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Abstract  

Today, lithium batteries are used in a variety of applications 

such as cell phones, electric vehicles, unmanned submarines, 

and energy storage systems (ESS) as the primary power source. 

Therefore, for stable use, it is important for the device and the 

system to quickly detect any fault occurring in the battery and 

accurately diagnose it. Battery faults can be diagnosed from the 

battery’s state of health (SOH) which reflects its operating 

condition. In this paper, a system is proposed to diagnose 

battery cell faults by means of a multilayer neural network 

(MNN) state classifier. In this method, the MNN state classifier 

utilizes the discharge voltage data obtained by operating the 

lithium battery cell at high temperature. We concluded from 

experimental results that the proposed battery SOH monitoring 

method diagnoses the state of the battery very well. 

Keywords: Lithium battery, State of Health, Fault diagnosis 

system, Multilayer Neural Network 

 

I. INTRODUCTION  

Lithium batteries are widely used in cell phones, electric 

vehicles, unmanned submarines, ESSs, and are the main power 

source in many other systems [1][2]. Battery faults result in a 

performance reduction in individual devices and can be critical 

at the system level [3][4]. Therefore, for reliable operation, it is 

important to promptly detect defects in batteries and accurately 

determine faults. In general, the status of a battery can be 

diagnosed by analyzing its SOH. In existing methods, SOH is 

roughly measured based on the number of service hours or the 

number of charging and discharging cycles specified by the 

battery manufacturer, but a battery’s life can be reduced or fault 

more quickly depending on the temperature and operating 

conditions. 

There are various ways to determine battery SOH. In [5], the 

resistance of a battery’s equivalent circuit and a Kalman-filter 

method predicted the SOH of the battery. However, the 

variation in the internal resistance of a battery is very small, so 

the changes of resistance are not enough to precisely diagnose 

the SOH. The open-circuit voltage (OCV) method measures 

voltage under no-load conditions and predicts SOH according 

to OCV changes [6]. However, the Kalman-filter method has 

the disadvantage that it is difficult to apply due to the 

complexity of its parameters and algorithms. 

Neural networks are currently applied to solve problems in 

areas like pattern recognition, identification, and classification. 

Neural networks have three representative features. First, they 

have the ability to learn complex nonlinear input and output 

relationships. Second, they use sequential training procedures. 

Third, they can adapt to data. For these reasons, neural 

networks have proven to be a promising technology for 

intelligent machines [7]. They can implement algorithms that 

learn from data and can execute data-driven decisions or 

predictions. Neural networks can efficiently model a variety of 

input and output relationships; when compared to a procedural 

model, they have the advantage of shorter execution time [8][9]. 

In this paper, we propose SOH monitoring of a battery module 

using an MNN. Lithium battery characteristics and 

performance are affected by changes in temperature [10][11]. 

In an experiment to diagnose a battery’s state, the battery was 

operated at a high temperature (40° C) and a low temperature 

(-10° C) for a long time. The battery’s fault state was diagnosed 

by an MNN that was trained to recognize normal, warning, and 

fault conditions using the battery’s charging and discharging 

data. 

 

II. THE MONITORING SYSTEM BASED ON MNN 

 

 

Fig. 1. Configuration of the battery SOH monitoring system 

 

The proposed lithium battery SOH monitoring system is shown 

in Fig. 1. It consists of a battery, a battery controller, and an 

MNN state classifier. The battery controller comprises a 

protection circuit and a sensor that measures voltage and 

current data and sends it to a PC when the battery is charged or 
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discharged. The MNN receives data from the battery controller 

and diagnoses the battery state diagnoses the battery as being 

in one of three states: normal, warning, or fault. 

 

II.1 Lithium Battery Experiment Set-up 

The energy storage capacity of a battery is defined as the total 

amount of charge removed when a constant current discharges 

the battery from a fully charged state to a fully discharged state. 

The fully charged state is defined as the state in which no 

current flows by applying a constant voltage. The fully 

discharged state is defined as draining all charge within a range 

where the battery is not damaged. 

The test method exposes a fully charged battery to high 

temperature (40° C) or low temperature (-10° C) for 8 hours. 

The battery was then exposed to room temperature for 3 hours 

and subsequently discharged. 

 

II. 2 Multilayer Neural Network State Classifier 

An MNN is the most basic learning model in deep learning and 

has two or more hidden layers. It allows a high level of 

abstraction by combining various nonlinear transform 

techniques with more hidden layers in existing neural networks 

[12]. 

 

 

Fig. 2. Structure of the lithium battery charge-discharge 

experimental MNN 

 

The MNN state classifier used in this paper consists of one 

input layer, two hidden layers, and one output layer as shown 

in Fig. 2. The activation function ReLU was used for each 

hidden layer, and softmax was used for the output layer. The 

input layer has 3600 nodes; the hidden layers 1 and 2 have 256 

nodes. The three nodes in the output layer are for the normal, 

warning, and fault state outputs. The optimizer function uses 

the RMSprop function and the loss function uses the cross-

entropy function. 

ReLU is the most commonly used activation function in recent 

deep learning research [13]. ReLU solves the problem of 

gradient vanishing in the sigmoid function and has the 

advantage of faster convergence than the sigmoid function. 

ReLU is shown in Equation (1). 

𝑓(𝑥) = {

𝑥  𝑓𝑜𝑟   𝑥 > 0

  0  𝑓𝑜𝑟   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                               (1) 

The RMSprop algorithm does not uniformly add all past 

gradients but reflects only the information of the new gradient 

so that the learning rate does not become 0 [14]. The RMSprop 

algorithm is as shown in Equation (2) and Equation (3). 

𝐺𝑡 = γ𝐺 + (1 - γ)(∇J(𝑊(𝑡)))2                     (2)   

 

𝑊(𝑡) =  𝑊(𝑡 − 1) − √
𝜂

𝐺𝑡−𝜖
 ∙  ∇J(𝑊(𝑡 − 1))        (3) 

where γ is the forgetting factor, typically 0.9. 𝜃 is a parameter 

of the network and 𝑓(𝜃)  is a cost function. In this paper, 

softmax is used.  ∇𝜃𝑓(𝜃) is the gradient of the network and t is 

a time step. For the network parameter k, Gt is a k-dimensional 

vector that stores the sum of squares of the gradient to which 

each variable moves until time step t.  𝜂 is the learning rate and 

is set to 0.001. 𝜖  is a small value of about 10−4 to  10−8 to 

prevent division by 0. 

The softmax function is used for the output layer and to 

transform the classification problem. The output from the 

previous layer determines the probability of each state when 

solving the state classification problem. Softmax takes the 

exponent of each output and divide by the normalization 

constant so that the sum is 1. The softmax function is shown in 

Equation (4). 

𝑝𝑖 =  
exp (𝑥𝑖)

∑ exp (𝑥𝑘)𝑘
                                (4) 

where k is the number of dimensions of the input and output 

vectors. 𝑝𝑖  is the i-th output value. 𝑥𝑖  is the i-th input value. 

 

III. EXPERIMENT AND RESULTS 

 

Fig. 3. Circuit configured for the experiment 

 

The experimental setup configuration for conducting the 

experiment is shown in Fig. 3. Fig. 3-① is an electronic load, 

and when charging, it is replaced with a power supply. Fig. 3-

② is a battery system and consists of a battery, a current and 

voltage sensor, and an MCU (Micro Controller Unit) to 
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communicate with the PC. Fig. 3-③  is the PC and serial 

communication with the battery system to receive battery 

voltage and current data and monitor the battery SOH. 

Table 1. Battery cell specification 

Battery type Li-Po battery 

Capacity 1300[mAh] 

Voltage Range 2.4 ~ 4.28[V] 

Nominal Voltage 3.7[V] 

In order to evaluate the performance of the proposed system, 

the discharge data of the lithium battery tested in the high 

temperature and low-temperature environments as shown in 

Fig. 4 were used for learning. According to Yinjiao Xing's 

paper, a battery should be replaced when its capacity is reduced 

to 80% of its rated beginning of life capacity [15]. In the 

experiment of this paper, we defined 100% to 90% of the rated 

capacity as normal, 90 to 80% of the rated capacity as a warning, 

and less than 80% of the rated capacity as a fault. In Fig. 4(a), 

patterns 1 to 5 were learned as normal, patterns 6 and 7 as 

warnings, and patterns 8 to 10 as faults. In Fig. 4(b) patterns 1 

and 2 were learned as normal, patterns 3 to 7 as warnings, and 

patterns 8 to 10 as faults. 

 

(a) Battery discharge voltage data used in learning at 

high temperature 

 

 

(b) Battery discharge voltage data used in learning at 

low temperature 

Fig. 4. Lithium battery discharge voltage data for learning 

 

Fig. 5 is the discharge graph of another battery of the same type 

operated in the high-temperature environment of the test. In Fig. 

5(a), patterns 1 and 2 are normal, patterns 3 to 5 are warnings, 

and patterns 6 to 8 are faults. The MNN’s SOH diagnostic test 

result for the battery operated at high temperature is shown in 

Fig. 5(b). 

 

(a) Battery discharge voltage data used in test at high 

temperature 

 

(b) MNN SOH diagnosis test result from a battery 

operated at high temperature  

Fig. 5. Lithium battery test result at high temperature 

 

Fig. 6 shows test data obtained in the low-temperature 

experimental environment. In Fig. 6(a), patterns 1 and 2 are 

normal, pattern 3 is a warning, and patterns 4 and 5 are faults. 

The MNN’s SOH diagnostic test result for the battery operated 

at low temperature is shown in Fig. 6(b). 

 

(a) Battery discharge voltage data used in test at low 

temperature 

 

(b) SOH diagnosis test result of battery operated at low 

temperature by MNN 

Fig. 6. Lithium battery test result at low temperature 
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IV. CONCLUSION 

In this paper, a lithium battery SOH monitoring system using 

an MNN was described. The battery cell was charged and 

discharged at a high temperature (40° C) and at a low 

temperature (-10° C), and the fault state of the battery was 

diagnosed by the proposed MNN using the discharge data of 

the battery. 

The experimental results show that the proposed state classifier 

diagnoses the actual state of the battery well; this was verified 

by testing with the discharge data of a lithium battery of the 

same specification as the one used to teach the MNN and 

operating it under the same experimental conditions. In future 

work, we plan to apply the proposed MNN-based method to 

multiple battery cells. 
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