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Abstract 

In this study, the performance of reliability is analyzed by 

applying the Logistic distribution property to the finite-fault 

NHPP reliability model. For this, software failure time data 

was used, parametric estimation was applied to the maximum 

likelihood estimation method (MLE), and nonlinear equations 

were calculated using the bisection method. As a result, in the 

analysis of the intensity function, the Log-Logistic model is 

efficient because the failure occurring rate decreases with the 

failure time and the mean square error (MSE) is small. In the 

analysis of the mean value function, all the proposed models 

showed a slightly underestimated value compared to the true 

value, but the Log-Logistic model showed the smallest error 

value to the true value along with the Goel-Okumoto model. 

As a result of evaluating the software reliability after putting 

the mission time in the future, the Log-Logistic model shows 

a higher reliability trend than the other models in which the 

reliability decreases with the mission time. In conclusion, we 

found that the Log-Logistic model is an efficient model with 

the best performance among the proposed models. In this 

study, the reliability performance of the Logistic type 

distribution model without the existing research case was 

newly analyzed, and it is expected that it can be used as a 

basic guideline for the software developers to search the 

optimal software reliability model. 

Keywords:  NHPP Model,  Logistic Distribution  Property,  

Log-Logistic Distribution, Half-Logistic Distribution, 

Software Reliability, Reliability Performance Analysis. 

 

I.   INTRODUCTION  

Software technology, which is the core of the 4th industrial 

revolution era, has spread rapidly in various industrial fields, 

and the need for software quality that can process a large 

amount of information without failures is also increasing. To 

solve this problem, software developers are still doing a lot of 

research to search for ways to improve software reliability. 

For this reason, software reliability models using the non-

homogeneous Poisson process (NHPP) have been extensively 

studied to improve software reliability. In particular, many 

NHPP software reliability models using the intensity function 

and the mean value function have been proposed to estimate 

the reliability attributes such as the number of residual failures 

and the failure rate in a controlled test environment [1]. 

Concerning the NHPP reliability model, Goel and Okumoto [2] 

proposed an exponential type software reliability model, 

Huang [3] explained the software reliability attributes using 

the mean value function, Shyur [4] proposed a generalized 

reliability model using change-point. Also, Kim [5] analyzed 

the attributes of software reliability based on the finite failure 

software reliability model with modified Lindley type lifetime 

distribution. Also, Pham and Zhang [6] proposed a new model 

based on NHPP software reliability with testing coverage, and 

Voda [7] proposed that various types of lifetime distributions 

can be explained by the inverse-Rayleigh distribution. Yang 

[8] also proposed a new performance analysis results of finite 

failure NHPP software reliability model based on  Weibull 

lifetime distribution. 

Therefore, in this study, after applying the Logistic 

distribution widely used in the reliability field to the finite-

fault NHPP model, we were newly analyzed the reliability 

performance of the proposed models and will present the 

optimal software reliability model through this analysis results. 

 

II.  RELATED RESEARCH   

II. I   NHPP Software Reliability Model  

N(t) is the cumulative number of failures of the software 

detected up to time t, m(t) is a mean value function when λ(t) 

is expressed by an intensity function, the cumulative failure 

number N(t) follows a Poisson probability density function 

having a parameter m(t). The software reliability model of the 

non-homogeneous Poisson process (NHPP) is a model that 

measures the reliability by using the average failure rate 

function around the number of failures generated per unit time.  

That is 

 

 P{𝑁(𝑡) = 𝑛} =
[𝑚(𝑡)]𝑛 ∙  𝑒−𝑚(𝑡)

𝑛!
                                            (1) 

Note that 𝑛 = 0,1,2, ⋯  ∞.  
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The mean value function m(t) and the intensity function 

λ(t) of the NHPP model are as follows. 

  m(t) = ∫ 𝜆(𝑠)𝑑𝑠                                                                       (2)
𝑡

0

  

    
 𝑑𝑚(𝑡)

𝑑(𝑡)
= 𝜆(𝑡)                                                                            (3) 

In terms of software reliability, the mean value function 

represents a software failure occurrence expected value, the 

intensity function is the failure rate function and means the 

failure occurrence rate per defect. Also, the time domain 

NHPP models are classified into a finite failure that the failure 

does not occur at the time of repairing the failure, and an 

infinite failure that the failure occurs at the time of repairing 

failure.  In this study, we will analyze the software  reliability 

performance based on finite failure cases. That is, in the 

finite-failure NHPP model, if the expected value of the failure 

that can be found up to time [0, t] is θ, then the mean value 

function and the intensity function are as follows. 

   m(t|𝜃, b) = 𝜃𝐹(t)                                                                    (4)   

 λ(t|𝜃, b) = 𝜃𝐹(t)′ = 𝜃𝑓(𝑡)                                                    (5) 

Considering the failure time data up to the 𝑛𝑡ℎ and the Eq. 4 

and Eq. 5, the likelihood function of the finite-failure NHPP 

model is derived as follows. 

 𝐿𝑁𝐻𝑃𝑃(Θ|𝑥) = (∏ 𝜆(𝑥𝑖)

𝑛

𝑖=1

) 𝑒𝑥𝑝[−𝑚(𝑥𝑛)]                         (6) 

Note that 𝑥 = (𝑥1, 𝑥2, 𝑥3 ⋯ 𝑥𝑛).   

 

II.II   Finite Failure NHPP : Goel-Okumoto Basic Model 

The Goel-Okumoto model is a well-known basic model in the 

software reliability field.  Let f(t) and F(t) for the Goel-

Okumoto model be a probability density function and a 

cumulative density function, respectively.   Assuming that the 

expected value of the number of failures of the observation 

point [0, t] is θ, the finite failure strength function and the 

mean value function are as follows. 

 m(t|𝜃, b) = 𝜃𝐹(t) = 𝜃(1 − 𝑒−𝑏𝑡)                                          (7)  

 λ(t|𝜃, b) = 𝜃f(t) = 𝜃b𝑒−𝑏𝑡                                                         (8)        

Note that θ > 0, b > 0. 

Considering the failure time data up to the 𝑛𝑡ℎ and the Eq. 7 

and Eq. 8, the likelihood function of the finite-failure NHPP 

model is derived as follows.      

𝐿𝑁𝐻𝑃𝑃(𝜃, b|𝑥) =                                                                        (9) 

(∏ 𝜃𝑏𝑒−𝑏𝑥𝑖

𝑛

𝑖=1

) 𝑒𝑥𝑝[−𝜃(1 − 𝑒−𝑏𝑥𝑛)]                              

Note that 𝑥 = (0 ≤ 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛).  

 

The log-likelihood function, using the Eq. 9, is simplified to 

the following log conditional expression.  

 ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥) =                                                                      (10) 

 𝑛𝑙𝑛𝜃 + 𝑛𝑙𝑛𝑏 − 𝑏 ∑ 𝑥𝑘

𝑛

𝑘=1

−  𝜃(1 − 𝑒−𝑏𝑥𝑛)                             

Therefore, the maximum likelihood estimator �̂�𝑀𝐿𝐸 and 

�̂�𝑀𝐿𝐸  satisfying the following Eq. 11 and Eq. 12  can be 

estimated by a numerical method. 

∂ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥)

𝜕𝜃
=

𝑛

�̂�
− 1 + 𝑒−�̂�𝑥𝑛 = 0                                (11) 

∂ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥)

𝜕𝑏
=

𝑛

�̂�
− ∑ 𝑥𝑛

𝑛

𝑖=1

− �̂�𝑥𝑛𝑒−�̂�𝑥𝑛 = 0                (12) 

 

II.III.  Finite Failure NHPP :  Half-Logistic Model 

The Half-Logistic distribution is widely known as a suitable 

model for process controls and reliability measurements. 

The probability density function and the cumulative 

distribution function of this distribution are as follows [9]. 

f(t|𝜃, β) =
2𝛽𝑒−𝛽𝑡

(1 + 𝑒−𝛽𝑡)2
                                                         (13) 

𝐹(t|𝜃, β) =
(1 − 𝑒−𝛽𝑡)

(1 + 𝑒−𝛽𝑡)
                                                         (14) 

 Note that β > 0, t ∈ [0, ∞].  

Therefore, the mean value function and the intensity function 

of the finite fault NHPP Half-Logistic model are as follows. 

m(t|𝜃, β) = 𝜃𝐹(t) = 𝜃
(1 − 𝑒−𝛽𝑡)

(1 + 𝑒−𝛽𝑡)
                                   (15) 

  λ(t|𝜃, β) = 𝜃f(t) = 𝜃
2𝛽𝑒−𝛽𝑡

(1 + 𝑒−𝛽𝑡)2
                                      (16) 

Note that θ > 0, β > 0. 

Therefore, after replacing t with the final point of failure 𝑥𝑛, 

the likelihood function to maximum likelihood estimation 

(MLE) by using Eq. 15 and Eq. 16 is derived as follows. 

 

𝐿𝑁𝐻𝑃𝑃(Θ|𝐷𝑥𝑛
) =     

(∏ 𝜃
2𝛽𝑒−𝛽𝑥𝑖

(1 + 𝑒−𝛽𝑥𝑖)2

𝑛

𝑖=1

) exp [−𝜃
(1 − 𝑒−𝛽𝑥𝑛)

(1 + 𝑒−𝛽𝑥𝑛)
]        (17) 

Note that  Θ is parameter space.  

 Therefore, when Eq. 17 is partially differentiated from 

parameters θ and β, the maximum likelihood estimator �̂�𝑀𝐿𝐸 
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and  �̂�𝑀𝐿𝐸 satisfy the following the Eq. 18. 

 

∂ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥)

𝜕𝜃
= 0,           

∂ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥)

𝜕𝛽
= 0                   

𝜕2ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥)

𝜕2𝜃
= 0                                                                 (18) 

 

Note that 𝑥 = (𝑥1, 𝑥2, 𝑥3 ⋯ 𝑥𝑛). 

Therefore, substituting Eq. 17 into Eq. 18 is as follows. 

�̂� =
(1 + 𝑒−𝛽𝑥𝑛)

(1 − 𝑒−𝛽𝑥𝑛)
                                                                       (19) 

               

𝑔(𝛽) = ∑ 𝑥𝑖

𝑛

𝑖=1

−
𝑛

𝛽
− 2 ∑ [ 

𝑥𝑖 𝑒
−𝛽𝑥𝑖

(1 + 𝑒−𝛽𝑥𝑖)
 ]

𝑛−1

𝑖=1

                                  

  − 
2 𝑥𝑛 𝑒

−𝛽𝑥𝑛

(1 + 𝑒−𝛽𝑥𝑛)
 [1 − (

𝑛

1 − 𝑒−𝛽𝑥𝑛
)] = 0                          (20)  

Note that 𝑥 = (𝑥1, 𝑥2,, 𝑥3 ⋯ 𝑥𝑛). 

Therefore,  in Eq. 20, the maximum likelihood estimator �̂�𝑀𝐿𝐸 

is calculated using the Newton-Raphson method, and then the 

maximum likelihood estimator �̂�𝑀𝐿𝐸  can be calculated by 

substituting  �̂�𝑀𝐿𝐸 into Eq. 19. 

 

II.IV.  Finite Failure NHPP :  Log-Logistic Model 

The Log-Logistic distribution has a property that increases 

and decreases in the form of failure rate and thus is widely 

applied in the reliability field. The probability density function 

and the cumulative distribution function considering the shape 

parameter(k) are as follows [10]. 

f(t|𝜏, k) =
𝜏𝑘(𝜏𝑡)𝑘−1

[1 + (𝜏𝑡)𝑘]2
                                                            (21) 

F(t|𝜏, k) =
(𝜏𝑡)𝑘

[1 + (𝜏𝑡)𝑘]
                                                             (22) 

 Note that τ > 0, k > 0  

Therefore, the mean value function and the intensity function 

of the finite fault NHPP Log-Logistic model are as follows. 

m(t|𝜃, τ, k) = 𝜃𝐹(t) = 𝜃 
(𝜏𝑡)𝑘

[1 + (𝜏𝑡)𝑘]
                                  (23) 

 λ(t|𝜃, τ, k) = 𝜃f(t) = 𝜃 
𝜏𝑘(𝜏𝑡)𝑘−1

[1 + (𝜏𝑡)𝑘]2
                                  (24) 

Note that θ > 0, τ, k > 0. 

Since the Log-Logistic distribution has a form in which the 

failure rate increases, the case where the shape parameter that 

determines the shape of the failure lifetime distribution is 2 

was applied. Therefore, after replacing t with the final point of 

failure 𝑥𝑛, the log-likelihood function to maximum likelihood 

estimation (MLE) by using Eq. 23 and Eq. 24 is derived as 

follows. 

ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥) = 𝑛𝑙𝑛2 + 𝑛𝑙𝑛𝜃 + 2𝑛𝑙𝑛𝜏                            

+ ∑ 𝑥𝑖

𝑛

𝑖=1

− 2 ∑ 𝑙𝑛[1 + (𝜏𝑥𝑖)2] − 𝜃
(𝜏𝑥𝑛)2

[1 + (𝜏𝑥𝑛)2]

𝑛

𝑖=1

= 0     (25) 

Therefore, the maximum likelihood estimator �̂�𝑀𝐿𝐸  and 

�̂�𝑀𝐿𝐸  satisfying the following Eq. 26 and Eq. 27 can be 

estimated by a numerical method.  

 

∂ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥)

𝜕𝜃
=

𝑛

�̂�
−

(�̂�𝑥𝑛)2

[1 + (�̂�𝑥𝑛)2]
= 0                         (26) 

 

∂ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥)

𝜕𝜏
=

2𝑛

�̂�
− 2�̂� ∑ 𝑥𝑖

2

𝑛

𝑖=1

 
1

𝑙𝑛[1 + (�̂�𝑥𝑖)
2]

                  

−�̂�   (
2�̂�𝑥𝑛

2(1 + �̂�2 𝑥𝑛 − �̂�2 𝑥𝑛
2

[1 + (�̂�𝑥𝑛)2]2
) = 0                             (27) 

Note that 𝑥 = (𝑥1, 𝑥2,, 𝑥3 ⋯ 𝑥𝑛). 

 

III.  THE PROPOSED ANALYSIS ALGORITHM AND 

SOLUTIONS 

The analysis algorithm of the proposed software reliability 

model is as follows. 

Step 1:  Validating the software failure data collected through 

the Laplace trend test analysis. 

Step 2:  Calculating the parameters(�̂�, 𝛽,̂ �̂�) for the proposed 

model using the maximum likelihood estimation 

(MLE).  

Step 3:  Calculating the coefficient of determination (𝑅2) and 

mean square error (𝑀𝑆𝐸)  for efficient model 

selection. 

Step 4: Analyzing the performance attributes (𝑚(𝑡),

𝜆(𝑡)) and reliability(�̂�(𝜏)) of proposed models.  

Step 5:  Providing research information on the optimal model 

by analyzing the performance of the proposed model. 

After analyzing the performance of the proposed model using 

the above steps, we will present information on the  optimal 

model that software developers need.  

Let compare and analyze the performance of the proposed 

reliability models using the software failure time data [11] as 

shown in Table 1. This software failure time is the data that 

was occurred 30 times in 738.68 unit time. 
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Table 1. Software Failure Time Data 

Failure  

 Number 

 Failure 

Time 

(hours)  

Failure  

 Number 

Failure Time 

(hours) 

1 30.02 16 151.78 

2 31.46 17 177.50 

3 53.93 18 180.29 

4 55.29 19 182.21 

5 58.72 20 186.34 

6 71.92 21 256.81 

7 77.07 22 273.88 

8 80.90 23 277.87 

  9 101.90 24 453.93 

10 114.87 25 535 

11 115.34 26 537.27 

12 121.57 27 552.90 

13 124.97 28 673.68 

14 134.07 29 704.49 

15 136.25 30 738.68 

 

Laplace trend test was used to verify the reliability of the 

software failure time data as shown in Figure 1. 

 

 

Fig. 1. Estimation Results of Laplace Trend Test 

In general, if the Laplace factor estimates are distributed 

between -2 and 2, the data are reliable because the extreme 

values do not exist and are stable. 

As a result of this test, the estimated value of the Laplace 

factor was distributed between 0 and 2, as shown in Figure 1. 

Therefore, it is possible to apply this data because there is no 

extreme value [12].  

In this study, the maximum likelihood estimation (MLE) was 

used to perform parameter estimation. The calculation method 

of the nonlinear equations is solved using the bisection 

method, and the results are shown in Table 2.  

 

Table 2. Parameter Estimation of Each Model 

Model MLE 
Model comparison 

  MSE    𝑅2     

Goel-Okumoto �̂� = 𝟑𝟏. 𝟖𝟓𝟗𝟔 �̂� = 𝟎. 𝟎𝟎𝟑𝟎𝟗 𝟕. 𝟔𝟔𝟕𝟕𝟗 𝟎. 𝟗𝟕𝟔 

Half-Logistic �̂� = 𝟑𝟏. 𝟐𝟕𝟔𝟗 �̂� = 𝟎. 𝟎𝟎𝟒𝟑𝟑 𝟏𝟔. 𝟑𝟗𝟕𝟕𝟎 𝟎. 𝟗𝟒𝟖 

Log-Logistic �̂� = 𝟑𝟐. 𝟐𝟒𝟏𝟐 �̂� = 𝟎. 𝟎𝟎𝟒𝟗𝟓 𝟖. 𝟗𝟕𝟑𝟎𝟔 𝟎. 𝟗𝟕𝟐 

 

Explanatory notes. 

MLE = Maximum Likelihood Estimation  

MSE = Mean Square Error,  

𝑅2 = 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛.     

 

As the basis for determining the efficient model, the mean 

square error is defined as follows. 

  𝑀𝑆𝐸 =

∑ (m(𝑥𝑖) − m̂(𝑥𝑖))
2n

i=1

𝑛 − 𝑘
                                         (28) 

Note that m(𝑥𝑖)  is the total accumulated number of errors 

observed within time is (0, 𝑥𝑖) , m̂(𝑥𝑖) is the estimated 

cumulative number of errors at time 𝑥𝑖 obtained from the 

fitting mean value function, n is the number of observations 

and k is the number of parameters to be estimated. When 

selecting an efficient model, the smaller the mean square 

error, the more efficient the model.  

 

The coefficient of determination (𝑅2) is a measuring value to 

the explanatory power of the difference between the target 

value and the observed value. When selecting an efficient 

model, the larger the value of the decision coefficient, the 

more efficient the model because the error is relatively small. 

It is defined as 

 

𝑅2 = 1 −

∑ (m(𝑥𝑖) − m̂(𝑥𝑖))
2n

i=1

∑ (m(𝑥𝑖) − ∑ 𝑚(𝑥𝑗
𝑛
𝑗=1 )/𝑛)

2n

i=1

                    (29) 

 

As shown in Table 2, we can see that the Log-Logistic model 

is more efficient than the Half-Logistic model. But, the Goel-

Okumoto model has the largest coefficient of determination 

and the smallest mean square error is more efficient than the 

other models [13].  
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Figure 2 shows the transition of mean square error (MSE) 

according to each failure number. Also, in this figure, the 

Log-Logistic model shows better estimates than the other 

models in the total range of failure numbers. 

 

Fig. 2. Transition of Mean Square Error 

In Figure 2, the mean squared error of the Goel-Okumoto 

model shows a trend of the smallest error with time, which is 

more efficient than the other models in terms of fitness. 

Figure 3 shows trends in the strength function, which is the 

failure occurring rate per defect. The Log-Logistic model 

shows the greatest decreasing tendency as the failure time 

passes, indicating that it is an efficient model, and the Half-

Logistic model also shows a similar pattern. 
 

 

Fig. 3. Transition of  Intensity Function λ(t) 

Figure 4 shows the pattern trend for the mean value function, 

which is the failure occurring expected value. In this figure,  

all models show underestimated from the difference between 

the true values, and the Goel-Okumoto model has the smallest 

underestimated pattern.  

Also, the Log-Logistic model is more efficient than the Half-

Logistic model because the error width is small. 

 

Fig. 4. Pattern of Mean Value Function  

Let analyze the reliability performance of the proposed 

models for future mission time. Here, reliability is the 

probability that a software failure will occur when testing at 

𝑥𝑛 = 738.68 , and no software failure will occur between 

confidence intervals [ 𝑥𝑛 , 𝑥𝑛 + 𝜏]  where τ  is the future 

mission time. Therefore, the reliability of future mission time 

is as follows [14]. 

�̂�(𝜏|𝑥𝑛) = 𝑒
− ∫ 𝜆(𝜏)𝑑𝜏

𝑥𝑛+𝜏
𝑥𝑛                                                         

               = exp[−{𝑚(𝜏 + 𝑥𝑛) − 𝑚(𝑥𝑛)}]                          

                      = exp[−{𝑚(𝜏 + 738.68) − 𝑚(738.68)}]     (30) 

 

 

Fig. 5. Transition of Reliability  

As shown in Figure 5, the Log-Logistic model shows a higher 

reliability trend than the other models in which the reliability 

decreases with the mission time. That is, the Log-Logistic 

model is more efficient than the other models because the 

reliability is the highest.   
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IV.  CONCLUSION 

It is possible to efficiently improve the reliability performance 

by analyzing the performance after quantitatively modeling 

the occurrence of the failure in the software test operation or 

the software development process. In this study, based on the 

finite-fault NHPP model with software failure time data, we 

compared and analyzed the software reliability performance 

of the Log-Logistic model and the Half-Logistic model with 

Logistic distribution property, together with Goel-Okumoto 

basic model. 

The results of this study can be summarized as follows. 

First, In the performance analysis of the strength function, the 

Log-Logistic model shows the greatest decreasing tendency as 

the failure time passes, indicating that it is an efficient model, 

and the mean square error (MSE) showed the smallest trend 

along with the Goel-Okumoto model. 

Second, in the performance analysis of the mean value 

function, all the proposed models showed underestimation 

patterns in the error estimation for true values, and the Goel-

Okumoto model has the smallest error estimation. Also, the 

Log-Logistic model is more efficient than the Half-Logistic 

model because of  the small error width. 

Third, in the performance analysis of mission reliability, the  

Log-Logistic model shows a higher reliability trend than the 

other models in which the reliability decreases with the 

mission time. That is, the Log-Logistic model has the best 

performance than other models because the reliability is the 

highest.   

Fourth, a comprehensive analysis of these simulations results 

shows that the Log-Logistic model is an  efficient model with 

the best performance among the proposed models. 

As a result, through this study, along with a new analysis on 

the reliability performance of the proposed model without 

existing research examples, we were able to provide the 

research information that software developers can use as a 

basic design guideline. Also, future research will be needed to 

find the optimal model through the reliability performance 

analysis after applying the same type of software failure time 

data to various reliability models. 

 

ACKNOWLEDGEMENTS 

Funding for this paper was provided by Namseoul University. 

 

REFERENCES 

[1] Gokhale, S. S. and Trivedi, K. S. A, Time/structure 

based software reliability model. Annals of Software 

Engineering 8. 1999;5-12.  

[2] Goel, A. L, Okumoto K,  Time-dependent fault 

detection rate model for software and other 

performance measures. IEEE Trans. Reliability. 

1978;28:206-211. 

[3] C. Y. Huang, Performance analysis of software 

reliability growth   models   with  testing-effort  and  

change-point.  Journal of Systems and Software. 

2005;76(2):181-194. 

[4] Shyur  H-J, A stochastic software reliability model with 

imperfect debugging and change-point. J. Syst. 

Software 66. 2003;135-141. 

[5] Hee-Cheul Kim, A Comparative Study on the Finite 

Failure Software Reliability Model with Modified 

Lindley Type Lifetime Distribution. International 

Journal of Engineering Research and Technology. 

2019;12(6): 760-764. 

[6] Pham H, Zhang X., NHPP Software Realiability and 

Cost Models with testing coverage. Eur.J. Oper. Res. 

2003; 145:445-454. 

[7] Voda, R. GH., On the inverse Rayleigh variable. 

Rep.Stat. Apph. Res. Juse, 1972;19(4):15-21. 

[8] Tae-Jin Yang, A Study on the Reliability Performance 

Analysis of  Finite Failure NHPP Software Reliability 

Model Based on Weibull  Life Distribution. 

International Journal of Engineering Research and 

Technology. 2019; 12(11):1890-1896. 

[9] Tae-Jin. Yang, Jea-Gun Park, A comparative study of 

the Software NHPP based on weibull extension 

distribution and flexible weibull extension distribution. 

International Journal of Soft Computing. 

2016;11(4):276-281. 

[10] Adhikari, T. R. and Srivastava, R.S., Poisson-Size 

biased Lindley Distribution. International Journal of  

Scientific and Research Publications. 2014;4(1):1-6. 

[11] Y. Hayakawa, G. Telfar, Mixed Poisson-type processes 

with application in software reliability. Mathematical 

and Computer Modelling. 2000;31:151-156. 

[12] Tae-Jin Yang, A Comparative Study on Reliability 

Attributes of Software Reliability Model Based on 

Type 2 Gumbel and Erlang Life Distribution. Journal 

of Engineering and Applied Sciences. 

2019;14(10):3366-3370. 

[13] Shanker, R., Shanker distribution and Its Applications. 

International Journal  of  Statistics and Applications. 

2015;5(6):338-348.  

[14] Tae-Jin Yang, The Analysis and Predict of Software 

Failure Time Based on Nonlinear Regression.  Journal  

of Engineering and Applied Sciences. 

2018;13(12):4376 -4380. 

 


