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Abstract 

This paper compares the performance of orthogonal array 

(OA), modified-Bees Algorithm (mBA) and conventional Bees 

Algorithm (BA) in significant feature selection scheme 

(optimization) of the Mahalanobis-Taguchi System (MTS) 

methodology. The main contribution of this work is to address 

both performances in terms of computing cost i.e. computing 

time as well as classification accuracy rate. Several studies 

have been conducted to evaluate the performance of OA against 

other heuristic search techniques in MTS methodology 

however, discussions in terms of the computing speed 

performances were found to be lacking. Instead, the accuracy 

performances were given the emphasis by drawing criticisms 

towards the deployment of OA as ineffective as compared to 

other state-of-the-art heuristic algorithms. Bees Algorithm 

(BA) is one heuristic search technique that discovers optimal 

(or near optimal) solutions using search strategy mimics the 

social behaviour of a honeybee colony. In this comparison 

work, modified-BA (mBA) is introduced into the optimization 

scheme of MTS with a modification on its neighbourhood 

search mechanism from the original BA. Instead of searching 

in random mode, a backward selection method is proposed. MD 

is used as the result assessment metric while the larger-the-

better type of SNR is deployed as the algorithm’s objective 

function. The historical heart liver disease data are used as the 

case study on which the comparisons between OA, mBA and 

BA performances specifically in terms of the computing speed 

are made and addressed. The outcomes showed a promising 

performance of the mBA as compared to OA with a comparable 

classification accuracy rate. Eventhough OA outperformed 

mBA in terms of computational speed, the MTS manage to 

classify at the expense of lower number of variables suggested 

by mBA. The mBA also converges faster than the conventional 

BA in finding the potential solution of the case problem.  

Keywords: Mahalanobis-Taguchi System, Orthogonal Array, 

Bees Algorithm, Feature Selection, Swarm Intelligence 

 

1 INTRODUCTION 

The Mahalanobis–Taguchi System (MTS) is a pattern 

information technology that aids quantitative decision making 

process by constructing a multivariate measurement scale using 

data analytic methods (Ramlie, Jamaludin, & Dolah, 2016). It 

was developed by the renowned Japanese Quality guru Dr. 

Genichi Taguchi. The MTS methodology started with the 

theory of Mahalanobis distance (MD) formulated by the 

famous Indian statistician, Dr. P.C. Mahalanobis in 1936 

(Mahalanobis, 1936) inspired from his determination to 

examine if the Indian people who married European people 

came from specific caste levels. The formulation of MD was 

then extended by Dr. Taguchi whom integrated the MD 

formulation with his robust engineering concepts to enhance 

the MD methodology to become a popular application tool for 

pattern recognition and forecasting technique in 

multidimensional systems (Muhamad, Jamaludin, Yahya, & 

Ramlie, 2017). Therefore, numerous applications of MTS 

ranging from the field remanufacturing, medical diagnosis, 

pattern recognitions, aerospace, agro-cultures, administration, 

banking and finances have been reported (Abu, Jamaludin, & 

Ramlie, 2013; Ghasemi, Aaghaie, & Cudney, 2015; Muhamad, 

Ramlie, & Jamaludin, 2017; Muhamad, Jamaludin, Ramlie, 

Harudin, & Jaafar, 2017). 
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Despite the great acceptance by various academicians and 

industrial communities since its introduction by Taguchi, one 

operational aspect of MTS related to the deployment of 

orthogonal array (OA) as the feature selection algorithm in 

MTS has been criticised by many (Hawkins, 2003, Woodall et 

al., 2003, Abraham & Variyath, 2003, Pal & Maiti, 2010). 

Hawkins (2003) argued that OA is a type of fractional factorial 

design of experiment scheme, thus it is not guarantee to obtain 

optimal results due to simplicity of the experimental run. This 

argument was supported by Woodall et al., (2003) where they 

attempted to optimize the features in the medical diagnosis of 

liver disease using OA and benchmarked the results based on 

full factorial combinations test. Moreover, Abraham & 

Variyath (2003) supported this argument in which they 

attempted to optimize the features for the same case study using 

Forward Selection procedure. The result showed that via this 

method, more optimal combination was found compared to 

optimal combination obtained via OA. However, Forward 

Selection method has the tendency to suffer from ‘nesting-

effect’ that is, once the variable of interest is chosen, there is no 

way for it to be omitted (Theodoridis & Koutroumbas, 2009). 

In the context of MTS, feature selection is conducted to reduce 

the number of the original features without having the loss of 

recognition quality. To meet the objective, orthogonal array 

(OA) matrix is utilised to search for the optimum set of features 

while signal-to-noise ratio (SNR) is used to measure the 

accuracy of prediction via the optimal feature set obtained. This 

feature selection process in MTS is important because not only 

it increases recognition accuracy, it also provides 

computational cost benefits since the resulting recognition will 

be faster and consume less memory (Thangavel & 

Pethalakshmi, 2009) due to lesser number of features then the 

original set. 

Taguchi et al. (S. Taguchi, Jugulum, Taguchi, & Wilkins, 2003) 

recommended a better search algorithm should be incorporated 

into the MTS methodology to improve MTS performance, thus 

several attempts to replace the OA with other techniques 

particularly the Swarm Intelligence-based algorithms such as 

Particle Swarm Optimization (PSO) (Pal & Maiti, 2010, 

Reséndiz & Rull-Flores, 2013, Reyes-Carlos, Mota-Gutiérrez, 

& Reséndiz-Flores, 2018), Ant Colony Optimization (ACO) 

(Reséndiz, Moncayo-Martínez, & Solís, 2013a) and Bees 

Algorithm (BA) (Ramlie et al., 2016) have been reported. The 

reports on the attempts are discussed on the following sub-

section. 

 

1.1 Recent Swarm Intelligence-based feature selection 

studies replacing OA in the Mahalanobis-Taguchi 

System 

The emergence of optimization and feature selection studies 

adopting Swarm Intelligence (SI) has gained great interest in 

the literature due to the advantages of collective solution 

strategies offered by this technique. SI is a collection of 

metaheuristic search strategy that mimics the collective social 

behaviour of animals or insects. Particle Swarm optimization 

(PSO), Firefly algorithm (FA), Cuckoo Search algorithm 

(CSA), Artificial Fish School algorithms, Bees-inspired 

algorithms, Bats algorithms to name a few are among the state-

of-the-art heuristic search algorithms that fall under the 

umbrella of SI (Krause, Cordeiro, Parpinelli, & Lopes, 2013). 

Recent studies have shown that SI search strategies have gained 

huge appreciations from literature for solving complex and 

discrete optimization problems with greater success (Blum & 

Merkle, 2008, Yang, 2010) due to the advantageous of 

exploration and exploitation search characteristics offered by 

this technique.  

Pal and Maiti (2010) proposed binary PSO algorithm to 

facilitate MTS optimization scheme replacing the OA in MTS. 

In spite of using SNR as the objective function, they formulated 

a mathematical model decision criterion based on minimization 

of total weighted misclassification (TWM). Misclassification 

happens when a recognition system wrongly predicts samples 

out of their true condition (Type I and Type II errors). Hence, 

to incorporate misclassification in the case of decision making 

criteria, the associate misclassification probability that 

minimizes Type I and Type II errors must be considered 

(Woodall et al., 2003). The proposed method was tested on 

characterizing the optimum chemical elements of grey cast iron 

from an Indian foundry shop and the results were compared 

against the optimum chemical elements obtained via OA based 

on the final SNR values. The outcome from the study showed 

that the predictive performance of the proposed method was 

better compared to OA since it produced higher SNR value. 

However, validation in terms of performance accuracy based 

on several testing samples was not being reported. 

Furthermore, the use of TWM based on misclassification 

probabilities in MTS seems inappropriate. MTS does not 

consider any statistical inference on all the sample population 

prior MTS deployment including the abnormal data since 

abnormal data are not treated as a separate population (G. 

Taguchi & Jugulum, 2002, Ghasemi et al., 2015). Nevertheless, 

to the author’s knowledge, replacing OA using PSO algorithm 

was the first attempt found in the literature to deploy an SI 

technique in MTS methodology. 

Similar optimization approach deploying SI strategy to 

expedite MTS optimization procedure were demonstrated by 

Reséndiz et al. (2013b) and Reséndiz and Rull-Flores (2013) to 

replace OA with Binary Ant Colony Optimization (BACO) and 

Gompertz Binary Particle Swarm Optimization (GBPSO) 

algorithms respectively. However, the works aimed at only 

comparing the respective converging performances against 

BPSO proposed by (Reséndiz et al., 2013b) in MTS framework 

based on the number of computational iterations towards the 

optimum solutions. The studies made no discussions on 

comparing the performances against OA. 

Ramlie et. al (2016) has adopted Bees Algorithm (BA) to 

replace the OA for feature selection of the MTS. In the study, 

MD was used as the result assessment metric while the larger-

the-better type of SNR was deployed as the algorithm objective 

function. Character recognition based on Taguchi concepts 

(exploiting variation and abundance items) was used as the case 

study on which the comparison between BA and OA 

performances was made. The results showed a promising 

discriminant power of the optimized system via BA as 

compared to OA.  
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Table 1 summarizes the works found in the literature to replace 

the OA as the search and optimization strategy in enhancing the 

MTS methodology. Therefore, in this study, another recent SI 

optimization technique called modified-Bees Algorithm 

(mBA), a modified version from the original BA is introduced 

into MTS optimization procedure replacing the OA for 

comparison. The SNR measurement metrics will be retained 

from the original MTS framework as the objective function for 

selecting the important features of the system. 

The paper is presented as follows, a theoretical overview on 

fundamental concept of MD and MTS are explained in Section 

2. A brief concept of BA as well as the mBA and the fusion 

strategies between the MTS and the newly proposed mBA are 

discussed in Section 3. Section 4 explains the required 

performance criteria in evaluating the results while Section 5 

highlights the case study based on the original Taguchi’s liver 

disease data. The discussion on the results is presented in 

Section 6 while Section 7 concludes the key findings and 

contributions of this paper. 

 

Table 1: Studies of MTS by replacing the OA with other SI techniques. 

Optimization techniques Objective function / 

feature selection 

criterion 

Performance evaluation in 

comparison to OA/ Conventional 

MTS 

 

Remarks 

Classification 

Accuracy 

Optimization 

Speed 

Binary Ant Colony 

Optimization (BACO) 

(Reséndiz et al., 2013b) 

Minimization of total 

weighted 

misclassification 

X X Speed performances based on number 

of iterations by BACO and BPSO, no 

comparison to OA on accuracy and 

speed was made. 

Binary Particle Swarm 

Optimization (BPSO) (Pal & 

Maiti, 2010) 

Minimization of total 

weighted 

misclassification 

√ X Speed performances based on number 

of iterations by BPSO, no comparison 

to OA on speed was made. 

Gompertz Binary Particle 

Swarm Optimization 

(GBPSO) (Reséndiz & Rull-

Flores, 2013) 

Minimization of total 

weighted 

misclassification 

X X Speed performances based on number 

of iterations by GBPSO, BACO and 

BPSO, no comparison to OA was made 

on accuracy and speed. 

Bees Algorithm (Ramlie et 

al., 2016) 

Maximizing signal-to-

noise ratio 

√ √ Performance measures based on both 

accuracy and speed by comparisons 

between BA and OA 

Legend: ‘√’ reported in literature; ‘X’ not reported in literature; ‘*’ proposed method in this work 

 

2 THE CONCEPT OF MAHALANOBIS DISTANCE 

(MD) 

MD is a dimensionless distance measure based on correlation 

between features and pattern differences that can be analysed 

with respect to a reference population (Hwang & Park, 2011), 

as shown in Figure 1. This reference population is called as the 

normal space. The distance measure termed as the Mahalanobis 

Scale (MS) and aids the discriminant analysis approach by 

assessing the level of abnormality of datasets against the 

normal space. 

 

Figure 1: Mahalanobis Distance based on two features 

(Hwang & Park, 2011) 

 

MD has an elliptical shape (see Figure 1) due to the correlation 
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effect between the features. If there is no correlation, the MD is 

the same as the Euclidean Distance (ED) that has a circular 

shape. MD is different from Euclidean Distance since the later 

does not consider the correlation among the features of the data 

points.  

2.1 Mahalanobis Distance (MD) Formulation 

MD is defined as in Equation 1. 

𝑴𝑫𝒋 =  𝑫𝒋
𝟐 =   𝒁𝒊𝒋

𝑻 𝑪−𝟏𝒁𝒊𝒋   with  𝒁𝒊𝒋 =  
𝒙𝒊𝒋− 𝒎𝒊

𝒔𝒊
                    (1) 

Where;  

i = the number of features (i = 1, 2, ... , k); 

j = the number of samples (j = 1, 2, .., n); 

Zij = the standardized vector of normalized characteristics of xij; 

xij = the value of the ith characteristic in the jth observation; 

mi = the mean of the ith characteristic; 

si = the standard deviation of the ith characteristic; 

T = the transpose of the vector;  

C-1 = the inverse of the correlation coefficient matrix. 

MD has been well deployed in a broad array of applications 

(Feng, Hiroyuki, Hidennori, Yuichi, & Hu, 2011, Guo, Yin, Li, 

& Zhao, 2013) mainly because it is very effective in tracking 

intervariable correlations in data.  

2.2 Mahalanobis-Taguchi System (MTS) procedures 

Taguchi extended the MD methodology with his robust 

engineering concepts to become an efficient and effective 

strategy for prediction and forecasting in multidimensional 

systems. In the MTS methodology, the formulation of MD is 

‘scaled’ where the existing MD formulation stated in Equation 

1 is divided by a term ‘k’ that denotes the number of variables 

or features of a recognition system. Therefore, the equation for 

calculating the scaled MD in the MTS methodology becomes: 

𝑴𝑫𝒋 =  𝑫𝒋
𝟐 =  

𝟏

𝒌
𝒁𝒊𝒋

𝑻 𝑪−𝟏𝒁𝒊𝒋                                 (2) 

From this point onwards, the MD computation will be based on 

Equation (2). The MD offers a statistical measure to diagnose 

unknown sample conditions with known samples and provides 

information to make future prediction. 

The fundamental steps in the MTS methodology are explained 

in the next section. 

 

2.2.1 STAGE 1: Construction of measurement scale 

To construct a measurement scale, a homogeneous data set 

from normal observations needs to be collected to build a 

reference group called the normal group (W. Z. A. W. 

Muhamad et al., 2017). It is used as a base or reference point in 

the scale. The collected normal datasets need to be standardized 

to obtain a dimensionless unit vector followed by the MD 

computation. Practically, the MD for unknown data is 

interpreted as the nearness to the mean of the normal group. As 

a countercheck, the average value of the MDs for the normal 

group must always be close to unity; therefore they are called 

the normal space or Mahalanobis Space (MS) (Teshima, 

Hasegawa, & Tatebayashi, 2012). 

The steps for the construction of the MS are outlined below: 

a) Calculate the mean characteristic in the normal data set as: 

𝒙𝒊 =  
∑ 𝑿𝒊𝒋

𝒏
𝒋=𝟏

𝒏
                                                            (3) 

b) Then, calculate the standard deviation for each 

characteristic: 

𝒔𝒊 =  √∑ (𝑿𝒊𝒋− �̅�𝒊)
𝟐𝒏

𝒋=𝟏

𝒏−𝟏
                                                 (4) 

c) Next, standardise each characteristic to form the normalized 

data matrix (Zij) and its transpose (𝑍𝑖𝑗
𝑇 ): 

𝒁𝒊𝒋 =  
(𝑿𝒊𝒋− �̅�𝒊)

𝒔𝒊
                                                          (5) 

d) Then, verify that the mean of the normalized data is zero: 

�̅�𝒊 =
∑ 𝒁𝒊𝒋

𝒏
𝒋=𝟏

𝒏
= 𝟎                                                      (6) 

e) Verify that the standard deviation of the normalized data is 

one: 

𝒔𝒛 =  √∑ (𝒁𝒊𝒋−�̅�𝒊)
𝟐𝒏

𝒋=𝟏

𝒏−𝟏
= 𝟏                                          (7) 

f) Form the correlation coefficient matrix (C) of the normalized 

data. The element matrix (cij) is calculated as follows: 

𝒄𝒊𝒋 =  
∑ (𝒁𝒎𝒁𝒋𝒎)𝒏

𝒎=𝟏

𝒏−𝟏
                                                   (8) 

g) Compute inverse correlation coefficient matrix (C-1) 

where: 

𝑪 =
𝑪𝒐𝒗(𝑿,𝒀)

𝑽(𝑿)𝑽(𝒀)
                                                             (9) 

where:  

𝑪𝒐𝒗 (𝑿, 𝒀) =  
𝟏

𝒏−𝟏
∑ (𝑿𝒊 − �̅�)(𝒀𝒊 − �̅�)𝒏

𝒊=𝟏            (10) 

n is the number of samples, 

X and Y are two different features being correlated, X bar and 

Y bar are the averages among the data in each variable, and 

V(X) and V(Y) are the variances of X and Y.  

h) Finally, calculate the MDj using Equation (2).  

 

2.2.2 STAGE 2: Assessment of the measurement scale 

To evaluate the measurement scale, observations outside the 

MS or abnormal datasets are used. The same mathematical 

calculation is repeated to calculate the same goal (MD value) 

using the abnormal sample data. However, the abnormal data is 

normalized based on the mean, standard deviation and 
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correlation matrix of the normal group. The normal MDs and 

abnormal MDs are then compared. An acceptable measurement 

scale should demonstrate significant discrimination between 

the normal and abnormal MD values.  

 

2.2.3 STAGE 3: Identify significant features 

In the third stage, the system is optimized by means of selecting 

only the features that are known to be significant or ‘useful’ for 

the system. This is where the OA and SNR are utilized. The 

features are assigned to an orthogonal array experimental run 

of two-level, in which ‘used’ is signified as level 1 and ‘not 

used’ as level 2. The MD for each experiment runs for all ‘used’ 

features from each abnormal sample is calculated. The 

calculated MD values are recorded according to the 

experimental run. The SNR based on the MD values for all 

samples is then computed.  

 

2.2.3.1 The role of the orthogonal array (OA) in MTS 

Orthogonal array (OA) is a type of fractional factorial design 

of experiment introduced by C.R. Rao in 1947 (Hedayat, 

Sloane, & Stufken, 1999). It is different from the traditional 

fractional factorial DOE in the sense that it tries to balance the 

combination or interaction of factors equally with the minimum 

number of experimental runs. In MTS, the orthogonal array 

structure is represented by Latin symbology as La (bc) where L 

is the Latin Square, a is the number of runs, b is the number of 

factor levels and c is the number of main factors. Figure 2 

illustrates an example of an OA structure for 7 factors with 

eight runs and two factor levels.  

 

Figure 2: An example of an OA structure of type L8(27) 

array. 

 

The name ‘orthogonal’ is suggested not because of the 

perpendicular attribute of the structure but rather it is defined 

as any pairs of columns with the same repetition number of 

combination of factors (Hedayat et al., 1999). To illustrate 

further, using the OA in Figure 2 as an example, take a pair 

between column 1 and column 2, the repetition number of each 

level of combinations in this column pair is the same (which is 

twice in this case). The same number of repetitions should be 

obtained for the rest of the column pairs thus the L8 (27) array 

depicted by Figure 2 can be said to be orthogonal. Table 2 

illustrates the number of repetitions in level combination for 

another three more column pairs.  

Table 2 : The number of repetitions of level combinations. 

 

 

The same repetition number of levels (twice) of all two column 

pairs of this OA structure is obtained; therefore the L8 (27) 

array, as depicted by Figure 2, can be said to be orthogonal. 

In MTS, OAs are used to select the features of importance by 

minimizing the different combinations of the original set of 

features. The features are assigned to the different columns of 

array. Since the features have only two levels, a two-level array 

is used in MTS as illustrated in Figure 2. For each run of an 

OA, MDs corresponding to the known abnormal conditions are 

computed. The importance of features is judged based on their 

ability to measure the degree of abnormality on the 

measurement scale (G. Taguchi & Jugulum, 2002). This is 

where the signal to noise ratio metric is deployed. Further 

discussion on OA concepts can be found from (G. Taguchi & 

Jugulum, 2002, Hedayat et al., 1999, Park, 1996 and Phadke, 

1989).  

 

2.2.3.2 The role of the SNR in MTS  

The signal to noise ratio (SNR) concept which can be 

considered as the core essence of Taguchi philosophy, is 

developed by Taguchi who was inspired when he was 

practicing the engineering profession in a Japanese 

telecommunication company in the 1950s. In 

telecommunication context, the SNR captures the magnitude of 

true information (i.e. signals) after making some adjustment for 

uncontrollable variation (i.e. noise) (G. Taguchi & Jugulum, 

2002). In Taguchi’s robust engineering concept, the SNR is 

defined as the measure of the functionality of the system, which 

exploits the interaction between control factors and noise 

factors. A gain in the SNR value denotes a reduction in the 

variability, hence a reduction in the cost associated with the 

overall significant factors of interest. Park (1996) and Phadke 

(1989) provide a detailed description of SNR concepts and its 

origin of formulation.  

In the context of MTS, the SNR is defined as the measure of 

accuracy of the measurement scale for predicting abnormal 

conditions (G. Taguchi & Jugulum, 2002). In MTS, a higher 

value of SNR, expressed in decibels (dB), means a lower 

prediction error. SNR is used as a metric to assess how 

significant each variable in the system contributes to the ability 

to discriminate between the normal and abnormal observations. 

It could also be used to assess the overall performance of a 

given MTS system and the degree of improvement after 

optimization. 

The three most commonly used types of SNR in MTS are 

Run 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1

2 1 1 1 2 2 2 2

3 1 2 2 1 1 2 2

4 1 2 2 2 2 1 1

5 2 1 2 1 2 1 2

6 2 1 2 2 1 2 1

7 2 2 1 1 2 2 1

8 2 2 1 2 1 1 2

Factor

Col 1 & Col 2 Col 1 & Col 3 Col 1 & Col 7 Col 3 & Col 6

1 1 2 2 2 2

1 2 2 2 2 2

2 2 2 2 2 2

2 1 2 2 2 2

Number of repetition

Combinations
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larger-the-better (LTB), nominal-the-best (NTB), and dynamic 

(G. Taguchi & Jugulum, 2002, Teshima et al., 2012, G. 

Taguchi, Rajesh, & Taguchi, 2004). In this study, the larger-

the-better SNR will be deployed. 

 

2.2.3.2.1  Larger-the-better SNR 

LTB is formulated as in Equation (11) below, where t are the 

abnormal conditions and D1
2, D2

2, ….Dt
2 are the MDs 

corresponding to the abnormal situations. The SNR (for the 

larger-the-better criterion) corresponding to qth run of OA is 

given as: 

𝑺𝑵𝑹 =  ƞ𝒒 =  −𝟏𝟎𝒍𝒐𝒈𝟏𝟎 [
𝟏

𝒕
 ∑ (

𝟏

𝑫𝒊
𝟐)𝒕

𝒊=𝟏 ]              (11) 

For each variable Xi, SNR1 represents the average SNR of level 

1 for Xi while SNR2 represents the average SNR of level 2 for 

Xi throughout the vertical columns of the OA. Thus, positive 

gains from Equation (12) constitute useful features while 

negative gains constitute otherwise. Table 3 illustrates the 

assessment made using the SNR to evaluate significant factors 

of the L8 OA structure.  

𝐺𝑎𝑖𝑛 =  𝑆𝑁𝑅1 −  𝑆𝑁𝑅2                                         (12) 

 

 

 

Table 3 : An example of useful feature selection using OA (L8 [27]) and SNR  

 

 

 

Figure 3: Fundamental four stages in MTS methodology 

 

 

Run 1 2 3 4 5 6 7 SNR

1 1 1 1 1 1 1 1 MD1 MD2 MD3 MD4 SNR 1

2 1 1 1 2 2 2 2 MD1 MD2 MD3 MD4 SNR 2

3 1 2 2 1 1 2 2 MD1 MD2 MD3 MD4 SNR 3

4 1 2 2 2 2 1 1 MD1 MD2 MD3 MD4 SNR 4

5 2 1 2 1 2 1 2 MD1 MD2 MD3 MD4 SNR 5

6 2 1 2 2 1 2 1 MD1 MD2 MD3 MD4 SNR 6

7 2 2 1 1 2 2 1 MD1 MD2 MD3 MD4 SNR 7

8 2 2 1 2 1 1 2 MD1 MD2 MD3 MD4 SNR 8

SNRL1 SNRL1 SNRL1 SNRL1 SNRL1 SNRL1 SNRL1

SNRL2 SNRL2 SNRL2 SNRL2 SNRL2 SNRL2 SNRL2

Gain(+/-) Gain(+/-) Gain(+/-) Gain(+/-) Gain(+/-) Gain(+/-) Gain(+/-)

MD Computation 

Factor

Averaging

Subtraction

Construction of  reference group 
Mahalanobis Distance (Measurement 

Scale)  

Variables determination with Unit Reference Space 

Data samples acquisition with healthy state as reference group 

Calculation of the Mahalanobis Distance of the Unit Space 

Assessment of Measurement Scale 

Data samples acquisition of abnormal state  

Calculation of Mahalanobis Distance of abnormal samples 

Identify Significant Variables 

Deploy appropriate Orthogonal  Array 

Signal to Noise Ratio (SNR) calculation for abnormal samples 

Selection of significant variables which contribute to discriminant 
ability 

Validation of optimized significant variables 

Future Deployment the optimized 
system 

Validation of identification threshold 

Diagnosis, classification and forecasting implementation using 
significant variables.  

<Stage 1> 

<Stage 2> 

<Stage 3> 

<Stage 4> 
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2.2.4 STAGE 4: Future deployment with significant 

features 

The optimized system is then re-evaluated with the abnormal 

samples to validate the effectiveness of assessing the 

discriminant power. Once confirmed, the optimized system is 

used for future application in diagnosis, classification, or 

forecasting purposes. Figure 3 illustrates the summary of the 

fundamental stages in MTS. 

 

3 METHODOLOGY 

This section presents an overview of Bees Algorithm (BA) 

methodology developed by  Pham et al. (2006) followed by the 

fusion strategies between MTS and mBA. 

3.1 Bees Algorithm 

Bees Algorithm (BA) was proposed by Pham and his 

colleagues in 2005 (Pham & Castellani, 2009). BA is an SI 

technique that provides an optimization solution based on the 

collective interaction between bee agents within the colony. 

This collective intelligent mechanism serves as the backbone 

of the technique at which faster convergence (or divergence) 

towards the most promising solution is made possible.  

BA gets inspiration from the food foraging behaviour of bees 

to search for the most promising solution to a given 

optimization problem. Each potential solution in the search 

space is treated as a food source for the bees. Therefore, each 

bee carries one possible solution for the problem. 

In BA, a population of ‘scout bees’ randomly search the 

solutions (food) in the sample space and evaluates the quality 

of each solution (food) based on a predefined fitness function 

of the optimization problem. All found solutions by the ‘scout 

bees’ are then ranked in either ascending or descending order 

(depending on the fitness function objective). In a real bee 

colony, the food quality is evaluated via a ‘waggle dance’ in 

which information about the food discovered (the direction of 

the food source, its distance from the hive and quality of the 

food) is choreographed (Pham et al., 2006).  

The highest ranked solution is chosen as a potential optimum 

solution and more bees will be recruited to exploit further 

solution (if any) around its neighbourhood area. The 

neighbourhood of a solution is called a ‘flower patch’ in the 

natural bee colony term. In BA, the neighbourhood is the search 

landscape area near the best solution found during recruitment. 

Other lower ranked solutions will also be exploited selectively 

under a similar strategy. 

Despite the exploitation being performed in the neighbourhood 

area, the remaining scout bees will be assigned for global 

random searches to explore and locate (if any) other promising 

solutions better than the one that has been exploited before. 

This explorative search strategy is crucial to avoid the scout 

bees’ population being trapped at a local optimum during the 

search. Finally, a new set of ‘scout bee’ population is formed 

comprising the bees with the best solutions for all exploited 

sites discovered so far. A similar process (random search, 

neighbourhood exploitation, and global exploration) is 

repeated until a global best with a promising solution is found 

or the search limiting criterion is met. Pham et al. characterized 

the behaviour of the bees in foraging for food into an algorithm 

called the Bees Algorithm.  

BA requires several parameters prior to deployment which is 

portrayed in Table 4. The number of scout bees needed for the 

global search process is labelled as ‘ns’. Out of the preliminary 

solutions (food sites) found by the scout bees, the number of 

elite sites (elite solution) labelled as ‘ne’ and the number of the 

best site (best solution) labelled as ‘nb’ is formed. Each elite 

and best solutions obtained previously will be assigned a 

number of recruited bees for neighbourhood search process 

(exploitation purpose) labelled as ‘nre’ for the elite sites and 

‘nrb’ bees for the remaining best sites respectively. The size or 

boundary of the neighbourhood search for the exploitation 

process by both recruited bees mentioned above is labelled as 

‘ngh’ and the final parameter that is required control the 

iteration limit of the algorithms is labelled as ‘stlim’.  

Table 4: Basic Bees Algorithm Parameters 

 

Figure 4 illustrates the basic flow chart of BA proposed by 

Pham et al. (2006) where it incorporates the exploration and 

exploitation behaviour of the bees in nature into the algorithm 

which is described in the following sub-sections. 

 

Figure 4 : Flowchart of the basic Bees Algorithm 

 

BA has been widely used and solved various kind of 

optimization problems including combinatorial and discrete 

optimization problems, functional and continuous optimization 

problems, optimization in the design of mechanical 

components, multi-objective optimization problems as well as 

ns number of scout bees

ne number of elite sites

nb number of best sites

nre recruited bees for elite sites

nrb recruited bees for remaining best sites

ngh intinial size of the neigborhood

stlim limit or stopping criterion
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NP-Hard problems such as the Generalized Assignment 

Problem (GAP) (Özbakir, Baykasoǧ lu, & Tapkan, 2010; Tsai, 

2014). 

 

3.2 The Proposed modified-BA (mBA) and its fusion 

strategy in the MTS 

3.2.1 Problem Understanding 

In the context of optimization literature, optimization problems 

can be divided into two type namely continuous and discrete 

(combinatorial or binary) optimization problems. Unlike the 

continuous optimization problem, a discrete optimization 

problem requires an update of its vector solution that represents 

the combinatorial problem by preserving the validity of the 

combination of the solution (Krause et al., 2013). The latter can 

be further grouped into four main classes of problems namely 

the ordering problems, the assignment problems, the grouping 

problems and the subset (feature selection) problems 

(Engelbrecht, 2006), of which the MTS optimization problem 

falls under the latter category. Optimization problem in the 

context of MTS, is considered a discrete optimization problem 

since the optimization solution sought via the MTS comes in a 

reduction number of combinatorial features from the original 

feature set. To fuse a swarm intelligence algorithm such as the 

mBA into this discrete nature of optimization problem such as 

the MTS, an encoding process to a discrete dimension which 

often called as discretization need to be adapted.  

 

3.2.2 Discretization and Problem Formulation 

There are several discretization methods that have been 

reported in the literature. In the context of fusing swarm 

intelligence algorithm into the MTS discrete optimization 

problem, (Pal & Maiti, 2010) and (Reséndiz & Rull-Flores, 

2013) deployed a discretization method using a sigmoid 

function to characterized the Particle Swarm Optimization 

algorithm into a binary characterization of the solution vector. 

(Reséndiz et al., 2013b) adopted similar discretization method 

when they characterized Ant Colony Optimization algorithm 

into the MTS framework. Ramlie et al. (2016) however, 

adopted a different type of discretization method called the 

smallest position value (SPV) discretization. Unlike the 

sigmoid function discretization which encodes the vector 

solution in binary (0s and 1s) form, SPV maps the position of 

the solution vectors by placing the lowest index of the solution 

component (i.e. smallest combination of solutions) as the first 

item on a permutated or combinatorial landscape followed by 

the second lowest and so on until the largest combination. This 

discretization technique creates an integer vector solution by 

indexing the position of all possible combination of the solution 

in an enumeration list (Krause et al., 2013).   

Hence, the goal of a subset problem (SSP) is similar to feature 
selection goal (in the pattern recognition context) which is to 

select the best subset of ns from a set of n (n is the full feature 

set of a system such that ns ⊆ n) items that a given objective 

function is optimized (minimize or maximize) under this subset 

of ns without violating the problem’s constraints. 

Traditionally, in the context of the feature selection problem of 

the MTS, orthogonal array (OA) is used to search the optimum 

subset of features while signal-to-noise ratio (SNR) is used to 

measure the accuracy of a prediction made by the optimal 

feature subset obtained. However, since SI algorithms such as 

the mBA is to be deployed replacing the OA in this work, the 

subset selection of MTS is characterized as follows: 

An enumeration group defined as S: 2p-1 is constructed 

that lists all possible combinations of the total numbers of the 

decision variables, p. Each subset combination is labelled as 

subset Xi where i = 1 to 2p-1. Each Xi carries a unique subset of 

combination such that subset Xi ⊆ S. This enumeration integer 

list bounded by i = 1 to 2p-1 provides the lower and the upper 

boundary limit in the global search (exploration) landscape.  

Figure 5 illustrates further this concept explained above in 

graphical illustration taking an example of p = 5 number of 

features. As shown in Figure 5, with p = 5 as the total number 

of total features of the original system, for instance, a total of 

31 number of possible unique combinations (25-1 = 31) is 

computed. Therefore, the integer index ranges from the first 

combination until the 31st set of combination, forms the search 

lower and upper boundaries of the swarm intelligence 

algorithm (i.e. the BA) within the optimization search 

landscape. From the index i range, a solution of  "X1" consists 

a subset solution of ‘A’, a solution of "X17"  consists a subset 

solution of ‘A’, ‘B’, ‘D’ while a solution of "X31"  consists a 

subset solution of ‘A’, ‘B’, ‘C’, ‘D’ and ‘E’ such that  "X1"  

=[A], "X17"  =[A, B, D] and "X31"  =[A, B, C, D, E] to form 

their respective vector components.  

 

Figure 5 : Illustration of the discretization approach of 

this study taking example of p = 5 features 
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Figure 5 illustrates the global search process conducted by the 

scout bees in the global search landscape bound by integer i (in 

this case it is between 1 to 31) which assigned to solution 

component of X "⊆" [A,B,C,D,E]. As shown in Figure 5, take 

the number of scout bees (ns) equals to 5 for instance, all the 

assigned scout bees will randomly ‘fly’ to find the promising 

‘food locations’ or solutions bounded by the search index 

ranges between X1 to X31 (since p=5 as in this illustration). 

Once the bees found their candidate of solutions, take the first 

bee for instance, it ‘landed’ on X6 of the ‘food location’ (one 

of the solutions’ candidates) index which consists of solution 

vector of features ‘A’ and ‘B’, the bee started to compute the 

MD values based on the respective features as well as its 

corresponding SNR value. The SNR value obtained from this 

computation represents the solution value of the search found 

by the particular bee which carries the feature selection of 

variables ‘A’ and ‘B’ as its current optimized features.  

Take the last bee for instance, it randomly explores the global 

search landscape and ‘landed’ on a ‘food location’ of X30 (one 

of the solutions’ candidates) index which consists of solution 

vector of features ‘B’, ‘C’, ‘D’ and ‘E’, the bee will compute 

the MD values based on the features that it has currently found 

followed by computation of its corresponding SNR value. The 

SNR value obtained from this computation represents the 

current solution value of the current search found by the bee 

which carries the feature selection of variables ‘B’, ‘C’, ‘D’ and 

‘E’ as its current optimized features. The other bees (as 

illustrated in Figure 6) follow a similar global search as well as 

MDs and SNRs computational processes. 

Thus, the objective of the problem which was characterized in 

this study is to find the integer i on any Xi that carries the 

optimum subset of the decision variables which maximizes the 

objective function 𝑓(𝑋𝑖
𝑡+1) such that: 

𝑓(𝑋𝑖
𝑡+1)  >  𝑓(𝑋𝑖

𝑡)  ,  

For each XS, i = 1 to 2p-1 and t is the time 

step, 

13 

 

Subjected to: 

f(Xi
t) > f(Xoriginal set

0 ); 

i > 0; 

i≤  2p − 1;  where p is the number of total 

decision variables in the original system. 

Therefore, the objective function f(Xi
t)  in this problem is 

formulated based on Equation (11) which is larger-the-better 

SNR. 

 

3.3 The Proposed BA Neighbourhood Search Structure 

In the previous section, we have presented the ‘exploration’ of 

the scout bees through an integer discretization of the global 

search landscape. In this section, the ‘exploitation’ process 

which is known as the neighborhood search in a bee colony to 

intensify the search process in finding better solutions is 

presented.  

The neighborhood (local) search structure is built similar to the 

global search architecture which was previously mentioned, 

however, the only difference between the global search and the 

neighborhood search lies on the selected features that the bees 

need to be exploited. The number of decision variables or the 

features is based on the current best subset found so far. Thus, 

the neighborhood search landscape can be represented as a 

group of combination sets defined as N: 2k-1 where k is the 

number of decision variables found so far such that k ⊆ p, 

which assigns to the group set of N∈S. Each subset 

combination in the neighborhood search area is labeled as 

subset Xj with j = 1 to 2k-1 such that subset Xj ⊆ N ⊆ S. Hence, 

a locally maximum solution f(Xj) (or minimum solution 

depending on the objective of the problem) could be 

determined from this neighborhood structure. Since this study 

is intended to maximize the objective function, a locally 

maximum solution with respect to a neighborhood structure N 

is a solution such that ∀ Xj 
t ∈ N : f(Xj 

t )≥ f(Xi
t) (Blum & Roli, 

2003). Figure 7 provides a graphical illustration of an example 

of the neighborhood search process (the one on the right side of 

the figure) of the BA in this study. 

 

 

 

 

 

 

 

.
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Figure 6 : The proposed global search architecture of the study 

 

Figure 7 : Neighbourhood search architecture proposed in this study 
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The graphical representation of Figure 7 is the extension of the 

global search process illustrated by Figure7 previously in 

which the neighborhood search example is initiated from the 

current global solution found by the last bee (the one that 

landed on X30 solution index). In this example (see Figure), the 

solution found by this particular scout bee represented by the 

solution index of X30 that consists of ‘B’, ‘C’, ‘D’ and ‘E” as its 

solution candidates will be further discretized under similar 

integer discretization process of the global search architecture 

presented in the previous section to form a neighborhood search 

landscape for the exploitation purposes. As depicted in Figure, 

with four features (‘B’, ‘C’, ‘D’ and ‘E’) for example, a new 

combination list consisting of 15 different combination sets of 

‘B’, ‘C’, ‘D’ and ‘E’ is formed. The newly formed 

neighborhood search landscape comprises another solution 

index ranging from i=1 to i=15 based on the 24-1=15 

computation.  

If the global search landscape is randomly explored by the 

scout bees (ns), the neighborhood search landscape such as this 

example, however, will be randomly exploited by the recruited 

bees (nrb). Based on the example illustrated in Figure 7, 3 

recruited bees were assigned to exploit potential solutions in 

the neighborhood search landscape by which similar MDs and 

SNRs computational procedures as conducted by the scout bees 

in the global search landscape were performed. Take the second 

recruited bees for instance (see the right-hand side of Figure7), 

the recruited bee was ‘landed’ on a ‘food location’ denoted as 

X11 which comprises a solution candidate of ‘B’, ‘C’ and ‘E’. 

The particular recruited bee then continued to compute the MD 

value based on this three feature sets followed by its 

corresponding SNR computation. The other recruited bees (as 

illustrated in Figure) follow a similar neighborhood search 

processes as well as MDs and SNRs computational procedures. 

In this proposed bee’s algorithmic process, if the solution found 

by any of the recruited bees in the neighborhood search 

landscape is better than the solution found by the scout bees in 

the global search landscape, the solution found by the bees 

during the neighborhood search will be adopted as the current 

best solution found so far. In other words, should the recruited 

bees fail to find a better solution than that of the scout bees, the 

solution obtained by the scout bees in the global search 

landscape will be retained as the current best solution found so 

far.  

 

3.3.1 Backward Selection Search vs Random Search 

Despite a random means for the neighborhood search by the 

recruited bees, a backward selection neighborhood search 

technique is also proposed in this study. The random search by 

the recruited bees in the Bees Algorithm proposed by Pham 

et.al (2005) is adapted to the natural behavior of the bee colony 

in nature while exploiting potential high quality of nearby food 

sources that surrounds the promising flower patch 

recommended by the scout bees. In the context of Bees 

Algorithm, random search has the advantage of finding the 

promising solution more quickly but only by chance, and it 

poses a drawback in which random search has no control over 

the recruited bees to not ‘landing’ on the same ‘food location’ 

which had been visited by the previously recruited bees. Thus, 

they may share the same solution over the same search period 

without any unique solution from one another. This may 

increase the search effort and reduce the possibility to exploit 

other promising solutions in the neighborhood search 

landscape.  

Some may question as to why not utilize a forward selection 

technique instead? In the context of feature selection problem, 

reports from literature have suggested that from computational 

point of view, backward selection technique is found to be more 

computationally efficient than that of the forward selection one 

in finding the optimal (or near-optimal) solution (Jain, Duin, & 

Mao, 2000; Kumar & Minz, 2014; Theodoridis & 

Koutroumbas, 2009). In the proposed backward selection 

search technique for the neighborhood search process of the 

BA, the recruited bees will be firstly directed to the solutions 

with a higher order of combinations of features, up to the least 

order of combinations. Such search dedication can facilitate the 

recruited bees to visit a unique food location from one another 

hence increase the possibility to explore other unexploited sites 

which eventually enhance the search effort in finding a more 

promising solution faster.  

To understand the difference between the random search and 

the proposed backward selection search, Figure7 provides an 

example in graphical illustration of the difference between the 

two. Figure 8(a) illustrates the random search behavior while 

Figure 8(b) illustrates the proposed backward selection search 

behavior of the recruited bees in the neighborhood search 

process. From Figure8(a), with a k=5 number of neighborhood 

feature for instance, a total of 31 number of possible 

combinations (possible candidate of solutions) was generated 

based on the 2k=5-1 computation which forms a neighborhood 

search landscape between the index i=1 to i=31. A random 

search as portrayed in Figure8(a) behaves in such a way that all 

the recruited bees (nrb=4 in this case) will ‘fly’ to the food 

location anywhere between the solution index of i=1 to i=31 in 

random order. Take the last recruited bee as portrayed in 

Figure8(a) for instance, it ‘landed’ on the solution index with 

lower index number (Xi=10) as compared to it previously 

recruited mate, take the first recruited bee for instance of which 

it ‘landed’ on a higher index number (i.e Xi=17). Not to 

mention as previously stated that the last recruited bee (see 

Figure 8(a)) could also be potentially ‘landed’ on the same 

‘site’ as the first recruited bee since it searches the ‘food 

location’ randomly. A similar condition could also be posed by 

the other recruited bees under random search behavior.  

While in Figure 8(b), unlike random search behavior, each 

recruited bee under backward selection search strategy is 

dedicatedly assigned to explore potential promising food 

location decendingly within the neighborhood search landscape 

starting from the highest index number (i.e. Xi=30 down to 

Xi=26 for this case). The first recruited bee as portrayed in 

Figure8(b) will exploit the solution index consisting feature 

solution of ‘B’, ‘C’, ‘D’ and ‘E’ since it carries the largest index 

number (Xi=30) while the last recruited bees will exploit 

feature solution ‘A’, ‘B’, ‘C’ and ‘D’ since it carries the least 

solution index number (Xi=26) among the other solution index 

in this example. Thus, with such dedicated search processes, 

exploitation redundancies by the recruited bees could be 

avoided.  
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Figure 8 (a) : Random search example; (b) backward selection search example 

 

 

3.4 The Stopping Criterion 

To set the stopping criterion for minimizing objective function 

is common since it is based on value approaching the limit of 

zero value. However, setting the limit for maximizing an 

objective function is slightly challenging as the maximum 

value of the objective function as in this particular study is 

unknown (it could be any maximum value). This is where the 

significance of population-based solutions offered in swarm 

intelligence technique like BA is beneficial. The stopping 

criterion will be set when the optimum solution is reached with 

the same value by (almost) all population of the scout bees in 

the algorithm. When the saturated values have been reached, 

the population of the scout bees can no longer find other better 

solutions than what they have found so far hence denoting it as 

the final solution. Alternately, if most of the scout bees are not 

converging to the final solution, the algorithm is stopped when 

it reaches the iteration limit.  

 

3.5 Pseudo Code of the Proposed Algorithms 

Finally, Figure 9(a) illustrates the pseudo code of the proposed 

algorithm which incorporates all the designed elements 

mentioned in Section 3.2.1 until Section 3.4 previously. The 

original pseudo-code of the BA (in its simplified form) 

proposed by Pham et al., (2006) was also shown on the right-

hand side of the figure labeled as Figure 8(b). Note that the 

modified-Bees Algorithm proposed in this work followed 

similar algorithmic steps (i.e. 8 lines) with the conventional 

Bees Algorithm proposed by Pham et al., (2006) to preserve its 

originality. The exception was given to the top coding line of 

the proposed pseudo code of this work (see the ‘star’ marking 

on the top coding line of Figure 9(a)) in which discretization 

process mentioned in Section 3.2.2 was included at the initial 

stage to adapt the algorithm with the discrete nature of 

optimization problem of MTS. The original pseudo-code as 

depicted in Figure 9(b) does not have such requirement since it 

is originally designed for a continuous optimization problem.  

From Figure 9(a), in line 1 of the pseudo-code, an initial 

population of n number of scout bees will be assigned to visit 

potential ‘food’ sites and to search for an initial solution within 

the discretized global search landscape randomly. The fitness 

(the larger-the-better SNR in this case) of the visited sites 

(represented by the solution index containing feature 

candidates in this case) found by the scout bees are evaluated 

in line 2 of the pseudo code. While the stopping criterion 

mentioned in Section 3.4 is not met, the algorithm continues in 

line 4 where the bees with the highest fitness (i.e. the highest 

SNR value in this case) are chosen as ‘selected bees’ and the 

respective sites visited by them are chosen for neighborhood 

search in a group of recruited bees assigned respectively. Thus, 

several integer discretization of the neighborhood search spaces 

are formed based on the solution found so far from each scout 

bee before the neighborhood exploitation could be initiated. 

Then in line 5 of the proposed pseudo-code, with the newly 
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a b

Features (k )Features (k )

The grey 
shaded area is 

the 
Neighborhood  

Search 
landscape of 
the recruited 

bees 

The grey 
shaded area is 

the 
Neighborhood  

Search 
landscape of 
the recruited 

bees 



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 1 (2020), pp. 117-136 

© International Research Publication House.  https://dx.doi.org/10.37624/IJERT/13.1.2020.117-136 

129 

formed neighborhood search landscapes, each group of the 

recruited bees started to exploit for a more promising solution 

in their respective neighborhood search spaces, assigning more 

recruited bees for the best elite sites. It is only in this line 5 of 

the proposed pseudo code that the difference between the BA 

and the mBA is evident. For the BA, the recruited bees exploit 

the neighborhood sites randomly while for the mBA, the 

recruited bees visit the neighborhood sites using backward 

selection technique mentioned in sub-section 3.3.1 above.  

In line 6, on each respective neighborhood site visited by the 

respective recruited bees, only one bee which carries the best 

fitness (i.e. highest SNR value in this case) among them on each 

neighborhood site will be selected to form the next bee 

population for the succeeding iteration. Otherwise, the previous 

solution recommended by the initial scout bees will be 

maintained. In line 7, the remaining bees in the current bee 

population are assigned randomly around the global search 

space (i.e. around the integer discretization of the global search 

landscape formed at the initial stage of the algorithm) scouting 

for a new potential solution. Finally, in line 8, the algorithm 

repeats the similar exploitations (intensifications) and 

explorations (diversifications) processes starting back from line 

3 of the algorithm until the stopping criterion as mentioned in 

Section 3.4 is finally met. 

 

 

Figure 9: The pseudo code of the proposed modified-BA (mBA). 

 

The modified-BA is deployed replacing the conventional OA 

as the optimization technique in MTS. The modified element 

proposed in this paper is elaborated on section 3.2.4. Figure 10 

illustrates the conceptual idea behind the strategy.  

 

Figure 10: Conceptual flow chart of the study 

 

3.5.1 MTS Parameters 

In this fusion strategy, the conventional scaled MD is used as 

the metric to build the baseline multivariate space using 

Equation (2) while the larger-the-better (LTB) SNR is used as 

the objective function to be solved as denoted in Equation (11). 

Hence, the objective of mBA algorithm in the fusion strategy is 

to determine the maximum SNR value among the different sets 

of features using Equation (11). The set of features with the 

largest SNR value is the potential solution.  

 

4 PERFORMANCE CRITERIA 

In this study, three performance criteria are used to evaluate the 

performance of the proposed algorithm namely SNR gain as 

proposed by Taguchi and Jugulum (G. Taguchi & Jugulum, 

2002), as well as classification error and computational cost 

(i.e. running time) as suggested by Jain et al. (Jain et al., 2000). 

 

4.1 SNR Gain  

In MTS, the SNR is not only used to identify useful features, 

but it can also be used to measure improvement in the 

functionality of the system (G. Taguchi & Jugulum, 2002) 

based on the gain in the SNR value. An SNR gain is defined as 
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a value having a positive real number when the SNR value of 

the original system is subtracted by SNR value of the optimized 

set. A positive gain value denotes an improvement in the 

optimized system. The higher the positive value, the better the 

optimized system is in terms of its functionality and 

performance compared to the original (not optimized) system. 

A positive SNR gain relates to variability (noise) reduction in 

the optimized system (G. Taguchi & Jugulum, 2002). Hence, 

an accurate recognition and prediction decision is obtained with 

less computing costs. Table 5 illustrates an example of an SNR 

gain computation. 

Table 5: Example of SNR Gain calculation with a positive 

gain 

SNR (Optimal system) 13.98 dB 

SNR (Original system) 11.58 dB 

Gain 2.46 dB 

 

4.2 Classification accuracy and computational cost 

The classification error or simply the error rate is another way 

of measuring the performance of the optimized systems. In 

practice, the error rate of a recognition system must be 

estimated from all the available samples which are split into 

training and test sets (Jain et al., 2000) and are independent 

from one another. The recognition system is first constructed 

using the training samples, and then it is evaluated based on its 

classification performance on the test samples. The percentage 

of misclassified test samples is taken as an estimate of the error 

rate. Another performance measure which often overlooked in 

practice is the cost of measuring features or the computational 

requirements of the decision rule (Jain et al., 2000). Therefore, 

in this study, this requirement is also implemented as the 

performance measure.  

 

4.3 Exhaustive Search 

An exhaustive search algorithm was conducted as a 

comparative study (an analogy to a full factorial in design of 

experiment context). The exhaustive search technique is 

guaranteed to find the true optima of any given optimization 

problem (Jain et al., 2000) since it will search and evaluate each 

and every single possible solution. However, the drawback of 

this strategy is that it requires large computational efforts (i.e. 

long computing time). 

 

5 CASE STUDY  

The performance evaluation in terms of the computing speed is 

performed on the medical diagnosis of liver disease data 

provided by Taguchi and Jugulum (G. Taguchi & Jugulum, 

2002). In the following section, the deployment of the 

modified-Bees Algorithm in MTS using the data is presented. 

 

5.1 Medical diagnosis of liver disease data 

Liver disease data is a data that was originally collected and 

used for MTS analysis by Dr. Genichi Taguchi himself during 

his initial work on MTS. This data can be considered as a 

renowned data when it comes to evaluating MTS performances 

since it has been applied by various researchers in evaluating 

and analysing MTS performances (G. Taguchi, Chowdhury, & 

Wu, 2005; G. Taguchi & Jugulum, 2002; Teshima et al., 2012). 

The story behind the data came over nearly 30 years ago when 

Dr. Genichi Taguchi working together with Dr. Tatsuji 

Kanetaka of Tokyo Tenshin Hospital on which they embarked 

on a joint study of liver disease diagnosis. The result of the 

study was made public in 1987 and the data was published in 

various publications as well as being used for several MTS-

related study purposes.  

The data contains observations of a healthy group as well as the 

abnormal on 17 features as shown in Table 6. 

Table 6: Features in the liver disease diagnosis and 

notations for the analysis 

 

The healthy group (MS) is constructed based on observations 

of 200 people (healthy), who do not have any health problems 

together with 17 abnormal conditions (unhealthy). These data 

acts as the training data for the construction of initial MT 

system. Figure illustrates the MD distributions of the training 

data with a clear separation between the healthy and unhealthy 

samples (see the enlarged segment). While a total of 60 samples 

(other than the training samples) are taken as the testing 

samples (G. Taguchi, Chowdhury, & Wu, 2001).  

S. No Variables Notation Notation for Analysis

1 Age X1

2 Sex X2

3 Total Protein in Blood TP X3

4 Albumin in blood Alb X4

5 Cholinesterase ChE X5

6 Glutamate O transaminase GOT X6

7 Glutamate P transaminase GPT X7

8 Lactate dehydrogenase LHD X8

9 Alkanline phosphatase Alp X9

10 r -Glutamyl transpeptidase r -GPT X10

11 Leucine aminopeptidase LAP X11

12 Total cholesterol TCh X12

13 Triglyceride TG X13

14 Phospholopid PL X14

15 Creatinime Cr X15

16 Blood urea nitrogen BUN X16

17 Uric acid UA X17
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Figure 11: Scatter plot of MD distributions of the training data samples. 

 

Table 6: Summary of the case study 

Case study No. of system features Threshold value Size of training data Size of testing data 

Liver disease 17 
Healthy ≤ 9 

Unhealthy > 9 

Healthy = 200 

Unhealthy = 17 

Total = 217 

Healthy = 43 

Unhealthy = 17 

Total = 60 

 

 

Table 6 provides a data summary of the case study in terms of 

the following: (i) number of system features; (ii) system 

categories; (iii) size of training dataset; and (iv) size of testing 

dataset. 

5.2 Orthogonal array structure 

Since there are 17 features in the case study, an L32 (231) array 

will be used. Table 7 illustrates how the 17 features denoted as 

X1 until X17 being allocated into L32 (231) array structure.  

 

5.3 Threshold value 

For this case study, a threshold value of 9 (an MD value) 

denoted as MDT is selected based on suggestions by Taguchi 

and Jugulum (G. Taguchi & Jugulum, 2002) who derived the 

value based on Taguchi Loss Function computations. Taguchi 

Loss Function is a decision tool incorporating cost element into 

the decision rule where it tries to balance or minimize the costs 

required and the losses incurred in making the decision. 

Readers can refer to Phadke (Phadke, 1989), Park (Park, 1996) 

and Taguchi and Jugulum (G. Taguchi & Jugulum, 2002) 

should one require further readings on Taguchi Loss concepts. 

 

6 RESULTS AND DISCUSSION 

The optimization algorithms for both OA, BA and mBA were 

constructed using Visual Basic language platform. The 

programming algorithms were then compiled on a 64-bit under 

high performance computing machine with IntelCore i7-8750H 

Data Processor; NVIDIA GeForce GTX1060 Image Processor, 

DDR42666 16GB Memory, GDDR5 6GB Booting Memory, 

256GB SSD and 1TB HDD storage capacity. 

 

6.1 Optimization performances 

Table 8 shows the SNR gain results on the liver disease data 

using both OA and mBA couples with the optimized features 

obtained respectively. Note that the exhaustive search results 

were also tabulated on the same table for benchmarking 

purpose.  

 

Table 8, mBA found a lesser number of optimized features 

compared to OA with 6 to 8 features, respectively. The types of 

features optimized by both optimizers were slightly different 

with only features ‘X5, X7, X10, X12, X13 and X14’ being 

considered insignificant by both optimizers. The other 

insignificant features detected by the OA were ‘X2’ and ‘X15’. 

The optimized systems using both OA and mBA methods 

produce higher SNR value as compared to the original set. 

These suggest that the optimized system using both methods 

improved the functionality of the system. In addition, the 

optimized system via mBA produced higher SNR gain value as 

compared to optimized system via OA, with 3.07 dB and 2.46 

dB respectively. This suggests that optimizing the system using 

mBA provides greater improvement in terms of overall 

functionality of the system. In other words, optimizing the 
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system through mBA reduces the variability (noise) of the 

system more in comparison to the improvement done by OA. 

 

Table 7: Variable allocation in the L32 (231) orthogonal array 

 

 

In finding the optimized features of the liver disease, mBA 

consumed 698.08 seconds. This value is equivalent to around 

12 minutes of computational time before the algorithm stopped 

at the final solution. However, OA took only 23.11 seconds to 

find the optimum set of features. In other words, OA took just 

below than a half of a minute before stopping the algorithm at 

the optimum solution. Thus, OA facilitates the search at a much 

faster rate.  

 

 

Table 8: Results on the liver disease optimization performances 

 

 

The reason behind the huge amount of time difference of mBA 

was mainly due to the enormous enumeration set of possible 

combinations that the ‘scout bees’ in mBA had to search for the 

optimum feature set. With 17 numbers of original features, the 

total number of combinations required in the searching space 

by the ‘scout bees’ was more than 130 000 different set of 

combinations. In addition, mBA has to search in another 

enumeration set of possible combinations at the neighbourhood 

search space. These search processes were to be repeated under 

several iterations before reaching to the optimal solution. 

In the contrary, OA search mechanism does not require such 

search schemes (search in the enumeration of possible 

combinatorial sets). Furthermore, based on the Latin 

orthogonal array of L32 (231) arrangement, only 32 number of 

iterations (number of runs) were required. Thus under this 

simple structure, the searching effort was far less as compared 

to heuristic search burden demonstrated by the ‘scout bees’ in 

mBA. Consequently, the computational speed was in great 

faster as compared to mBA. 

It is worth to mention that the time taken to find the optimum 

set of liver disease features via exhaustive search was more 

than 30 000 seconds. This value is equivalent to nearly nine 

SNR (dB) Gain (dB)
Searching 

Time (sec)

ORIGINAL SET : X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 - 11.52 0.00 -
EXHAUSTIVE SEARCH : X5 X7 X10 X12 X13 X14 6 14.59 3.07 31915.09

m BA SEARCH : X5 X7 X10 X12 X13 X14 6 14.59 3.07 698.08

BA SEARCH : X5 X7 X10 X12 X13 X14 6 14.59 3.07 833.59

ORTHOGONAL ARRAY : X2 X5 X7 X10 X12 X13 X14 X15 8 13.98 2.46 23.11 Less than 30 seconds

~8.87 Hours 

~ 12 minutes

Baseline

No. of 

Optimized 

VariablesThe Optimized Variables Note

~ 14 minutes
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hours period. This is evident (as suggested by (Jain et al., 

2000)) that even though exhaustive search is a ‘guaranteed 

method’ in finding an optimal solution, it is not a viable 

approach due high computational effort. Of note, the type and 

number of features optimized through mBA were similar to 

those features optimized via exhaustive search. Thus, in this 

case, mBA was seen to have the ability to find the ‘true optima’ 

with less searching effort (i.e. faster computing time compared 

to exhaustive search). 

6.2 Classification accuracy of the optimized systems 

To evaluate the performance of the optimizers under the new 

sets of optimized features, the system is tested using the testing 

data set as mentioned in Section 5.1 above. Again, the testing 

data set contains two types of sample namely healthy group of 

people (people who do not suffer from liver disease) and 

unhealthy group. The aim is to calculate the error rate of the 

optimized systems in classifying correctly the samples to their 

respective group.  

The MD distributions of both samples are illustrated in Figure 

12 and Figure 13 respectively. In these figures, the x-axis 

denotes the series of sample (in numbers) as well as their 

respective MD values (underneath the numbers). Indication 

mark of threshold value of MDT = 9 is also portrayed on both 

figures. Note that the MD data presented on the x-axis Figure 

12 are rounded to one decimal place due to space limitation.  

 

Figure 12: MD distributions on healthy testing sample using optimized variable sets via OA, BA and mBA 

 

Figure 13: MD distributions for unhealthy testing samples using optimized variable sets via OA, BA and mBA 

 

From Figure 13, it shows that only one sample (the last sample) 

was mistakenly classified as unhealthy people by both 

optimized systems since the MD values obtained were above 

the threshold value (MDT=9). In this case, the MD values for 

this particular sample were computed as 10.676 and 12.838 for 

OA and mBA respectively. In other words, both optimized 

systems managed to correctly classify 42 out of 43 samples 

(whom in reality were the healthy people) as healthy people 

since each of the 42 samples has an MD value less than the 

threshold value.  

On the other hand, both optimized systems managed to classify 

correctly all the unhealthy samples (17 samples whom in reality 

were diagnosed as suffering from liver disease) as the correct 

unhealthy people. There was no error found on both optimized 

systems when classifying the unhealthy samples. In total, if all 
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the data were to be combined (healthy and unhealthy data are 

grouped in one dataset), the accuracy rate was calculated to be 

around 98.33% from each optimizer (refer Table 9).  

Table 9: The classification performance of both optimizers 

MT System Classification  

accuracy rate (%) 

Optimized via OA 98.33 

Optimized via mBA 98.33 

Optimized via conventional BA 98.33 

 

Table 9 suggests that the optimized system via OA and the 

optimized system via modified and conventional BAs have an 

equivalent performance in terms of classification error rate. 

However, mBA managed to optimize with lesser number of 

variables in comparison to the OA. Furthermore, mBA 

converged faster to the optimum solution compared to the 

original BA which suggests that the proposed architecture of 

the modified version of the BA expedites the search process in 

finding the potential solution. Figure 14 supports this argument 

where it was clearly shown from the figure that mBA 

converged earlier to optimum solution in comparison to BA. 

 

 

7 CONCLUSION 

The ability to classify objects with a smaller number of features 

to an equal or better recognition accuracy is of major concern 

in MTS methodology. This paper provides a comparative study 

to evaluate the effectiveness of OA against swarm intelligence 

methods to enhance feature selection of the MTS in its 

optimization scheme.  

This paper demonstrates the fusion of a modified-swarm 

intelligence technique called modified-Bees Algorithm (mBA) 

into the MTS optimization procedure with SNR as its objective 

function. To the authors’ knowledge, the attempts were never 

been reported in literatures. It reveals a superior computational 

speed performance of the mBA against the conventional BA 

approach, and with a lesser number of variables in comparison 

to the OA. However, it is suggested to conduct more case 

studies with more data to further evaluate the overall 

effectiveness of the mBA in order to generalize the result.  

Future research should be focusing on improving the 

computational speed and exploiting more advantageous of what 

Bees Algorithm technique could offer to facilitate the feature 

selection scheme of the MTS with more optimum solution as 

well as with more efficient search manner and consequently 

enhancing it recognition performance.  

 

 

 

Figure 14: Convergence behavior between the BA and mBA 
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