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Abstract  

This paper develops a Timoshenko beam finite element that is 

free from shear locking by successfully decoupling bending 

and shear curvatures using energy separation principle. The 

results obtained using this element are seen to be in very good 

agreement with classical beam theories for combined bending 

and shear deformation. The developed beam element can 

readily be incorporated into finite element programs and used 

to solve beam and frame problems of various configurations, 

loading and support conditions. It is concluded that the effect 

of shear deformation on deflection of beams is significant for 

span-to-depth ratio less than 10 and should therefore be 

accounted for in the design of such beams.  
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1.0  INTRODUCTION  

Beams represent the most common structural component 

found in civil and mechanical engineering structures. They are 

extensively studied because of their ubiquity. Beams may be 

used as isolated structures, but can also be combined to form 

framework structures, exemplified in high-rise buildings, 

frames and tower construction. Individual beam components 

of a framework are called members, which are connected at 

joints, and are subjected to loads at joints and between joints.  

Finite element solution of beams has predominantly been 

based on the Euler-Bernoulli beam theory (EBT), which 

neglects the existence of through-thickness shear strains 

variation to justify the plane section hypothesis. On the other 

hand, this theory is not applicable for moderately short and 

thick beams, laminate composite beams, and functionally 

graded beams and plates which find wide application in 

modern industrial designs. With the increase in the thickness 

of the beam, the shear deformation effect becomes significant 

and the error of response increases if Euler-Bernoulli theory is 

used, [Antes, 2003]. Consequently, the effect of shear 

transformation is formulated in Timoshenko beam theory 

(TBT). 

The Timoshenko beam theory, a first-order shear deformable 

beam theory, by considering the relaxation of plane sections 

and normality assumptions, has successfully accommodated 

the shear effects by incorporating in its governing equation a 

constant through-thickness shear strain variation. However the 

finite elements derived from the TBT have tended to be 

unsatisfactory as they exhibit shear locking due to a number 

of possible causes. It has been observed that the use of linear 

shape functions to represent transverse deflection, w, and 

cross- sectional rotation, , in TBT leads to an overly stiff 

element. The net displacement will therefore be much less 

than that observed in the actual structure. Such behavior is 

known as shear locking, (Reddy, 1997). The shear locking 

phenomenon results when the stiffness of the structure is 

significantly over-predicted (i.e displacement is under-

predicted) due to the inconsistency of the assumed 

interpolation function. Carpenters (1986) credited the 

coupling between bending and shear rotation in the 

Timoshenko beam equations as the cause of shear locking and 

suggested that these be decoupled through the use of 

appropriate strain fields. Prathap (1982, 1987) attributed shear 

locking to the choice of interpolation functions used for the 

displacement fields, which impose spurious constraints that 

occur because the strains developed from the displacement 

approximation are inconsistent. He recommended that the 

interpolation function for the shear deformation should 

different from that for flexural deformation. Edem (2006) 

proposed an exact relationship between bending and shear 

rotation. He made use of bending and shear rotation 

interdependent shape function which allows straightforward 

interpolation of bending curvature from the usual cubic 

interpolation polynomials and a proposed shear curvature 

using linear interpolation polynomials.. The drawback is the 

level of accuracy associated with the use of linear 

interpolation polynomials for shear curvature when dealing 

with eigenvalue problems. 

In this paper, an analytical bending-shear rotation interaction 

factor is derived, the introduction of which enables the 

decoupling of the bending and shear curvatures in 

Timoshenko beam governing equations. The factor is derived 

from bending and shear strain energy consideration in a 

loaded beam. The formulation allows for the approximation of 

the decoupled displacement variables, namely the transverse 

displacement and shear rotation, using cubic and quadratic 

polynomials respectively. This leads to the emergence of a 

locking-free Timoshenko beam stiffness matrix and consistent 

load vector in the finite element solution. 
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2.0 FORMULATION OF TIMOSHENKO BEAM 

 FINITE ELEMENT 

Consider a Timoshenko beam element made of an isotropic 

homogenous linear elastic material of Young’s modulus E, 

shear modulus G, Poisson’s ratio υ, and moment of inertia, I. 

(Fig. 1) 

 

 

Fig.1. Beam Element 

 

The beam deflection w is divided into two components: that 

due to the flexure, wb and that due to transverse shea,r ws.  

 

2.1 Interpolation functions for Flexural Deformation (wb) 

Using Hermite cubic polynomial to approximate the flexural 

deformation, wb(x): 

  3

4

2

321 xaxaxaaxwb      (1) 

The slope, 
2

432 32 xaxaa
dx

dwb
b        (2) 

The generalized nodal displacements for the Bernoulli beam 

are defined as bw  and  b . 

Using Equations (1) and (2):  

11)0( awxw bb   

3
4

2
3212)( LaLaLaawLxw bb             (3) 

21)0( ax bb    
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Solving by matrix inversion: 
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From Equation (1): 

  3
4

2
321 xaxaxaaxwb 

 

Substituting for a1, a2, a3, a4 from Equations (5):
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i
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where ’s are given as 
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and  iu denotes the column displacement vector 

 T
bbbb ww 2211 ,,,   

 

2.2  Interpolation functions for Shear Deformation (ws) 

The shear beam displacement, ws, is approximated using a 

quadratic polynomial: 

2
3211)( xbxbbxws               (8) 

The slope, xbb
dx

dws
s 32 21    

The generalized nodal displacements for the shear beam are 

defined by sw  and s . 

Using Equation (8):  
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2
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Solving by matrix inversion: 
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From Equation (8), 2
3211)( xbxbbxws   

Substituting for b1, b2, b3 from Equation (10): 
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and  iu
 

denotes the column displacement vectors 

 T
ssss ww 2211 ,,,   

 

2.3 Formulation of Bending-Shear Interaction Factor   

To ensure continuous interaction between the bending and 

shear components as a function and avoid the use of partial 

derivatives, the following relationship for the total cross 

sectional rotation  is proposed as (Onyia and Rowland-lato, 

2018): 

)()1()()( xxx sb    (13) 

)(x is the total cross-sectional rotation of the beam 

)(xb is the cross-sectional rotation of the Euler-Bernoulli 

beam 

)(xs is the cross-sectional rotation of the shear beam 


 
is the bending-shear interaction factor  and is expressed as 

the ratio of bending strain energy bU
 
to total strain energy of 

a simply-supported beam under load. 

That is: 







1

1

sb

b

UU
U

  (14) 

where   = 

b

s

U
U

 (15)

 

sU  = strain energy due to shear deformation 

The integral expression for bending strain energy is given by 

the familiar expression: 

 

L

b dx
EI
xMU

0

2

2

)(
 (16) 

where E is the elastic modulus of the beam material. 

I = moment of inertia of the beam section.  

 M(x) = bending moment 

Consider a simply supported beam with a point load P at 

midspan. 

 

Fig.2. A simply supported beam under a point load P at the 

center 

The bending moment at a section, distance x from a support, 

is given by: 

2
)(

PxxM   , x<L/2  

and 









22
)(

LxPPxxM  , x>L/2 (17) 

Since the maximum bending moment occurs at midspan 

(x=L/2),  

2
)(

PxxM   

Substituting for )(xM in Equation (16) and performing the 

integration gives 


EI
LPU b

96

32

  (18) 

The shear force at any section, distance x from a support, is: 

2
)(

PxQ    

The integral expression for shear strain energy is given by the 

familiar expression 

dx
kAG

xQU
L

s 
0

2

2

))((
 (19) 

 

Substituting for )(xQ in Equation (19) gives the shear strain 

energy as: 

i
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12
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(21) 

where E= Young’s modulus 

G= shear modulus 

A= cross-sectional area 

k = shear coefficient depending on the shape of    

         cross-section . 

Edem (2006) proposed that the bending-shear interaction 

factor,  , be based on the value of   for midspan point 

load, i.e. Equation (21). 

 

2.5 Beam Element Stiffness Matrix  

The relationship between elastic moment and rotation in beam 

has the form: 

  dx
EI
Mx      

Or  xEIM 
 (22)

 

But the relationship for the total cross sectional rotation  has 

been proposed in Equation (13) as: 

)()1()( xx sb  
 

Substituting for θ(x) in Equation (22):
 

 sbEIM   )1(   (23) 

     = Mb + Ms 

where Mb and Ms are different moments arising from the 

distinct nature of the resulting bending and shear curvatures 

respectively.  

The expression for strain energy in the proposed beam 

element is obtained by integrating the expression for strain 

energy per unit length of the beam plus that due to the 

distributed load.  

The total energy in the unified beam element loaded by 

distributed normal load, q is given by:  
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The above equation can be split into three parts, namely:  
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L
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2
     (26) 
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L
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These equations can be viewed as representing the energy 

terms for the modified Euler Bernoulli beam, the shear beam 

and the load potential energy respectively.  

 

2.5.1 Modified Euler-Bernoulli Beam Element Stiffness 

Matrix  

The curvature for this element can be expressed in terms of 

nodal variables by taking the second differential of Equation 

(6): 
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
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where the  i is the second differential of equation of i  
and  

are given as   
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The energy of the modified Euler-Bernoulli beam is (Equation 

25): 
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

 
from Equation 28:  
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From Castigliano’s first theorem, the ij stiffness coefficient Kij 

is given by 
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In matrix form: 
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Where 𝜑̈11 = 𝜑̈1𝑥 𝜑̈1= (−
6
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𝐿3 )
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𝐿
+
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Substituting ij  into Equation (31) equations and integrating, 

the beam element stiffness matrix becomes: 
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2.5.2 Shear Beam Element Stiffness Matrix 

The elastic strain energy for shear bending as given in 

Equation (26) is 

   dxθ)1(
2
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2

s
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Similarly the curvature for this element can be expressed in 

terms of nodal variables thus: 

   
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where the  si ' are given as   
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Substituting for s
 in in the shear strain energy expression 

(Equation 26): 
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Similarly applying Castigliano’s principle, the stiffness 

coefficient Kij is  
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Substituting for ij into Equation (35) and integrating, we 

have the shear beam element stiffness matrix as:  
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2.5.3 The Unified Beam Element Stiffness Matrix 

The assembled unified beam element stiffness matrix, K is 

given as the summation of Kb and Ks. 

     








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

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


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









22

22

3

)4(6)2(6

612612

)2(6)4(6

612612

LLLL

LL
LLLL

LL

L
EIK

KKK sb


  (37) 

 

2.6 Consistent Load Vector  

The consistent load vector is derived using the energy 

potential from the distributed loading as expressed in 

Equation (27):  

dxxxqf
i

i

L

i )()(

4

0

    (38) 

The column vector  f is then given by 

    dxqf T
L

4321

0

   (39) 

 

where ’s are given as 

3

323 23

L
xLxL

i


 ,
3

3223

2

2

L
LxxLxL 

 ,

  ,
2

23

4
L

Lxx 
  

 

Substituting for the φi’s in Equation (36) and integrating for a 

uniformly distributed load, then 

i

3

32

3

23

L
xLx 
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   TLLqLf  66
12   (40)

 

For concentrated load, P, at an arbitrary position on the beam, 

the consistent load vector is given by 

  dxxPf
i

i )(

4

   

   TPf 4321 
 

 (41) 

 

Substituting for the φi’s in Equation (38) and putting x=L/2 

for midspan concentrated load, then 

   TLLPf
82

1
82

1 
  (42)

 

 

3.0 RESULTS AND DISCUSSION  

Consider the beams of span L under both a uniformly 

distributed load q and a point load P as shown in Figure 3. 

 

 

Fig.3. Loaded beam 

 

The finite element equation of the beam element is  

    fuK     

 

Substituting for  K  from Equation (37) and for  f from 

Equations (40) and (42):  
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  (43) 

The assumed properties of the beam are Poisson’s ratio, 

v=0.25, and shear correction factor, k=5/6. 

For a rectangular section, 

  5.2

E

12

E
G and.
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5
kbd,A, 

12

bd
I
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
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2
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12




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


L
d

kAGL
EI

 (44) 

Solutions for various boundary conditions are obtained as 

follows: 

 

3.1 Pinned – Pinned Ends 

The boundary conditions are w1 = w2 = 0  

The maximum deflection wc at mid-span is obtained by 

inserting a node at L/2. This gives 

    4
192

5
384

34

EI
PL

EI
qLwc  (45) 

 

For Ф=0 (Euler-Bernoulli beam):  

EI
PL

EI
qLwb

48384

5 34

  (46) 

The ratio of the maximum deflection of the Timoshenko beam 

to that of the classical beam, Wc/Wb, is calculated as: 

(i) For point load P=0, 

2
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 (47) 

(ii) For udl q=0, 
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 (48) 

3.2 Fixed-Free Ends  

The boundary conditions are w1 = 1 =0 

Deflection at the free end with the point load at the free end is 

    4
12

23
24

34

2 EI
PL

EI
qLw  (49)  

For Ф=0 (Euler-Bernoulli beam):  
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qLwb
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  (50) 

1 2 

L 

q 

L/2 
P 



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 1 (2020), pp. 28-35 

© International Research Publication House.  https://dx.doi.org/10.37624/IJERT/13.1.2020.28-35 

34 

(i) For point load P=0, 
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(ii) For udl q=0, 
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3.3 Fixed-Fixed Ends 

The boundary conditions are w1 =w2=1=2=0 

The maximum deflection at midspan, wc, is 

    1
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1
384

34
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EI
qLwc  (53) 

For Ф=0 (Euler-Bernoulli beam):  
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(i) For point load P=0, 
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(ii) For udl q=0, 
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The summary of the derived expressions for maximum 

deflection for various support conditions is shown in Table 1. 

Table 1:Derived Expressions for Maximum deflection for 

Various Support Conditions of the Timoshenko Beam 

Support 

Condition 

Maximum Deflection 

TBFE Solution EBT (Classical) 

Solution 

(Ф=0) 

Pinned-

Pinned     4
192

5
384

34

EI
PL

EI
qL

 
EI

PL
EI

qL
48384

5 34

  

Fixed-Free 
    4

12
23

24

34

EI
PL

EI
qL

 
EI

PL
EI

qL
38

34

  

Fixed-

Fixed     1
192

1
384

34

EI
PL

EI
qL

 
EI

PL
EI

qL
192384

34

  

Legend  

TBFE – Timoshenko Beam Finite Element 

EBT – Euler-Bernoulli Beam Theory  

 

Table 2 shows the relationship between the span-to-depth 










d
L

 ratio and the 

b

c

w
w

 ratio 

Table 2:Relationship Between Span/depth 








d
L

  Ratio and 

b

c

w
w

 Ratio 










d
L

 Ratio 

b

c
w w

wC   

Pinned - Pinned Fixed – Free Fixed – Fixed 

P = 0 q = 0 P = 0 q = 0 P = 0 q = 0 

100 1.000 1.000 1.000 1.000 1.000 1.000 

20 1.002 1.002 1.005 1.002 1.008 1.008 

10 1.006 1.008 1.020 1.008 1.030 1.030 

5 1.024 1.030 1.080 1.030 1.120 1.120 

4 1.038 1.047 1.125 1.047 1.188 1.188 

2 1.150 1.188 1.509 1.188 1.750 1.750 

1 1.600 1.750 3.000 1.750 4.000 4.000 

Legend  

cw - Maximum deflection from TBFE Solution 

bw - Maximum deflection from EBT (classical) Solution 

b

c
w w

wC   = ratio of the maximum deflection of the 

Timoshenko beam to that of the classical beam 

Table 1 displays the derived explicit expressions for 

maximum deflection of beams for various support conditions 

using the proposed unified finite element model. 

Table 2 shows the relationship between the span-to-depth 










d
L

 ratio and the 

b

c

w
w

 ratio for various support conditions. 

b

c

w
w

 is the ratio of the maximum deflection of the 

Timoshenko beam to that of the classical beam. Table 2 shows 

that the effect of shear deformation on the deflection of beams 

in all support conditions becomes significant for span-to-depth 

ratios less than 10. For L/d =5, shear deformation accounts for 

up to 2.4% increase in deflection values of a beam with 

pinned ends and a central point load; the figure is even higher 

for the other support conditions. 
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4.0 CONCLUSIONS 

A unified finite element model for deflection analysis of 

Timoshenko beams has been developed. The developed 

element is free from shear locking, the bending and shear 

curvatures having been successfully decoupled using energy 

separation principle. The results obtained using this model are 

seen to be in very good agreement with classical beam 

theories for combined bending and shear deformation. Also, 

excellent results are obtained with one-element mesh in 

contrast to other finite element solutions by Reddy (2006). 

Explicit expressions for deflection of beams with various 

support conditions, taking into account both bending and 

shear deformation, have been derived using the finite element 

model. The unified finite element model is shown to model 

shearing deformation extremely closely.   

It is concluded that the effect of shear deformation on 

deflection of beams is significant for span-to-depth ratios less 

than 10 and should therefore be accounted for in the design of 

such beams.  
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