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Abstract 

In this paper, a numerical comparison of four difference-

techniques recently developed by Algelani and El-Zahar [5, 

7] in solving linear SPBVPs is presented. First, the order of 

convergence of the difference-techniques developed in [5] is 

estimated. Then these four central difference-techniques are 

applied to SPBVPs and the numerical results are compared 

with other difference-techniques in the literature. The 

numerical results confirm the theoretical ones and show that 

the above techniques result in an accurate solution of 

SPBVPs. 

Keywords: Central finite difference techniques; Order of 

convergence; Accuracy. 

 

I. INTRODUCTION 

Singularly perturbed boundary value problems (SPBVPs) 

arise very frequently in fluid mechanics, heat transfer, 

chemical reactions, weather prediction, nanofluid flow, 

optimal control theory, and other branches of Applied 

Mathematics. These problems depend on a small positive 

parameter multiply the highest derivative term in a 

differential equation in such a way that the solution varies 

rapidly in some parts and varies slowly in some other parts. 

Solutions of such problems display sharp boundary layers 

when the singular perturbation parameter is much smaller 

than 1. For a detailed discussion on the analytical and 

numerical treatment of  SPBVPs we may refer the reader to 

the books of O’Malley [1], Doolan et al. [2], Roos et al. [3], 

Miller et el. [4] and references therein [5-18] . Recently El-

Zahar and Algelany [5] have followed the idea in [6, 8, 9] to 

present three central difference-techniques for linear SPBVPs 

over unevenly spaced grid points and have studied uniqueness 

and stability conditions for each technique. Algelany and El-

Zahar [7] have extended their work in [5] to present a fourth- 

order central difference-techniques for linear SPBVPs with 

variable coefficients over unevenly spaced grid points, and 

they have studied uniqueness and stability conditions at 

constant coefficients and proved that the present centered 

difference technique has a fourth-order of convergence at 

evenly spaced grid. In this paper, a numerical comparison of 

four difference-techniques recently developed by Algelani 

and El-Zahar [5, 7] in solving linear SPBVPs is presented. 

First, the order of convergence of the difference-techniques 

developed in [5] is estimated. Then these four central 

difference-techniques are applied to SPBVPs and the 

numerical results are compared with other difference-

techniques in the literature. The numerical results confirm the 

theoretical ones and show that the above techniques result in 

an accurate solution of SPBVPs. 

 

II. CENTRAL DIFFERENCE-TECHNIQUES [5, 6] 

The four central difference-techniques in [5, 7] are developed 

for solving the linear SPBVPs defined by 

( ) ( ) ( ) ( ),L y y p x y q x y f x a x b          ,        (1) 

  with boundary conditions 

( )y a   and ( )y b  , 

where   is a small positive parameter (0 1),   and 

are given constants, ( )p x , ( )q x and ( )f x are assumed to be 

sufficiently continuously differentiable functions on [ , ]a b . 

More assumption that ( ) 0q x  and ( ) 0p x P   for all 

[ , ]x a b , where P is some negative constant. Also, the 

interval [ , ]a b  is divided such that 0 1 2 ...... Nx a x x x b       

with step size 1i i ih x x   , 1,2,...i N . For the simplicity, the 

authors have used ( ),i ip p x  ( ),i iq q x  ( ),i if f x  

1 1( ),i iy y x   
1 1( ),i iy y x   and ( ),i iy y x  etc. Algelany 

and El-Zahar [7] have proved that the developed central 

difference technique in [7] has a local truncation error at fixed 

step size h given by 

 

4
(6)14

2 2
( )

3012 2

i

i i

p h
y

q h q p


 


     
     

,             (2) 

where 1/   and 1[ , ]i ix x  . 

Thus, the central difference technique in [5] has a fourth-

order of convergence. Using the same procedure in [7], the 

local truncation error  of centered difference-techniques in 

[5] can be estimated and given by 
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For Technique II 
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For Technique III 
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Thus, both of the techniques I and II have a second-order of 

convergence while the technique III has a fourth-order of 

convergence. 

  

III. NUMERICAL RESULTS 

In this section, a numerical comparison of the four central 

difference-techniques developed in [5, 7] with other 

techniques in literature is discussed.  

Problem1.Consider the following SBPVP [6,8,9] 

2( ) ( ) ( ) sin( ) cos( ) sin( )y x y x y x x x x            ,   (6) 

with boundary conditions (0) 0y  and (1) 0y  . The exact 

solution is ( ) sin( )y x x . Technique I, Technique II, 

Technique III in [5] and Technique IV in [7] are applied to 

the SPBVP (1) using fixed step size and the maximum 

absolute solution error for different values of   and grid 

points N is presented in Tables1-4. Moreover, the order of 

convergence of each technique is estimated numerically and 

plotted in Figures 1-4. We will denote Technique I, 

Technique II, Technique III in [5] and Technique IV in [7] 

by T1, T2, T3 and T4 respectively. 

Tables 1-4 show that T3 and T4 result in a more accurate 

solution than that obtained using T1 and T2 for the same 

values of ,N  . Figures1-4 show that each of T1 and T2 has at 

least second-order of convergence whereas each of T3 and 

T4 has at least fourth-order of convergence. 

 

Table 1. Maximum solution error of T1 in solving SPBVP(6)  

at different values of  and N  

  10N   20N   100N   200N   

210  1.2608E-02 3.0629E-03 1.2262E-04 3.0655E-05 

310  1.4499E-02 3.3928E-03 1.2500E-04 3.1248E-05 

410  1.4854E-02 3.6998E-03 1.2867E-04 3.1308E-05 

510  1.4891E-02 3.7376E-03 1.4659E-04 3.4369E-05 

610  1.4895E-02 3.7415E-03 1.5009E-04 3.7219E-05 

710  1.4895E-02 3.7419E-03 1.5046E-04 3.7582E-05 

Table 2. Maximum solution error of T2 in solving SPBVP(6) 

at different values of  and N  

  10N   20N   100N   200N   

210  4.1318E-03 4.1615E-04 3.9761E-06 8.8777E-07 

310  7.0612E-03 1.4499E-03 5.9568E-06 4.4168E-07 

410  7.4574E-03 1.8266E-03 3.9641E-05 3.3805E-06 

510  7.4951E-03 1.8648E-03 7.0468E-05 1.4498E-05 

610  7.4989E-03 1.8685E-03 7.4268E-05 1.8253E-05 

710  7.4993E-03 1.8689E-03 7.4642E-05 1.8629E-05 

 

Table 3. Maximum solution error of T3 in solving SPBVP(6) 

at different values of  and N  

  10N   20N   100N   200N   

210  5.9259E-05 3.6949E-06 6.0097E-09 3.7615E-10 

310  6.9944E-05 3.9845E-06 6.1503E-09 3.8461E-10 

410  7.3264E-05 4.5167E06 6.1953E-09 3.8611E-10 

510  7.3636E-05 4.6085E-06 7.0621E-09 4.0278E-10 

610  7.3673E-05 4.6180E-06 7.3868E-09 4.5439E-10 

710  7.3677E-05 4.6189E-06 7.4231E-09 4.6315E-10 

 

Table 4. Maximum solution error of Technique T4 in solving 

SPBVP(6) at different values of  and N  

  10N   20N   100N   200N   

210  1.0105E-05 2.3034E-07 1.2155E-10 7.2118E-12 

310  2.2245E-05 1.0022E-06 1.2102E-10 2.3851E-12 

410  2.4476E-05 1.4787E-06 9.2884E-10 3.5198E-10 

510  2.4685E-05 1.5320E-06 2.2244E-09 1.0096E-10 

610  2.4705E-05 1.5371E-06 2.4345E-09 1.4670E-10 

710  2.4707E-05 1.5377E-06 2.4545E-09 1.5421E-10 

 

Figure 1. Computed order of convergence for T1 in solving 

SPBVP(6) 
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Figure 2. Computed order of convergence for T2 in solving 

SPBVP(6) 

 

 

Figure 3. Computed order of convergence for T3 in solving 

SPBVP(6) 

 

 

Figure 4. Computed order of convergence for T4 in solving 

SPBVP(6) 

 

 

Table 5. Comparison of maximum solution error for SPBVP 

(6) using different difference techniques 

Method N  210   310   410   510   

UD 10 2.90E-001 3.10E-001 3.10E-001 3.10E-001 

20 1.50E-001 1.50E-001 1.60E-001 1.60E-001 

IL'in 10 2.50E-001 3.00E-001 N.A N.A 

20 9.50E-002 1.50E-001 1.60E-001 N.A 

CD 10 1.60E-002 1.60E-002 1.60E-002 1.60E-002 

20 4.10E-003 4.10E-003 4.10E-003 4.10E-003 

SCD2 10 6.0E-003 8.20E-003 8.30E-003 8.30E-003 

20 6.10E-004 1.90E-003 2.10E-003 2.10E-003 

SCD4 10 3.60E-003 8.0E-003 8.30E-003 8.30E-003 

20 2.60E-004 1.60E-003 2.00E-003 2.10E-003 

DS4 10 N.A 8.10E-005 8.10E-005 8.00E-005 

20 N.A 5.10E-006 5.10E-006 5.10E-006 

F1 10 7.85E-003 8.26E-003 8.26E-003 8.26E-003 

20 5.93E-004 2.05E-003 2.05E-003 2.05E-003 

F2 10 1.46E-005 2.66E-005 2.72E-005 2.72E-005 

20 3.43E-007 1.39E-006 1.68E-006 1.69E-006 

T1 10 1.61E-002 1.61E-002 1.61E-002 1.61E-002 

20 4.05E-003 4.10E-003 4.10E-003 4.10E-003 

T2 10 5.96E-003 8.20E-003 8.26E-003 8.26E-003 

20 6.12E-004 1.90E-003 2.05E-003 2.05E-003 

T3 10 7.87E-005 8.05E-005 8.05E-005 8.05E-005 

20 4.90E-006 5.07E-006 5.09E-006 5.09E-006 

T4 10 1.46E-005 2.66E-005 2.72E-005 2.72E-005 

20 3.43E-007 1.39E-006 1.68E-006 1.69E-006 

 

In Tables 5 and 6 we compare results of the centered 

difference-techniques T1,T2,T3,T4 in solving SPBVP1 at 

0q  [6,8,9]
 

with Upwind Difference method (UD), the 

central difference method (CD), Il’in’s scheme (IL), the 

second-order stable difference method (SCD2) in [9], the 

fourth order stable difference method  

(SCD4) in [9], the fourth-order method (DS4) in [8] and the 

fourth-order methods, F1, F2 in [6].  The abbreviation” N.A” 

is used to indicate ‘not available in the reference’. 
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Table 6. Computed order of convergence in solving SPBVP 

(6) using different difference techniques 

Method 210   310   410   

UD 1.0473 1.0473 0.9542 

IL'in 1.6592 N.A N.A 

CD 1.9644 1.9644 1.9644 

SCD2 3.7487 2.1271 1.9827 

SCD4 4.9434 2.3750 2.0531 

DS4 N.A 3.9894 3.9714 

F1 3.800 2.0105 2.0105 

F2 6.2771 4.2904 4.0171 

T1 1.9911 1.9734 1.9734 

T2 3.7440 2.1201 2.0105 

T3 4.0381 3.9889 3.9833 

T4 6.2771 4.2904 4.0171 

 

Results in Tables 5 and 6 indicate that the upwind method 

(UD) is stable but not very accurate. The Il’in method does 

not appear to work for this problem. The central difference 

method (CD) gives reasonable results but not as good as the 

SCD2 method. The SCD4 method gives better results than 

the above methods. The DS4 method gives the best results of 

the above methods. The F1 method gives better results for    

equal to 110  and 210  but not as good as DS4 method for 

smaller values of  . F2 gives better results than the above 

methods for all values of  . T1 method is equivalent to CD 

method. T2 method is equivalent to SCD2 method. T3 

method gives better results than the above methods for all 

values of   except for DS4 and F2. T4 method has accuracy 

not less than all the above techniques. It is clear that the 

results of CD, SCD2, F2 methods are similar to those of T1, 

T2 and T4 respectively when using fixed step size h . 

Problem 2. Consider the following SBPVP [6,8,9] 

( ) ( ) 1 2 ; [0,1]y x y x x x      ,                 (7)                                    

 with boundary conditions (0) 0 (1) 1y and y  . The exact 

solution is given by 

                     
/

1/

(2 1)(1 )
( ) ( 1 2 )

1

xe
y x x x

e












 
   


 

It is easily verified from Table 7 that T3 gives fourth-order 

results for 210  , but the obtained order is lower for 
210  In fact, it is less than 2 for 200N  , then it 

gradually increases to 4 as N  becomes larger. This is due to 

the existence of the boundary layer, where the solution 

changes rapidly over a very small interval in space. In fact the 

results in [6] for F2 confirm that F2 results are similar to T4 

results at fixed step size h . Table 8 present a comparison of 

T4 with results available in [6] for F2 and confirm that the 

two techniques have similar results 

 

Table 7. Maximum solution error of Technique T4 in solving 

SPBVP (7) at different values of  and N  

  20N   80 200 600 1000 2000 

110
 5.14e-005 1.99e-007 5.1063e-009 6.60e-010 1.17e-011 1.53e-012 

210  1.37e-001 2.49e-003 6.3059e-005 7.73e-007 9.97e-008 6.50e-009 

310
 8.13e-001 4.48e-001 1.4045e-001 7.32e-003 1.05e-003 6.42e-005 

410
 9.39e-001 9.22e-001 8.18e-001 5.48e-001 3.67e-001 1.40e-001 

510
 9.49e-001 9.83e-001 9.79e-001 9.41e-001 9.04e-001 8.18e-001 

610
 9.49e-001 9.87e-001 9.93e-001 9.93e-001 9.90e-001 9.80e-001 

710
 9.49e-001 9.87e-001 9.94e-001 9.98e-001 9.98e-001 9.97e-001 

 

Table 8. Comparison of F2 and T4 in solving SPBVP(7), at, 
210   , 2000N   

Method Maximum solution 

error 

F2 6.3E-09 

T4 6.5E-09 

 

IV. CONCLUSIONS 

In this paper, the orders of convergence of the central 

difference-techniques developed in [5] are estimated and 

shown that both of techniques I and II have a second-order of 

convergence while the technique III has a fourth-order of 

convergence. A numerical comparison of the four central 

difference-techniques developed in [5, 7] in solving linear 

SPBVPs is presented where two test SPBVP are solved 

numerically using these central difference-techniques and the 

results are compared with other difference-techniques in the 

literature. The numerical results confirm the theoretical ones 

and have shown that the above techniques result in an 

accurate solution of SPBVPs. Moreover, results showed that 

techniques F2 and T4 have similar results in solving the 

considered test SPBVPs. 
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