Conference on Field Programmable Logic

and Applications, Amsterdam, Netherlands, 2007, 74-

78.

[16] W. Heenes, R. Hoffmann, S. Kanthak, FPGA

implementations of the massively parallel GCA model,

in 19th IEEE International Parallel and Distributed

Processing Symposium (IPDPS-05), Denver, USA,

2005.

[17] Y. Liu, H. Yao, J. Wang, S. Fu, The implementation of

oxidation process of the VLSI fabrication based on

cellular automata in a FPGA, in International

Conference on Computer Application and System

Modeling (ICCASM), Taiyuan, China, 2010.

[18] P. Corsonello, G. Spezzano, G. Staino, D. Talia,

Efficient implementation of cellular algorithms on

reconfigurable hardware, in 10th Euromicro Workshop

on Parallel, Distributed and Network-based Processing

(EUROMICRO-PDP.02), Canary Islands, Spain, 2002,

211-218.

[19] E. Bilotta, P. Pantano, Cellular automata and complex

systems: methods for modeling biological phenomena,

(Medical Information Science Reference, First edition,

2010).

[20] E.R. Berlekamp, J.H. Conway, R.K. Guy, Winning

ways for your mathematical plays, (Academic Press,

1982).

[21] B. Chopard, M. Droz, Cellular automata modeling of

physical systems, (Cambridge University Press, 1998).

[22] Xilinx Inc, MicroBlaze Development Kit Spartan-

3E1600E Edition User Guide, UG257 (v1.1) December

5, 2007.

[23] J.M. Greenberg, B.D. Hassard, S.P. Hastings, Pattern

formation and periodic structures in systems modeled

by reaction-diffusion equations, Bulletin of the

American Mathematical Society, 84(6), 1978, 1296-

1327.

