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Abstract 

This work presents the single finite Fourier sine integral 

transform method for finding the natural frequencies of 

flexural vibration of rectangular Kirchhoff plates with two 

opposite simply supported edges (x = 0, x = a) and two 

clamped edges (y = 0, y = b), where the origin is at a corner. 

For free harmonic vibrations, the problem is represented 

mathematically as a fourth order partial differential equation 

(PDE) over the domain, and boundary conditions along the 

edges. Application of the transform with respect to the x 

coordinate variable converts the Boundary Value Problem 

(BVP) to an integral equation which satisfies all the Dirichlet 

boundary conditions along x = 0, and x = a, due to the 

sinusoidal kernel function of the transform used. The integral 

equation is further simplified to a system of ordinary 

differential equations (ODEs), which is solved to obtain the 

unknown deflection in the transform space. Transforms of the 

boundary conditions are used in the solution of the ODE to 

generate a system of homogeneous equations in terms of the 

unknown integration constants. The condition for nontrivial 

solution is used to obtain the characteristic frequency equation 

which is solved by iteration methods to obtain the natural 

frequencies for any given mode of vibration. The results 

obtained are identical with results obtained by previous 

researchers who used Galerkin-Vlasov methods, Levy’s single 

trigonometric series method, finite element method, and 

energy methods. 

Keywords: Single finite Fourier sine integral transform 

method, Kirchhoff plate, characteristic frequency equation, 

dimensionless natural frequency parameters, vibration mode, 

harmonic vibration. 

 

1. INTRODUCTION 

The problem of determination of the natural frequencies of 

flexural vibrations of plates which is an eigenvalue problem of 

dynamics of plates have been extensively studied for various 

shapes (rectangular, trapezoidal, circular, skewed, elliptical, 

etc) forms, types, material properties (orthotropic, anisotropic) 

boundary and loading conditions [1 – 15]. 

The behaviour of plates – which are continuous elastic 

structures – under dynamic or time-dependent forces or 

displacements can be modelled mathematically by partial 

differential equations of motion derived from equilibrium 

considerations based on Newton’s laws or D’Alembert’s 

principle of dynamic equilibrium. Alternatively, the governing 

equations of dynamic plates could be derived from 

considerations of virtual work and energy principles as 

integral equations. 

In most practical cases, only the lateral vibration is important, 

and the effects of extensional vibrations on the middle plane 

may be disregarded. Therefore, the inertial forces associated 

with the transverse flexural deflection of the plate are 

considered. In this study, only the flexural vibration of thin 

rectangular plate is considered. Damping effects caused either 

by internal friction or the surrounding media are not 

considered. Though damping is theoretically present in all 

flexural vibrations of Kirchhoff plates, it has usually 

insignificant effect on the natural frequencies and the steady 

state displacement amplitudes, and can consequently be safely 

disregarded in the analysis [2, 3, 6]. 

Hatiegan et al [8] determined the natural frequencies of thin 

rectangular plate with and without damages using the finite 

element method. Pouladkhan et al [16] presented a finite 

element model using ABAQUS (v.6.7) software for a simply 

supported rectangular plate; and obtained solutions for the 

natural frequencies and mode shapes, which were found to be 

comparable with the exact solution. 

Lee et al [9] developed and used the Homotopy Perturbation 

Method (HPM) to solve the partial differential equation of 

flexural vibration of thin plates. They obtained the natural 

frequencies of a thin rectangular simply supported plate of 

constant thickness with minimal computational effort. Their 

solution is shown to converge rapidly to a combination of sine 

and cosine functions. The truncation of the series by using 

only the first three terms gave negligible error, and very 

accurate solutions. They also applied the HPM to solve the 

nonlinear problem of a rectangular plate of variable thickness, 

and obtained uncomplicated expression for the natural 

frequencies of the plate, whose solutions illustrated the 

efficiency and effectiveness of the HPM. 

Studdert and O’Callaghan [17] investigated the transverse free 

vibrations of elastic plates of uniform thickness with 

rectangular orthotropy using the Edge Function Method and 

obtained accurate solutions for fundamental frequencies for a 

series of rectangular SCSC plates. 

Mama et al [18] used the Galerkin-Vlasov variational method 

to study the dynamic characteristics of simply supported thin 

rectangular plates undergoing free flexural vibrations in 
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harmonic motion. They found that the governing BVP was 

converted to an integral equation – Galerkin-Vlasov integral 

formulation of the BVP – which ultimately reduced to an 

algebraic eigenvalue problem. The algebraic eigenvalue 

problem was solved in the space domain to obtain the 

eigenfrequencies and modal shape functions of the vibrating 

Kirchhoff plate and their solutions were identical to solutions 

obtained previously by the classical methods of Navier’s 

double trigonometric series and Levy’s single Fourier series. 

Ike and Nwoji [19] used the Kantorovich variational method 

to determine the natural frequencies of flexural vibrations of 

rectangular Kirchhoff plates with two opposite edges clamped 

and the other two edges simply supported. The variation 

integral formulation of the BVP was obtained using Galerkin 

and Kantorovich methods, and found to simplify to a system 

of fourth order ordinary differential equations which upon 

solution subject to the boundary conditions along the clamped 

ends, yielded the characteristic frequency equation as a 

transcendental equation. The roots of the transcendental 

equation obtained by computer based iterative methods were 

used to find the eigenfrequencies which were comparable to 

the results previously obtained for the solved problem by 

researchers who used Galerkin-Vlasov, Levy, Finite Element 

Method, Finite Difference Method, and Rayleigh-Ritz 

Methods. 

Cho et al [20] obtained the approximate natural frequencies of 

rectangular plates with openings using an assumed mode 

method, where natural frequencies and vibration modes are 

determined by solving an eigenvalue problem of multi-degree-

of-freedom system matrix equation derived by using 

Lagrange’s equation of motion. 

Eze et al [21] used the ordinary finite difference method 

(FDM) to perform free flexural vibration analysis of thin 

rectangular flat plates. Three basic types of boundary 

conditions, namely; all edges were clamped (CCCC), all 

edges were simply supported (SSSS) and two opposite edges 

were clamped while the other two opposite edges were simply 

supported (CSCS) were considered in their study. By 

expressing the governing partial differential equation in finite 

difference form and application of the appropriate boundary 

conditions, they obtained the fundamental natural frequencies 

which were good enough considering the reduction in 

computational rigor afforded by the FDM. 

Misra [22, 23] used the Multiquadric Radial Basis Function 

Method for the static and dynamic analysis of rectangular 

isotropic plates. Werfalli and Karoud [24] used the Galerkin-

based Finite Element Method to solve free vibration problems 

of rectangular plates. Njoku [25] used the beam analogy 

method for the dynamic analysis of rectangular thin isotropic 

plates and obtained satisfactory solutions using the Ritz 

formulation of the problem for different edge support 

conditions. 

Jayasinghe Supum and Hashemi Sayed [26] presented a 

dynamic coefficient matrix method for the free vibration of 

thin rectangular plates. Eftekhari [27] presented a simple and 

accurate Ritz-DQM formulation for free vibrations of 

rectangular plates involving free corners. Ghashochi-Bargh 

and Ravazi [28] presented a simple analytical model for the 

natural vibrations of orthotropic and functionally graded 

plates. Kumar [29] presented a free transverse vibration 

analysis of rectangular Kirchhoff plates having arbitrarily 

varying non-homogeneity along two concurrent edge. 

Lim et al [30] formulated a new symplectic elasticity 

approach and used it to obtain the exact mathematical 

solutions to the free vibration problems of rectangular 

Kirchhoff plates. Lim and Liew [31] presented a pb-2 Ritz 

formulation for the flexural vibrations of shallow cylindrical 

shells of rectangular plan form.  

In this work, the single finite Fourier sine transform method is 

applied to determine the natural frequencies of flexural 

harmonic vibrations of Kirchhoff plates with two opposite 

simply supported edges and the other two opposite edges 

clamped. 

 

2. THEORETICAL FRAMEWORK 

The governing partial differential equation (PDE) of 

Kirchhoff plate of length a, and width b undergoing flexural 

vibration is: 
2

4

2

( , , )
( , , ) ( , , )z

w x y tD w x y t h p x y t
t


   


   (1) 

where w(x, y, t) is the dynamic deflection, ρ is the density of 

the  plate material, h is the plate thickness, pz (x, y, t) is the 

external excitation load, D is plate flexural rigidity, x, y are 

the in-plane Cartesian coordinates, t is the time, ∇4 is the 

biharmonic operator. 

∇4 is given as: 
4 4 4

4

4 2 2 4
2

x x y y
  

   
   

      (2) 

For sinusoidal vibrations, the displacement response w(x, y, t) 
is expectedly harmonic and can be expressed as: 

( , , ) ( , )sin( )mnw x y t W x y t    ( , )sin( )mnF x y t  (3) 

where W(x, y) = F(x, y) is the dynamic modal displacement 

function, ωmn are natural frequencies of flexural vibration, ϕ  

is the phase. 

For free vibrations, there is no applied excitation, and 

( , , ) 0zp x y t          (4) 

The governing PDE then becomes: 

 4 2( , ) ( , ) sin( ) 0mn nD F x y h F x y t           (5) 

2
4 ( , ) ( , ) 0mnh
F x y F x y

D
 

        (6) 

4 4 4
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2

F x y F x y F x y
x x y y

  
  
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2

( , ) 0mnh
F x y

D
 
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         (7) 
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  
  

   

2 ( , ) 0mnF x y   (8) 

where 
2

4 mn
mn

h
D

 
        (9) 

mn  is the dimensionless frequency parameter. 
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3. METHODOLOGY 

The problem considered is rectangular Kirchhoff plate simply 

supported along the edges x = 0, and x = a, and clamped along 

the edges y = 0, and y = b, as shown in Figure 1. 

 

 

 

Figure 1: Kirchhoff plate with opposite edges clamped and 

the other edges simply supported 

The domain PDE is given by Equation (8). The boundary 

conditions are: 
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Application of the single finite Fourier transform with respect 

to the x coordinate variable to the domain PDE yields: 
4 4 4

4 2 2 4

0

( , ) ( , ) ( , )
2

a F x y F x y F x y
x x y y

  
  

   
    

 4 ( , ) sin 0mn
m xF x y dx

a
 

 


    (10)  

 

4. RESULTS 

By the linearity property of the finite Fourier sine transform, 

we obtain: 

4 2 2

4 2 2

0 0

( , ) ( , )
sin 2

a aF x y m x d F x ydx
ax dy x

  
 
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4
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0

sin ( , )sin

am x d m xdx F x y dx
a ady
 

    

 4

0

( , )sin 0

a

mn
m xF x y dx

a

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From integration by parts, and using the Dirichlet boundary 

conditions along x = 0 and x =a, the equation simplifies 

further as follows: 

4 2 2

2

( , )
( , ) 2

m m d F m yF m y
a a dy
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4

4

4
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4

4 ( , ) 0mn
m F m y
a

  
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    (13) 

F(m, y) is the single finite Fourier sine transform of F(x, y) 

where 

0

( , ) ( , )sin

a m xF m y F x y dx
a


      (14) 

and 







1

( , ) ( , )sin
m

m xF x y F m y
a

     (15) 

The solution to the fourth order ordinary differential equation 

(ODE) can be assumed in the exponential form. 

( , ) exp( )F m y B s y        (16) 

where s is a parameter we seek to find. 

Then by substitution of Equation (16) into the ODE, we obtain 

2 4
4 2 42 0sy

mn
m ms s Be
a a

      
                

   (17) 

For nontrivial solutions, Besy is not equal to zero, and the 

following fourth degree auxiliary polynomial results: 
2 4

4 2 42 0mn
m ms s
a a

     
            

    (18) 

Solving, 

2

2
1,2 1 mn

ms
a
 

       
 

     (19) 

2

2
2,3 2 mn

ms i i
a
 

        
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     (20) 

Hence, 

2

2
1 mn

m
a
 

     
 

      (21) 

2

2
2 mn

m
a
 

     
 

       (22) 

The solution is then 

1 1 2 1( , ) cosh sinhm mF m y A y A y       

  3 2 4 2cos sinm mA y A y      (23) 

Application of the single finite Fourier sine integral transform 

to the boundary conditions at any time, t yield: 

0

( , 0)sin ( , 0) 0

a m xw x y dx F m y
a


        (24) 

0

( , )sin ( , ) 0

a m xw x y b dx F m y b
a


       (25) 

0

( , 0)
sin ( , 0) 0

a w x y m x ddx F m y
y a dy

  
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    (26) 
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0

( , )sin ( , ) 0

a w m x dx y b dx F m y b
y a dy

 
   


   (27) 

1 1 1 2 1 1( , ) sinh coshm m
d F m y A y A y
dy

           

 3 2 2 4 2 2sin cosm mA y A y         (28) 

Then, 

1 3 0m mA A          (29) 

2 1 4 2 0m mA A           (30) 

1 1 2 1cosh sinhm mA b A b        

3 2 4 2cos sin 0m mA b A b        (31) 

1 1 1 2 1 1sinh coshm mA b A b        

 3 2 2 4 2 2sin cos 0m mA b A b         (32) 

In matrix form, we have: 

1

21 2

31 1 2 2

41 1 1 1 2 2 2 2

1 0 1 0 0

0 0 0

cosh sinh cos sin 0

sinh cosh sin cos 0

m

m

m

m

A
A
Ab b b b
Ab b b b

    
    

      
       
                  

  (33) 

For nontrivial solutions, the characteristic equation is obtained 

as: 

1 2

1 1 2 2

1 1 1 1 2 2 2 2

1 0 1 0

0 0
0

cosh sinh cos sin

sinh cosh sin cos

b b b b
b b b b

 


   

       

   (34) 

Expansion and simplification gives the characteristic 

frequency equation as: 

1 2 1 22 (cosh cos 1)b b         

 2 2
2 1 1 2( )sinh sin 0b b         (35) 

The characteristic frequency equation is a transcendental 

equation which is solved for square plates (a = b) using 

computer based iteration methods to obtain the roots as 

follows: 

for m = 1, n = 1, 

1

6.2302

a
          (36) 

2

4.36765

a
          (37) 

m = 2, n = 1 

1

8.0382

a
          (38) 

2

6.69876

a
          (39) 

m = 1, n = 2 

1

8.89925

a
          (40) 

2

7.71086

a
          (41) 

Hence from Equation (9),  

2
mn mn

D
h

  


        (42) 

Then, 2
11 11 2

28.946D D
h ha

   
 

    (43) 

2
21 21 2

54.743D D
h ha

   
 

     (44) 

2
12 12 2

69.327D D
h ha

   
 

     (45) 

2
22 22 2

97D D
h ha

   
 

      (46) 

The obtained natural frequencies of free flexural vibrations of 

square Kirchhoff plates clamped along y = 0 and y = b and 

simply supported along x = 0, and x = a, where a = b are 

presented in Table 1, together with the natural frequencies 

from previous works in the literature. 

2
2

2

mn
mn mn

D D
h ha


   

 
      (47) 

 

 

Table 1: Dimensionless frequency parameters 2
mn  of square Kirchhoff plate simply supported on two opposite edges and 

clamped on the other two edges (CSCS plates) 
2

2

mn
mn

D
ha


 


  

Eigenvalues 

Method 

2
11   2

12  2
13  2

21  2
22  

Single finite Fourier sine transform method 

(present study) 

28.946 69.327  54.743 97 

Galerkin-Vlasov, Fetea [32] 28.944 70.11 123.16 54.93 97.07 

Levy method, Leissa [2] 28.946 69.32 129.086 54.743 94.584 

Levy method, Lim and Liew [31] 28.951 69.327  54.743 94.585 

Chakraverty [1] 28.95     

Gorman [10] 28.93     

FDM, Ezeh et al [21] 24.29     

Finite Element Method, Lim et al [30] 28.951 69.33  54.744 94.588 

Ritz-DQM, Eftekhari  [27] 28.9509 69.527  54.7431 94.5833 
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Ghashochi-Bargh and Ravazi [28] 28.835 69.345  54.906 94.834 

Leissa and Qatu [6] 28.9509     

Kalita and Dutta [15] 28.9959     

Ritz method, Njoku [25] 28.95609     

Hearman [14] 28.95 69.32  54.75 94.59 

Hamada [13] 28.90     

Warburton [11] 29.01 69.35  55.07 94.84 

Das [12] 28.99   54.86 94.63 

Kumar [29] 

(FDM) 12 grid points (12 by 12 grid points) 

27.9509 68.327  53.7431  

 

5. DISCUSSION 

In this work the single finite Fourier sine transform method 

has been successfully used to determine the natural 

frequencies of flexural vibration of Kirchhoff plates with two 

opposite edges (x = 0, and x = a) simply supported and the 

other two edges (y = 0, y = b) clamped. The plate is 

considered isotropic, homogeneous, flat and rectangular. The 

problem is represented mathematically as the BVP given by 

Equation (5) for the case of free sinusoidal vibrations, and 

boundary conditions given by Equation (9). 

The finite sine transform is applied to the domain PDE with 

respect to the x coordinate variable yielding the integral 

equation – Equation (10). The sinusoidal kernel function 

satisfies all the Dirichlet boundary conditions along the 

simply supported edges x = 0, and x = a. The linearity 

property of the transformation is used together with the 

evaluation of the transforms of the derivatives to express the 

integral equation as the fourth order ordinary differential 

equation (ODE), Equation (13), which is in terms of F(m, y) 

the single finite Fourier sine transform of the unknown 

function F(x, y). The ODE is solved using methods for solving 

differential equations – trial functions method – to obtain the 

solution in the transform space as Equation (23). The 

transform of the boundary conditions along the clamped edges 

(y = 0, and y = b) are used to generate the system of 

homogeneous equations given in matrix form as Equation 

(33). The condition for nontrivial solution gives the 

characteristic frequency equation as the transcendental 

equation – Equation (35). The frequency equation is solved 

for square Kirchhoff plates to obtain the dimensionless natural 

frequency parameters 2
mn  presented for CSCS plates 

considered in Table 1, which also presents solutions 

previously obtained by Chakraverty [1], Gorman [10], Ezeh et 

al [21], Lim et al [30], Eftekhari [27], Fetea [32], Lim and 

Liew [31], Leissa [2], Leissa and Qatu [6], Kalita and Dutta 

[15], and Njoku [25]. Table 1 reveals that the present results 

are comparable to previous results by Fetea [32] who used the 

Galerkin-Vlasov method to solve the same problem. The 

present results are also comparable with previous results 

obtained by Lim et al [30] who used the Finite Element 

Method (FEM), Eftekhari [27] who used Ritz-DQM, and 

Ghasochi-Bergh and Ravazi [28]. 

 

 

6. CONCLUSION 

In conclusion, 

(i) The single finite Fourier sine integral transform method is 

a very good mathematical tool for solving the problem of 

finding the natural frequencies of flexural vibrations of 

Kirchhoff plates with two opposite simply supported 

edges (x = 0, x = a) and two opposite clamped edges (y = 

0, y = b). 

(ii) The integral Kernel function which is a sine function 

satisfies all the Dirichlet boundary conditions along the 

simply supported edges (x = 0, and x = a). 

(iii) Application of the finite Fourier sine integral transform to 

the governing domain equation for harmonic vibrations 

converts the domain BVP to an integral equation. 

(iv) The resulting integral equation is further simplified to a 

fourth order ODE in terms of the function F(m, y) which 

is in the transform space. 

(v) The enforcement of boundary conditions along the 

clamped edges y = 0, and y = b results to a system of 

homogeneous equations in terms of the integration 

constants. 

(vi) The system of homogeneous equations shows that the 

problem is basically an eigenvalue problem. 

(vii) The transcendental equation is solved using the computer 

software based iteration methods to obtain the zeros or 

eigenvalues which are used to obtain the natural 

frequency parameters in terms of the material properties 

of plate (D, ρ, h, a). 

(ix) Closed form expressions were obtained for the 

characteristic frequency equation from which the natural 

frequencies could be obtained for any mode of flexural 

vibration. 
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