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Abstract

In this paper, a numerical comparison of four difference-
techniques recently developed by Algelani and El-Zahar [5,
7] in solving linear SPBVPs is presented. First, the order of
convergence of the difference-techniques developed in [5] is
estimated. Then these four central difference-techniques are
applied to SPBVPs and the numerical results are compared
with other difference-techniques in the literature. The
numerical results confirm the theoretical ones and show that
the above techniques result in an accurate solution of
SPBVPs.

Keywords: Central finite difference techniques; Order of
convergence; Accuracy.

I. INTRODUCTION

Singularly perturbed boundary value problems (SPBVPs)
arise very frequently in fluid mechanics, heat transfer,
chemical reactions, weather prediction, nanofluid flow,
optimal control theory, and other branches of Applied
Mathematics. These problems depend on a small positive
parameter multiply the highest derivative term in a
differential equation in such a way that the solution varies
rapidly in some parts and varies slowly in some other parts.
Solutions of such problems display sharp boundary layers
when the singular perturbation parameter is much smaller
than 1. For a detailed discussion on the analytical and
numerical treatment of SPBVPs we may refer the reader to
the books of O’Malley [1], Doolan et al. [2], Roos et al. [3],
Miller et el. [4] and references therein [5-18] . Recently El-
Zahar and Algelany [5] have followed the idea in [6, 8, 9] to
present three central difference-techniques for linear SPBVPs
over unevenly spaced grid points and have studied uniqueness
and stability conditions for each technique. Algelany and El-
Zahar [7] have extended their work in [5] to present a fourth-
order central difference-techniques for linear SPBVPs with
variable coefficients over unevenly spaced grid points, and
they have studied uniqueness and stability conditions at
constant coefficients and proved that the present centered
difference technique has a fourth-order of convergence at
evenly spaced grid. In this paper, a numerical comparison of
four difference-techniques recently developed by Algelani
and El-Zahar [5, 7] in solving linear SPBVPs is presented.
First, the order of convergence of the difference-techniques
developed in [5] is estimated. Then these four central
difference-techniques are applied to SPBVPs and the
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numerical results are compared with other difference-
techniques in the literature. The numerical results confirm the
theoretical ones and show that the above techniques result in
an accurate solution of SPBVPs.

Il. CENTRAL DIFFERENCE-TECHNIQUES [5, 6]

The four central difference-techniques in [5, 7] are developed
for solving the linear SPBVPs defined by

L(y)=—ey"+p(Xx)y'+q(x)y =f (x), a<x<b, 1)

with boundary conditions
y@=c and y@)=2,

where ¢ is a small positive parameter (0<e<1), aand g
are given constants, p(x),q(x)and f (x)are assumed to be
sufficiently continuously differentiable functions on [a,b]
More assumption that q(x)>0andp(x)<P <0 for all
x €[a,b], where P is some negative constant. Also, the
interval [a,b] is divided such that xy=a<x; <X, <....<Xy =b
with step sizeh; =x; —x;_;,i =1,2,...N . For the simplicity, the
authors have wused p,=p(x), g =d(x), f=7(x),
Vi, =Y(X4), Vg =Y(%,), andy =y'(x),etc. Algelany
and El-Zahar [7] have proved that the developed central

difference technique in [7] has a local truncation error at fixed
step size h given by
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where w=1/¢ and ¢ e[x;_3,%;].

Thus, the central difference technique in [5] has a fourth-
order of convergence. Using the same procedure in [7], the
local truncation error 7 of centered difference-techniques in
[5] can be estimated and given by
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Thus, both of the techniques | and Il have a second-order of
convergence while the technique Il has a fourth-order of
convergence.

I11. NUMERICAL RESULTS

In this section, a numerical comparison of the four central
difference-techniques developed in [5, 7] with other
techniques in literature is discussed.

Problem1.Consider the following SBPVP [6,8,9]
—ey"(X)+Yy'(x)+y (x) = ex?sin(zx )+ zcos(zx ) +sin(zx), (6)

with boundary conditions y (0)=0and y (1) =0. The exact
solution is y(x)=sin(zx). Technique 1, Technique II,

Technique 111 in [5] and Technique 1V in [7] are applied to
the SPBVP (1) using fixed step size and the maximum
absolute solution error for different values of & and grid
points N is presented in Tablesl-4. Moreover, the order of
convergence of each technique is estimated numerically and
plotted in Figures 1-4. We will denote Technique I,
Technique 11, Technique 111 in [5] and Technique 1V in [7]
by T1, T2, T3 and T4 respectively.

Tables 1-4 show that T3 and T4 result in a more accurate
solution than that obtained using T1 and T2 for the same
values of N, ¢ . Figures1-4 show that each of T1 and T2 has at
least second-order of convergence whereas each of T3 and
T4 has at least fourth-order of convergence.

Table 1. Maximum solution error of T1 in solving SPBVP(6)
at different values of €and N

£ N =10 N =20 N =100 N =200
102 12608E-02  3.0629E-03  1.2262E-04  3.0655E-05
103  14499E-02  33928E-03  1.2500E-04  3.1248E-05
104 14854E-02  3.6998E-03  12867E-04  3.1308E-05
105  14891E-02  37376E-03  1.4659E-04  3.4369E-05
108  1489%5E-02  3.7415E-03  15009E-04  3.7219E-05
107  148%E-02  3.7419E-03  15046E-04  3.7582E-05
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Table 2. Maximum solution error of T2 in solving SPBVP(6)
at different values of £and N

£ N =10 N =20 N =100 N =200
102  41318E-03  4.1615E-04  39761E-06  8.8777E-07
1073  T.0612E-03  14499E-03  5.9568E-06  4.4168E-07
1074  T4574E-03  18266E-03  3.9641E-05  3.3805E-06
105  T4951E-03  18648E-03  7.0468E-05  1.4498E-05
10"  TA4989E-03  18685E-03  7.4268E-05  1.8253E-05
10~7  74993E-03  1.8689E-03  7.4642E-05  1.8629E-05
Table 3. Maximum solution error of T3 in solving SPBVP(6)
at different values of £and N
£ N =10 N =20 N =100 N =200
1072  59259E-05  3.6949E-06  6.0097E-09  3.7615E-10
1073  06.9944E-05  3.9845E-06  6.1503E-09  3.8461E-10
1074 1.3264E-05 4.5167E06 6.1953E-09  3.8611E-10
105  7.3636E-05  4.6085E-06  7.0621E-09  4.0278E-10
10  7.3673E-05  4.6180E-06  7.3868E-09  4.5439E-10
10~7  T1.3677E-05  4.6189E-06  7.4231E-09  4.6315E-10
Table 4. Maximum solution error of Technique T4 in solving
SPBVP(6) at different values of & and N
£ N =10 N =20 N =100 N =200
102 10105E-05  2.3034E-07  1.2155E-10  7.2118E-12
1073  22245E-05  10022E-06  12102E-10  2.3851E-12
1074  24476E-05  14787E-06  9.2884E-10  3.5198E-10
105  24685E-05  15320E-06  2.2244E-09  1.0096E-10
106  24705E-05  15371E-06  2.4345E-09  1.4670E-10
1077 24707E-05  15377E-06  2.4545E-09  15421E-10
3
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——-N=100
26F
@ 24r R
% 22r 4
§ A eozzTIILIIEs-sIIocsmsEIIooo-
g 18F R
S gl g
14r B
12F R
15 = S = = 2
10 10 10 10 10 10
Figure 1. Computed order of convergence for T1 in solving

SPBV/P(6)
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Table 5. Comparison of maximum solution error for SPBVP

(6) using different difference techniques

———N=10
T ==
35 - ———N=100
/ A Method N ;_102  ,-10% 5-10* =107
// // \‘;\ //
e / // \/\/\’ UD 10 290E-001  3.10E-001  3.10E-001  3.10E-001
5 ’ ; oY
g 25t / e e \_ 20 150E-001  150E-001  160E-001  1.60E-001
5 . 7 e \
g e ) ILn 10  250E-001  3.00E-001 N.A N.A
20 950E-002  150E-001  1.60E-001 N.A
151 B
CD 10 1.60E-002 1.60E-002 1.60E-002 1.60E-002
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Figure 2. Computed order of convergence for T2 in solving SCbz 10 6OE-003  820E-003  830E-003  8.30E-003
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SPBVP(6)
20 6.12E-004 1.90E-003 2.05E-003 2.05E-003
T3 10  7.87E-005 8.05E-005 8.05E-005 8.05E-005
G
N0 20 490E-006  507E-006  5.09E-006  5.09E-006
551 / ———N=20
Fa——— T4 10 146E-005  266E-005  272E-005  2.72E-005
5t s AN
3 Ll NS 20 343E-007  139E-006  L68E-006  L.69E-006
g 45 T e v
T - P “
E 4 ,____—_7_’_/_’_/==:=—_'-_’:: ————— = -’// \,
s In Tables 5 and 6 we compare results of the centered
§35’ 7 difference-techniques T1,T2,T3,T4 in solving SPBVP1 at
sl i g =0[6,8,9] with Upwind Difference method (UD), the
central difference method (CD), II’in’s scheme (IL), the
T 1 second-order stable difference method (SCD2) in [9], the
2 . . ‘ ‘ fourth order stable difference method
107 10 10 10* 107 10* ) )
e (SCD4) in [9], the fourth-order method (DS4) in [8] and the

fourth-order methods, F1, F2 in [6]. The abbreviation” N.A”

Figure 4. Computed order of convergence for T4 in solving X o . ! N
is used to indicate ‘not available in the reference’.

SPBVP(6)
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Table 6. Computed order of convergence in solving SPBVP Table 7. Maximum solution error of Technique T4 in solving
(6) using different difference techniques SPBVP (7) at different values of £and N
Method £=10"2 £=10"3 £=10"* £ N=20 80 200 600 1000 2000
up 1.0473 1.0473 0.9542 10 5.14e-005 1.99¢-007 5.1063¢-009 6.60e-010 1.17e-011 153e-012
IL'in 1.6592 N.A N.A
102 137e-00L 2.49e-003 6.3050e-005 7.73e-007 9.97e-008 6.50e-009
CcD 1.9644 1.9644 1.9644
scD2 3.7487 21271 1.9827 10 813e-001 4.48e-00L 14045¢-001 7.32¢-003 1.05e-003 6.42¢-005
SCD4 4.9434 2.3750 2.0531 10 939001 9226-001 8186001 5486001 3.67e-001 1.40-001
DS4 N.A 3.9894 3.9714
F1 3.800 20105 20105 10 9.49-001 9.83e-001 9.7%-00L  9.41e-001 9.04e-001 8.18e-001
F2 6.2771 4.2904 4017 10° 9.49-001 9.87e-001 9.93¢-001  9.93¢-001 9.90e-001 9.80e-001
T1 1.9911 1.9734 1.9734
107  9.49%-001 9.87e-001  9.94e-001  9.98e-001 9.98e-001 9.97e-001
T2 3.7440 2.1201 2.0105
T3 4.0381 3.9889 3.9833
T4 6.2771 4.2904 40171 Table 8. Comparison of F2 and T4 in solving SPBVP(7), at,
£=107, N =2000
Results in Tables 5 and 6 indicate that the upwind method Method Maximum solution
(UD) is stable but not very accurate. The II’in method does error
not appear to work for this problem. The central difference
method (CD) gives reasonable results but not as good as the F2 6.3E-09
SCD2 method. The SCD4 method gives better results than T4 6.5E-09

the above methods. The DS4 method gives the best results of
the above methods. The F1 method gives better results for &

equal to 10 and 1072 but not as good as DS4 method for IV. CONCLUSIONS

smaller values of . F2 gives better results than the above In this paper, the orders of convergence of the central
methods for all values of £. T1 method is equivalent to CD difference-techniques developed in [5] are estimated and
method. T2 method is equivalent to SCD2 method. T3 shown that both of techniques | and 11 have a second-order of
method gives better results than the above methods for all convergence while the technique 111 has a fourth-order of
values of & except for DS4 and F2. T4 method has accuracy convergence. A numerical comparison of the four central
not less than all the above techniques. It is clear that the difference-techniques developed in [5, 7] in solving linear
results of CD, SCD2, F2 methods are similar to those of T1, SPBVPs is presented where two test SPBVP are solved
T2 and T4 respectively when using fixed step sizeh numerically using these central difference-techniques and the

results are compared with other difference-techniques in the

Problem 2. Consider the following SBPVP [6,8,9] literature. The numerical results confirm the theoretical ones

ey"(X)+y'(x)=1+2x; x e[0,1], @) and have shown that the above techniques result in an

accurate solution of SPBVPs. Moreover, results showed that

with boundary conditions y(©0)=0 and y(1)=1. The exact techniques F2 and T4 have similar results in solving the
solution is given by considered test SPBVPs.

00— (¢ +1-22) + 2E-DA=E ")
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£<107?In fact, it is less than 2 for N <200, then it
gradually increases to 4 as N becomes larger. This is due to
the existence of the boundary layer, where the solution REFERENCES
changes_ rapidly over avery small interval in space. I_n fact the [1] O'Malley, RE. Singular Perturbation Methodsfor
results in [6] for F2 confirm that F2 results are similar to T4 : . . . .
Ordinary Differential Equations, Springer-Verlag, New

feSU|t§ at fixed step_size h . Table 8 present a comparison of York, 1991.
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