
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 1 (2020), pp. 158-162

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.1.2020.158-162

158

Software Quality Model for Maintenance Software Purposes

Hamed Fawareh

Department of Software Engineering, Zarqa University, Zarqa, Jordan.

ORCID: 0000-0002-0853-3149

Abstract: Software maintenance tools developed for

attempted to raise the success rate of software systems over

the past century. Improve software tools quality models and

other software elements to make it more customer

satisfaction and achieve customer permanence. Several

quality models and variables have proposed to decrease

software system failure and complexity. Also, software

quality models proposed to assess the general and particular

types of software products. These models have proposed to

determine the general or particular scopes of software

products - none of these quality models concerns the quality

of software maintenance tools. The proposed software quality

maintenance models developed based on the maintenance

tools factor and the comparisons between the well-known

quality models. These comparisons are the leakage of criteria

based on distinct views and knowledge of maintenance tools

requirement. The proposed technique applied to software

maintenance tools. The outcome of the proposed technique

demonstrates that the twelve factors must deem to increase

the quality of software maintenance tools.

Keywords: software quality, quality factor, software

maintenance, software maintenance tool.

INTRODUCTION

The progress of software quality models during the past years

concerns the development process only; there are still

problems that stop them from being commonly adopted in

maintenance and reengineering tools in practice. Maintainers

in practice, disappointed because quality models do not

satisfy maintenance expectations. It often uncertain continue

how quality models in practice can evaluate and predict

quality tools used during reengineering tools. The last three

decades of quality modelling produce a variety of quality

strategies and factors.

Software quality plays a vital role in the overall software

system's success; it considered an essential aspect for

maintainer, users and managers of projects. Success is found

relatively rare in the world of software projects. One

potential reason might be the difference in the original

software and maintained software of the meaning of success

in the minds of people evaluating the quality of the project.

Therefore, the criteria for maintenance project success, as

believed by various stakeholder groups, do not match. The

highest determining factor of achievement is the functionality

and quality of the project outcome, success in external goals

such as customer satisfaction. Maintenance factors are

essential to the acceptance of software maintenance tools and

become commonly used.

Completion software is often far from meeting user

expectations and business performance objectives. The

software project success or failure is internal process measure

of the project team's performance, including criteria such as

scheduling, budgeting, meeting the project's technical

objectives and maintaining smooth working relationships

within the team and parent organisation.

Based on a literature review and interviews with seasoned

project maintainer, three distinct aspects of project

maintenance and efficiency established as the metrics against

which to assess a project's success or failure. These aspects

are:

 The process implementation.

 The value of perceived project.

 The satisfaction client for project delivered.

 The maintenance tools.

The first of these aspects is primarily concerned with the

internal efficiency of the project implementation process,

which reflect on the maintenance phase. The second aspect of

project success or failure assessment is the perceived project

quality; it includes the perception by the project team of the

value and usefulness of the outcomes of the project. This

evaluation emphasises the potential impact of the project on

users — the judgment of the project team as to how good a

job they have done for the client. The evaluation and

maintenance of the project by the project team may or may

not agree with the evaluation and maintenance of the client.

The third aspect of project performance, customer

satisfaction, is an external measure of customer effectiveness

[1].

SOFTWARE QUALITY MODELS

Over the past years, the production of high-quality software

has considered an important topic that has discussed.

Software quality factor identified as the criteria that will

cover all software characteristics and software usage

elements to ensure complete user satisfaction [2-3].

Quality models are used in conjunction with software factor

to identify a high-quality software product in addition to

evaluating the feature of the software output [4].

In the literature of software engineering several

quality models have been proposed and gradually evolved

such as McCall quality model, Boehm quality model,

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 1 (2020), pp. 158-162

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.1.2020.158-162

159

Dromey quality model, FURPS quality model and ISO 9000

quality model, each model contains different quality

characteristics or factors [5-6]. These models have suggested

maintenance as a specific type of software products, while

maintenance is a spate phase [7]. The following subsection

discusses the models in details.

McCall Model: proposed the first model in 1977, which

defines the qualities of the software product as a hierarchy

divided into three main components: factors, criteria and

metrics. The factors represent the system feature, a quality

criterion is an attribute of software production and design-

related quality factor, and metrics defining and using a

measurement scale and method [8].

 McCall model contains eleven factors and twenty-three

criteria; these factors divided into three groups of products,

namely: Transition, Revision and Operations. According to

Lee [8], McCall mentions maintainability as a factor for

software development. Because this model is ancient, there

was no consideration for new features of maintenance tools;

it has not taken into account the unique characteristics of

software maintenance tools [9],[5].

Boehm Model defined the primary quality characteristic as a

general utility. The main major of Boehm model is to address

the weaknesses of models that evaluate software quality

automatically, and this model gives quantitative results

indicating software quality. Boehm model discussed the

high-level characteristics and classified it into three groups,

namely: Utility, Maintenance and Portability [7].

Seven qualities collectively characteristics exemplify the

qualities predictable from a software system portability,

reliability, efficiency, usability, testability, comprehensibility,

flexibility and human engineering [10-11].

Alternative Models: two alternative models of the classic

McCall model proposed which are: Evans and Marciniak

model, this model emerged as alternatives to McCall's classic

model proposed by Evans and Marciniak in 1987. The new

model eliminated the testability factor from McCall model

and added two new factors which are Verifiability and

Expandability. Thus, the model became composed of twelve

quality factors, partitioned to three groups, namely

adaptation, performance and design.

Deutsch and Willis model: another alternative of McCall's

classic model proposed in 1988. Also, this model as Evans

and Marciniak model excluded testability factor from McCall

classic model and added Safety, Manageability and

Survivability factor is to the new model. Deutsch and

Willis's quality model comprises of fifteen factors divided

into four functional classifications, performance, change and

management. Youness show a comparison between the

classic McCall model and alternative model, [6]. Both

alternative models consider maintenance as one factor of

software quality, while maintenance should consider as a

spate phase.

Dromey Model proposed a framework in 1995 for assessing

the requirements, designing, and implementation of the

system. He noted that the assessment is various for each

software product, so we need a dynamic modelling idea. The

main objective of this model was to obtain a model that fits

all types of software systems and realise the relationship

between quality characteristics and sub-characteristics [12].

Several attributes define Dromey models, such as two layers

of attributes, high-level attributes, and subordinate attributes.

One of the drawbacks of this model is a shortage of software

quality measurement criteria [13].

FURPS Model proposed a quality model called FURPS,

which are mean F: Functionality, U: Usability, R: Reliability,

P: Performance and S: Supportability. In this model, the

features are taxonomy into two groups: The inputs and

expected outputs defined as the functional requirements of

the software system. The desired attributes of the software

system are known as non-functional requirements, such as

reliability and usability. The model fails to take into account

some features of a software product such as portability [5].

ISO 9000 Model: The International Organization for

Standardization (ISO) proposed ISO 9000 model in 1991,

which considered the foundation of quality assurance. The

quality characteristics of the software product are the

structures hierarchically classified as characteristics and sub

characteristics [14]. Quality factors at the top of the

hierarchical and the criteria of a software product are at the

lowest level. ISO 9000 model consists of six factors which

divided into twenty-seven sub-characteristics. The defined

factors in this model can apply to all software types,

including firmware computer programs and data, and it can

provide consistent software product quality terminology. It

also provides a structure that helps stakeholder to trade-offs

between software product capacities [15, 5]. Lately, the

ISO/IEC 205010:2011system and software product quality

model replaced ISO/IEC 9126-1: 2001 software product

quality model, which include eight quality factors:

"Functional suitability, reliability, operability, security,

performance efficiency, compatibility, maintainability, and

portability. The twenty-eight quality factors arrange in eight

quality characteristics" [5].

MAINTENANCE FACTOR

In the software engineering field, software quality is one of

the oldest approaches used by the software researches.

Quality models are the approach for comprehension and

manipulating an issue in engineering and science disciplines

[2]. Quality models have, therefore become a well-accepted

means of describing and managing software quality. Starting

with the hierarchical models suggested by Boehm et al. [11],

Different quality models have developed over the last 20

years, some of which have standardised. Some of these

models used in different aspect of software life cycle

purposes, For example, to help specify the quality

requirements, to evaluate existing systems or to predict the

fault density of a system in the field [3].

This paper proposed a software quality model for

maintenance quality factors. These factors are essential for

the quality software system. Also, It plays the main rules in

the success and failure of the software systems. In this study,

we specify the main factor affecting the success and failure

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 1 (2020), pp. 158-162

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.1.2020.158-162

160

of software maintenance by analysing the definition of

software maintenance. According to Priyadrshi and

Kshirasgar [16] maintenance activities are divided into four

groups, Corrective maintenance to correct failures:

processing failures and performance failures, adaptive

maintenance to enable the system to adapt to changes in its

data environment or processing environment, perfective

maintenance to make a variety of improvements, namely,

user experience, processing efficiency, and maintainability,

and preventive maintenance to prevent problems from

occurring by modifying software products.

Chapin et al. [17] divide the maintenance activities into

twelve types of maintenance activities, and factors were

grouped into four clusters, as shown in table 1. We will

consider the twelve factors to satisfy the maintenance quality

for software maintenance.

Table 1: Maintenance Factors

Cluster Type

Business Rules Enhancive

Corrective

Reductive

Software Properties Adaptive

Performance

Preventive

Groomative

Documentation Adaptive

Reformative

Support Interface Evaluative

Consultive

Training

Based on a comparison of all previous elements and a

repeated cancellation or that gives the same meaning, we

have got a set of maintenance factors that appear in table 2

base on the classification of software

maintenance and evolution developed by Chapin et

al. [17]. According to analysis results, we classified a

maintenance factor from software engineering quality into

two categories

 Included in the previous models

 None Included in the previous models

In this section, the factors that include in previous software

quality model exclude, and the factors that are related to

software engineering quality were focused on, as shown in

the following table 2.

Table 2: Factor Definitions

QUALITY CRITERIA

Quality criteria and their relationship to quality factors

represent the central part of evaluating and defining any

quality factor. These criteria may be attributes of the product

or attributes of the production process [21].

Studying and analysing the relationship between maintenance

definition and software quality, we proposed software quality

factors related to maintenance elements and its criterion.

Most organisations are concerned with the quality of the

software systems used within their organisations. Therefore,

the measurement and evaluation of the quality of software

systems are essential. Table 2 shows the relationship between

criteria definitions and related software quality factors.

In this section, we focus on the software business rules,

which is particularly interested in measuring customer

satisfaction with the quality software system from the

maintenance aspect. The maintenance factor defines as a set

of criteria (business rules, software properties, documentation

and support interface). Table 1 classified the criteria into four

main groups based on their definition.

To measure the criteria of the maintenance factor and provide

quantitative values to the stakeholder, which enable him to

assess the quality of the product in the maintenance aspect in

the decision-making process. We will study the business

roles as a case study for measuring the new factors.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 1 (2020), pp. 158-162

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.1.2020.158-162

161

In this study, we used function point as a method for

measuring the size and productivity of software systems. It

also used to calculate the size and complexity of applications

based on outputs, inputs, queries, internal files and interfaces.

To calculation the business rules complexity of the software

system for satisfactions of software failure and permanence

variables, we set up the following definition for a business

rules metric:

 Basic Activities in a system (NOBA): NOBA metric

counts necessary activities in a system. NOBA is a

simple one-dimensional metric based on a function

point activities, unlike other complexity metrics which

manipulate two or more dimensions of a process.

 Basic Structured Activities (NBSA): NBSA calculates

how deeply we used (length). NOBA metric is another

simple one-dimensional length metric similar to NOBA.

However, instead of counting necessary activities, it

counts the number of structured activities in a system. It

should note that NBSA counts the number of structured

activities and attach weights.

Information Flow complexity (IFC): IFC metric is an

adaptation on a system. It is a fan-in represented by input

activities while output activities represent fan-out. The IFC

defined as the square of the product of the Number of Input

Activities (NOIA) and the Number of Output Activities

(NOOA) contained in it.

The product metrics is particularly interested in measuring

the criteria of maintenance tools factor. We determined a set

of factor criteria related to software maintenance. As we

mentioned earlier, we divided the maintenance factor criteria

into four groups according to their similarity in the

measurement method. We measure each of maintenance

factor criteria, to provide quantitative values, which help

stakeholders to assess the quality of the software

maintenance system to make the decision.

To measure and evaluate the software system regarding

supporting the maintenance factor, we proposed a set of rules

that must abide by to help evaluate the quality of the software

system regarding the maintenance as follows:

We used function point as a method for measuring the size

and productivity of software systems based on outputs,

inputs, queries, internal files and interfaces.

Maintenace Information Flow (IF): IF metric is an adaptation

of business rules in a system. The IF is defined as; square the

result of the Number of Input (NI) by the Number of Output

(NO) in the system. These can show in Eq. Number 1 and

Eq.Number 2.

𝐼𝐹 = (𝑁𝐼 ∗ 𝑁𝑂)2 (1)

𝑊𝐼𝐹 = (𝑁𝐼 ∗ 𝑁𝑂 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡)2 (2)

Where in weight in Eq. 2 based on table 3

For large systems that use several changes made, a

summation used to measure all business rules in the system,

as shown in eq. Number 3 and eq. number 4:

𝐼𝐹𝐴 = ∑ 𝐼𝐹𝑛
1=1 (3)

𝑊𝐼𝐹 = ∑ 𝑊𝐼𝐹𝑛
1=1 (4)

n: is the number of activity used in the system.

Information Flow for a Level (IF4L): IF4L metrics is an

adaptation of a level of maintenance in a system that consists

of three levels, which are: input text level, user interface level

and output level, and they calculated as follows:

The Level Of Input Text (LOIT) defined as square the result

of the Number Of Input Text (NOIT) by its weight (W); as

shown as follows in Eq. Number 5.

𝐿𝑂𝐼𝑇 = (𝑁𝑂𝐼𝑇 ∗ 𝑊)2 (5)

The Level Of User Interface (LOUI) defined as, square the

result of the Number Of User Interface (NOUI) by its weight

(W); as shown in eq. 6.

𝐿𝑂𝑈𝐼 = (𝑁𝑂𝑈𝐼 ∗ 𝑊)2 (6)

The Level Of Output (LOO) defined as square the result of

the Number Of Output (NOO) and its weight (W); as shown

in eq. 7.

𝐿𝑂𝑂 = (𝑁𝑂𝑂 ∗ 𝑊)2 (7)

The weight (W) of each level =2n Table 3 represents the

corresponding n for each level.

Table 3: Weighted Levels

category Activity Weight

Enhancive Replacing functionality

Adding functionality

1

2

Corrective Fix exciting functionality

Improve conformance functionality

Check existing test

Adding a new test

1

2

1

2

Reductive Limits existing functionality

Remove existing functionality

1

2

Now, to calculate the IF4L for any software system, the

software system will have several levels from the previous

levels for each, so we have to use the following eq. 8:

𝐼𝐹4𝐿 = 𝐿𝑂𝐼𝑇 + 𝐿𝑂𝑈𝐼 + 𝐿𝑂𝑂 (8)

For the large systems which use several maintenance

https://scialert.net/fulltext/?doi=itj.2010.1317.1326&org=11#e1
https://scialert.net/fulltext/?doi=itj.2010.1317.1326&org=11#e2
https://scialert.net/fulltext/?doi=itj.2010.1317.1326&org=11#e1
https://scialert.net/fulltext/?doi=itj.2010.1317.1326&org=11#e1
https://scialert.net/fulltext/?doi=itj.2010.1317.1326&org=11#e1

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 1 (2020), pp. 158-162

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.1.2020.158-162

162

activities, each has a specific level; a summation of the

measures of all levels of maintenance activities contained in

the system obtained as shown in the following eq. 9:

𝐼𝐹4𝐴𝐿 = ∑ 𝐼𝐹4𝐿𝑛
1=1 (9)

CONCLUSION

In this paper, we study the failure and success of software

maintenance and emerging software quality models to reduce

the failure software. Hence, we discussed the software

quality models for specified maintenance purposes. This

paper compares the quality model factors from maintenance

aspects. Furthermore goes behind the definitions of the

maintenance requirements form the software quality factors,

sub-factors and criteria that affect the software failure and

success.

Furthermore, new factors proposed to get clear and accurate

differences between software quality models. This method

requires to assign values for the sub-factors moreover the

main factors, which is giving a clear picture of the

differences between the models.

The values in this study were given equivalently between the

factors and between the sub-factors that is because this

comparison was generally. In a specific domain, the costs for

each factor and sub-factors have to defined according to the

selected domain. Finally, we proposed equations to compute

the complexity of maintenance according to activities levels.

REFERENCES

[1]. V. Basili, P. Donzelli, and S. Asgari. A unified model

of dependability: Capturing dependability in context.

IEEE Software, 21(6):19-25, 2004.

[2]. B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G.

J.Macleod, and M. J. Merrit. Characteristics of

Software Quality. North-Holland, 1978.

[5]. Wolski, M., Walter, B., Kupiński, S., & Chojnacki, J.

(2018). Software quality model for a research‐driven

organisation—An experience report. Journal of

Software: Evolution and Process, 30(5), e1911 .

[6]. Youness, B., Abdelaziz, M., Habib, B., & Hicham, M.

(2013). Comparative Study of Software Quality

Models. IJCSI International Journal of Computer

Science Issues, 10(6), 1694-0814 .

[7]. Al-Badareen, A. B., Selamat, M. H., Jabar, M. A., Din,

J., & Turaev, S. (2011). Software quality models: A

comparative study. Paper presented at the International

Conference on Software Engineering and Computer

Systems.

[8]. Lee, M.-C. (2014). Software Quality Factors and

Software Quality Metrics to Enhance Software Quality

Assurance. British Journal of Applied Science &

Technology, 4, 21 .

[9]. McCall, J. A., Richards, P. K., & Walters, G. F.

(1977). Factors in software quality. Volume i.

concepts and definitions of software quality.

[10] Miguel, J .P., Mauricio, D., & Rodríguez, G. (2014). A

review of software quality models for the evaluation of

software products. arXiv preprint arXiv:1412.2977 .

[11]. Boehm, B. W., Brown, J. R., & Kaspar, H. (1978).

Characteristics of software quality .

[12]. Dreheeb, A. E., Basir, N., & Fabil, N. (2016).

Comparative Study of Quality Models. International

Journal of Computer Science and Electronics

Engineering (IJCSEE), 4(1).

[13]. Dromey, R. G. (1995). A model for software product

quality .IEEE Transactions on software engineering,

21(2), 146-162 .

[14]. Febrero, F., Calero, C., & Moraga, M. Á. (2016).

Software reliability modelling based on ISO/IEC

SQuaRE. Information and Software Technology, 70,

18-29 .

[15]. Esaki, K., Azuma, M., & Komiyama, T. (2012).

Introduction of quality requirement and evaluation

based on ISO/IEC square series of standard. Paper

presented at the International Conference on

Trustworthy Computing and Services.

[16]. Priyadarshini Tripathy and Kshirasgar Nail "Software

Evolution and Maintenance a Practitioner's

Approach", Wiley 2015.

[17]. Chapin N., Hale J. F., Khan K. M., Ramil J. F., and

Tan W. G. 2001. "Types of software evolution and

software maintenance". Journal of Software

Maintenance and Evolution: Research and Practice,

13, 3–30.

The Zarqa University Deanship of Research funds this

research

