About Central Difference-Techniques in Solving SPBVPs

E. R. El-Zahar^{1, 2*}

¹Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, P.O. Box 83, Al-Kharj, 11942, Saudi Arabia.

² Department of Basic Engineering Science, Faculty of Engineering, Shebin El-Kom, 32511, Menofia University, Egypt

*Corresponding Author: ORCID: 0000-0001-7266-1893(E. R. El-Zahar)

Abstract

In this paper, a numerical comparison of four differencetechniques recently developed by Algelani and El-Zahar [5, 7] in solving linear SPBVPs is presented. First, the order of convergence of the difference-techniques developed in [5] is estimated. Then these four central difference-techniques are applied to SPBVPs and the numerical results are compared with other difference-techniques in the literature. The numerical results confirm the theoretical ones and show that the above techniques result in an accurate solution of SPBVPs.

Keywords: Central finite difference techniques; Order of convergence; Accuracy.

I. INTRODUCTION

Singularly perturbed boundary value problems (SPBVPs) arise very frequently in fluid mechanics, heat transfer, chemical reactions, weather prediction, nanofluid flow, optimal control theory, and other branches of Applied Mathematics. These problems depend on a small positive parameter multiply the highest derivative term in a differential equation in such a way that the solution varies rapidly in some parts and varies slowly in some other parts. Solutions of such problems display sharp boundary layers when the singular perturbation parameter is much smaller than 1. For a detailed discussion on the analytical and numerical treatment of SPBVPs we may refer the reader to the books of O'Malley [1], Doolan et al. [2], Roos et al. [3], Miller et el. [4] and references therein [5-18]. Recently El-Zahar and Algelany [5] have followed the idea in [6, 8, 9] to present three central difference-techniques for linear SPBVPs over unevenly spaced grid points and have studied uniqueness and stability conditions for each technique. Algelany and El-Zahar [7] have extended their work in [5] to present a fourthorder central difference-techniques for linear SPBVPs with variable coefficients over unevenly spaced grid points, and they have studied uniqueness and stability conditions at constant coefficients and proved that the present centered difference technique has a fourth-order of convergence at evenly spaced grid. In this paper, a numerical comparison of four difference-techniques recently developed by Algelani and El-Zahar [5, 7] in solving linear SPBVPs is presented. First, the order of convergence of the difference-techniques developed in [5] is estimated. Then these four central difference-techniques are applied to SPBVPs and the numerical results are compared with other differencetechniques in the literature. The numerical results confirm the theoretical ones and show that the above techniques result in an accurate solution of SPBVPs.

II. CENTRAL DIFFERENCE-TECHNIQUES [5, 6]

The four central difference-techniques in [5, 7] are developed for solving the linear SPBVPs defined by

$$L(y) \equiv -\varepsilon y'' + p(x)y' + q(x)y = f(x), \qquad a \le x \le b \quad , \qquad (1)$$

with boundary conditions

$$y(a) = \alpha$$
 and $y(b) = \beta$,

where ε is a small positive parameter $(0 < \varepsilon \ll 1)$, α and β are given constants, p(x), q(x) and f(x) are assumed to be sufficiently continuously differentiable functions on [a,b]. More assumption that q(x) > 0 and p(x) < P < 0 for all $x \in [a,b]$, where *P* is some negative constant. Also, the interval [a,b] is divided such that $x_0 = a < x_1 < x_2 < \dots < x_N = b$ with step size $h_i = x_i - x_{i-1}$, $i = 1, 2, \dots N$. For the simplicity, the authors have used $p_i = p(x_i)$, $q_i = q(x_i)$, $f_i = f(x_i)$, $y_{i-1} = y(x_{i-1})$, $y_{i+1} = y(x_{i+1})$, and $y'_i = y'(x_i)$, etc. Algelany and El-Zahar [7] have proved that the developed central difference technique in [7] has a local truncation error at fixed step size *h* given by

$$\tau|_{\omega \to \infty} = \left(\frac{p_{i14}}{q\left(h^2 q_i^2 + 12p_i 2\right)}\right) \left(\frac{h^4}{30}\right) y^{(6)}(\zeta), \qquad (2)$$

where $\omega = 1/\varepsilon$ and $\zeta \in [x_{i-1}, x_i]$.

Thus, the central difference technique in [5] has a fourthorder of convergence. Using the same procedure in [7], the local truncation error τ of centered difference-techniques in [5] can be estimated and given by

For Technique I

$$\tau = -p_i \omega \left(\frac{h^2}{6}\right) y^{(3)}(\zeta) \,. \tag{3}$$

International Journal of Engineering Research and Technology. ISSN 0974-3154 Vol.13, No.3 (2020), pp. 575-579 © International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.3.2020.575-579

For Technique II

$$\tau = \left(\frac{h^2 \omega(p_i^2 \omega + q_i) + 6)}{(h^2 q_i \omega + 6)}\right) \left(\frac{h^2}{12}\right) y^{(4)}(\zeta) \tag{4}$$

For Technique III

$$\tau = \left(\frac{\omega p_i (h^2 \omega (p_i^2 \omega + 2q_i) + 12)}{\left(h^4 q_i^2 \omega^2 + 6h^2 \omega (p_i^2 \omega + 3q_i) + 72\right)}\right) \left(\frac{h^4}{20}\right) y^{(5)}(\zeta) \quad (5)$$

Thus, both of the techniques I and II have a second-order of convergence while the technique III has a fourth-order of convergence.

III. NUMERICAL RESULTS

In this section, a numerical comparison of the four central difference-techniques developed in [5, 7] with other techniques in literature is discussed.

Problem1.Consider the following SBPVP [6,8,9]

$$-\varepsilon y''(x) + y'(x) + y(x) = \varepsilon \pi^2 \sin(\pi x) + \pi \cos(\pi x) + \sin(\pi x), \quad (6)$$

with boundary conditions y(0) = 0 and y(1) = 0. The exact solution is $y(x) = \sin(\pi x)$. Technique II, Technique III in [5] and Technique IV in [7] are applied to the SPBVP (1) using fixed step size and the maximum absolute solution error for different values of ε and grid points N is presented in Tables1-4. Moreover, the order of convergence of each technique is estimated numerically and plotted in Figures 1-4. We will denote Technique I, Technique II, Technique III in [5] and Technique IV in [7] by T1, T2, T3 and T4 respectively.

Tables 1-4 show that **T3** and **T4** result in a more accurate solution than that obtained using **T1** and **T2** for the same values of N, ε . Figures1-4 show that each of **T1** and **T2** has at least second-order of convergence whereas each of **T3** and **T4** has at least fourth-order of convergence.

Table 1. Maximum solution error of **T1** in solving SPBVP(6)at different values of \mathcal{E} and N

ε	N = 10	N = 20	N = 100	N = 200
10 ⁻²	1.2608E-02	3.0629E-03	1.2262E-04	3.0655E-05
10^{-3}	1.4499E-02	3.3928E-03	1.2500E-04	3.1248E-05
10^{-4}	1.4854E-02	3.6998E-03	1.2867E-04	3.1308E-05
10^{-5}	1.4891E-02	3.7376E-03	1.4659E-04	3.4369E-05
10^{-6}	1.4895E-02	3.7415E-03	1.5009E-04	3.7219E-05
10^{-7}	1.4895E-02	3.7419E-03	1.5046E-04	3.7582E-05

Table 2. Maximum solution error of T2 in solving SPBVP(6)at different values of ε and N

N = 200
8.8777E-07
4.4168E-07
3.3805E-06
1.4498E-05
1.8253E-05
1.8629E-05

Table 3. Maximum solution error of T3 in solving SPBVP(6)at different values of ε and N

ε	N = 10	N = 20	N = 100	N = 200
10^{-2}	5.9259E-05	3.6949E-06	6.0097E-09	3.7615E-10
10^{-3}	6.9944E-05	3.9845E-06	6.1503E-09	3.8461E-10
10^{-4}	7.3264E-05	4.5167E06	6.1953E-09	3.8611E-10
10^{-5}	7.3636E-05	4.6085E-06	7.0621E-09	4.0278E-10
10^{-6}	7.3673E-05	4.6180E-06	7.3868E-09	4.5439E-10
10^{-7}	7.3677E-05	4.6189E-06	7.4231E-09	4.6315E-10

Table 4. Maximum solution error of Technique T4 in solvingSPBVP(6) at different values of ε and N

ε	N = 10	N = 20	N = 100	N = 200
10^{-2}	1.0105E-05	2.3034E-07	1.2155E-10	7.2118E-12
10^{-3}	2.2245E-05	1.0022E-06	1.2102E-10	2.3851E-12
10^{-4}	2.4476E-05	1.4787E-06	9.2884E-10	3.5198E-10
10^{-5}	2.4685E-05	1.5320E-06	2.2244E-09	1.0096E-10
10^{-6}	2.4705E-05	1.5371E-06	2.4345E-09	1.4670E-10
10^{-7}	2.4707E-05	1.5377E-06	2.4545E-09	1.5421E-10
-				

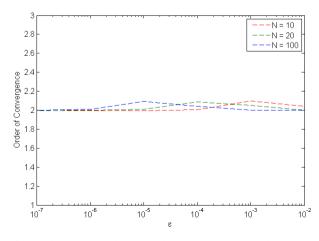


Figure 1. Computed order of convergence for T1 in solving SPBVP(6)

International Journal of Engineering Research and Technology. ISSN 0974-3154 Vol.13, No.3 (2020), pp. 575-579 © International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.3.2020.575-579

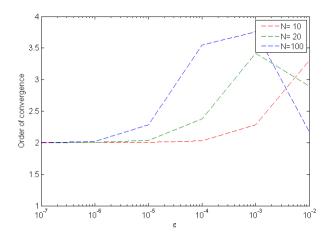


Figure 2. Computed order of convergence for T2 in solving SPBVP(6)

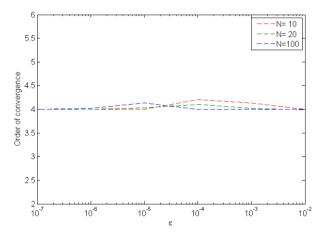


Figure 3. Computed order of convergence for T3 in solving SPBVP(6)

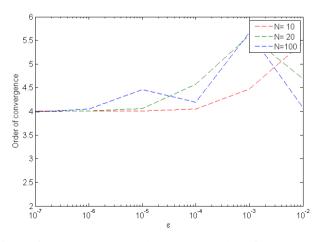


Figure 4. Computed order of convergence for T4 in solving SPBVP(6)

Table 5. Comparison of maximum solution error for SPBVP
(6) using different difference techniques

	(6) using different difference techniques				
Method	Ν	$\varepsilon = 10^{-2}$	$\varepsilon = 10^{-3}$	$\varepsilon = 10^{-4}$	$\varepsilon = 10^{-5}$
UD	10	2.90E-001	3.10E-001	3.10E-001	3.10E-001
	20	1.50E-001	1.50E-001	1.60E-001	1.60E-001
IL'in	10	2.50E-001	3.00E-001	N.A	N.A
	20	9.50E-002	1.50E-001	1.60E-001	N.A
CD	10	1.60E-002	1.60E-002	1.60E-002	1.60E-002
	20	4.10E-003	4.10E-003	4.10E-003	4.10E-003
SCD2	10	6.0E-003	8.20E-003	8.30E-003	8.30E-003
	20	6.10E-004	1.90E-003	2.10E-003	2.10E-003
SCD4	10	3.60E-003	8.0E-003	8.30E-003	8.30E-003
	20	2.60E-004	1.60E-003	2.00E-003	2.10E-003
DS4	10	N.A	8.10E-005	8.10E-005	8.00E-005
	20	N.A	5.10E-006	5.10E-006	5.10E-006
F1	10	7.85E-003	8.26E-003	8.26E-003	8.26E-003
	20	5.93E-004	2.05E-003	2.05E-003	2.05E-003
F2	10	1.46E-005	2.66E-005	2.72E-005	2.72E-005
	20	3.43E-007	1.39E-006	1.68E-006	1.69E-006
T1	10	1.61E-002	1.61E-002	1.61E-002	1.61E-002
	20	4.05E-003	4.10E-003	4.10E-003	4.10E-003
T2	10	5.96E-003	8.20E-003	8.26E-003	8.26E-003
	20	6.12E-004	1.90E-003	2.05E-003	2.05E-003
Т3	10	7.87E-005	8.05E-005	8.05E-005	8.05E-005
	20	4.90E-006	5.07E-006	5.09E-006	5.09E-006
T4	10	1.46E-005	2.66E-005	2.72E-005	2.72E-005
	20	3.43E-007	1.39E-006	1.68E-006	1.69E-006
				-	

In Tables 5 and 6 we compare results of the centered difference-techniques **T1**,**T2**,**T3**,**T4** in solving SPBVP1 at q = 0 [6,8,9] with Upwind Difference method (**UD**), the central difference method (**CD**), Il'in's scheme (**IL**), the second-order stable difference method (**SCD2**) in [9], the fourth order stable difference method

(SCD4) in [9], the fourth-order method (DS4) in [8] and the fourth-order methods, F1, F2 in [6]. The abbreviation" N.A" is used to indicate 'not available in the reference'.

International Journal of Engineering Research and Technology. ISSN 0974-3154 Vol.13, No.3 (2020), pp. 575-579 © International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.3.2020.575-579

Method	Method $\varepsilon = 10^{-2}$ $\varepsilon = 10^{-2}$		$\varepsilon = 10^{-4}$
UD	1.0473	1.0473	0.9542
IL'in	1.6592	N.A	N.A
CD	1.9644	1.9644	1.9644
SCD2	3.7487	2.1271	1.9827
SCD4	4.9434	2.3750	2.0531
DS4	N.A	3.9894	3.9714
F1	3.800	2.0105	2.0105
F2	6.2771	4.2904	4.0171
T1	1.9911	1.9734	1.9734
T2	3.7440	2.1201	2.0105
Т3	4.0381	3.9889	3.9833
T4	6.2771	4.2904	4.0171

 Table 6. Computed order of convergence in solving SPBVP
 (6) using different difference techniques

Results in Tables 5 and 6 indicate that the upwind method (UD) is stable but not very accurate. The Il'in method does not appear to work for this problem. The central difference method (CD) gives reasonable results but not as good as the SCD2 method. The SCD4 method gives better results than the above methods. The DS4 method gives the best results of the above methods. The F1 method gives better results for ε equal to 10^{-1} and 10^{-2} but not as good as **DS4** method for smaller values of ε . F2 gives better results than the above methods for all values of ε . T1 method is equivalent to CD method. T2 method is equivalent to SCD2 method. T3 method gives better results than the above methods for all values of ε except for **DS4** and **F2**. **T4** method has accuracy not less than all the above techniques. It is clear that the results of CD, SCD2, F2 methods are similar to those of T1, **T2** and **T4** respectively when using fixed step size h

Problem 2. Consider the following SBPVP [6,8,9]

$$\varepsilon y''(x) + y'(x) = 1 + 2x; \quad x \in [0,1],$$
 (7)

with boundary conditions y(0) = 0 and y(1) = 1. The exact solution is given by

$$y(x) = x(x+1-2\varepsilon) + \frac{(2\varepsilon-1)(1-e^{-x/\varepsilon})}{1-e^{-1/\varepsilon}}$$

It is easily verified from Table 7 that **T3** gives fourth-order results for $\varepsilon \ge 10^{-2}$, but the obtained order is lower for $\varepsilon < 10^{-2}$ In fact, it is less than 2 for N < 200, then it gradually increases to 4 as N becomes larger. This is due to the existence of the boundary layer, where the solution changes rapidly over a very small interval in space. In fact the results in [6] for **F2** confirm that **F2** results are similar to **T4** results at fixed step size h. Table 8 present a comparison of **T4** with results available in [6] for **F2** and confirm that the two techniques have similar results

Table 7. Maximum solution error of Technique T4 in solving
SPBVP (7) at different values of ε and N

ε	N = 20	80	200	600	1000	2000
10 ⁻¹	5.14e-005	1.99e-007	5.1063e-009	6.60e-010	1.17e-011	1.53e-012
10 ⁻²	1.37e-001	2.49e-003	6.3059e-005	7.73e-007	9.97e-008	6.50e-009
10^{-3}	8.13e-001	4.48e-001	1.4045e-001	7.32e-003	1.05e-003	6.42e-005
10^{-4}	9.39e-001	9.22e-001	8.18e-001	5.48e-001	3.67e-001	1.40e-001
10 ⁻⁵	9.49e-001	9.83e-001	9.79e-001	9.41e-001	9.04e-001	8.18e-001
10 ⁻⁶	9.49e-001	9.87e-001	9.93e-001	9.93e-001	9.90e-001	9.80e-001
10 ⁻⁷	9.49e-001	9.87e-001	9.94e-001	9.98e-001	9.98e-001	9.97e-001

Table 8. Comparison of **F2** and **T4** in solving SPBVP(7), at, $\varepsilon = 10^{-2}$, N = 2000

Method	Maximum solution error		
F2	6.3E-09		
T4	6.5E-09		

IV. CONCLUSIONS

In this paper, the orders of convergence of the central difference-techniques developed in [5] are estimated and shown that both of techniques I and II have a second-order of convergence while the technique III has a fourth-order of convergence. A numerical comparison of the four central difference-techniques developed in [5, 7] in solving linear SPBVPs is presented where two test SPBVP are solved numerically using these central difference-techniques and the results are compared with other difference-techniques in the literature. The numerical results confirm the theoretical ones and have shown that the above techniques result in an accurate solution of SPBVPs. Moreover, results showed that techniques F2 and T4 have similar results in solving the considered test SPBVPs.

ACKNOWLEDGEMENT. The author would like to thank Prince Sattam bin Abdulaziz University, Deanship of Scientific Research at Prince Sattam bin Abdulaziz University for their continuous support and encouragement.

REFERENCES

- O'Malley, RE. Singular Perturbation Methods/or Ordinary Differential Equations, Springer-Verlag, New York, 1991.
- [2] Doolan, EP. Miller, JJH. Schilders, WHA. Uniform Numerical Methods for Problems with Initial and Boundary Layers, Boole Press, Dublin, 1980.

International Journal of Engineering Research and Technology. ISSN 0974-3154 Vol.13, No.3 (2020), pp. 575-579 © International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.3.2020.575-579

- [3] Roos, H.-G. Stynes, M., Tobiska, L. Numerical Methods for Singularly Perturbed Differential Equations, Springer, Berlin, 1996.
- [4] Miller, JJH. O'Riordan, E., Shishkin, G. I. Fitted Numerical Methods for Singular Perturbation Problems, World Scientific, Singapore, 1996.
- [5] El-Zahar, ER., Algelany, AM. On Three-Point Finite Difference-techniques for SPBVPs, International Journal of Engineering Research and Technology, 2020, 13(2), 229-232.
- [6] ILICASU, F0. SCHULTZ, DH. High-Order Finite-Difference-techniques for Linear Singular Perturbation Boundary Value Problems, Computers Math. Applic, 47 (2004) 391-417
- [7] Algelany, AM., El-Zahar, ER. On Fourth Order Centered Difference Scheme for Linear SPBVPs, International Journal of Engineering Research and Technology, 2020, 13(2), 364-367.
- [8] Dekema, S.K., Schultz, DH. High-order methods for differential equations with large first-derivative terms, Int. J. Num. Methods Fluids 10, 259-284, (1990).
- [9] Choo, J.Y., Schultz, D.H. Stable high order methods for differential equations with small coefficients for the second order terms, Computers Math. Applic, 25 (1993)105-123.
- [10] Habib HM, El-Zahar ER. An algorithm for solving singular perturbation problems with mechanization. Appl Math Comput, 2007, 188:286–302.
- [11] El-Zahar, ER. Piecewise approximate analytical solutions of high order singular perturbation problems with a discontinuous source term, International Journal of Differential Equations, vol. 2016, Article ID 1015634, 12 pages, 2016. doi:10.1155/2016/1015634
- [12] El-Zahar, ER. Applications of Adaptive Multi step Differential Transform Method to Singular Perturbation Problems Arising in Science and Engineering, Applied Mathematics and Information Sciences, 2015, 9(1), 223-232.
- [13] El-Zahar, ER. Approximate analytical solutions of singularly perturbed fourth order boundary value problems using differential transform method, Journal of King Saud University (Science), 2013, 25(3), 257–265.
- [14] El-Zahar, ER, EL-Kabeir, SM. A new method for solving singularly perturbed boundary value problems, Applied Mathematics and Information Sciences., 2013, 7(3), 927-938.
- [15] El-Zahar, ER. Approximate analytical solution of singularly perturbed boundary value problems in MAPLE. AIMS Mathematics, 2020, 5(3): 2272-2284. doi: 10.3934/math.2020150
- [16] El-Zahar, ER. Cubic Spline Solution of Nonlinear Singularly Perturbed Boundary Value Problems via

Initial Value Method, International Journal of Engineering Research and Technology, 2019, 12(12), 3145-3150.

- [17] El-Zahar, ER. Machado, JT., Ebaid, A. A New Generalized Taylor-Like Explicit Method for Stiff Ordinary Differential Equations, Mathematics 2019, 7(12),1154; https://doi.org/10.3390/math7121154
- [18] Chamkha, AJ. Rashad, AM. El-Zahar, ER. EL-Mky, HA. Analytical and Numerical Investigation of Fe3O4–Water Nanofluid Flow over a Moveable Plane in a Parallel Stream with High Suction. Energies,2019, 12(1), 1-18