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Abstract     

In the problem solving of the stress state of the wall of a crane 

girder, the stress function is used for a half-plane loaded with 

concentrated force. Compliance with the boundary conditions 

along the interface between the shelves and the wall is achieved 

by introducing compensating stresses.  The developed method 

for determining local stresses in the walls of I-girders under the 

action of concentrated loads has several advantages compared 

to the known solutions: in the proposed method for determining 

local stresses in the walls of I-girders from the action of 

concentrated loads, the calculation formulas are obtained in 

explicit form; the solution is generalized in nature, since it can 

be applied to calculations of a half-plane, strip, T-girder, and I-

girder, including an I-girder of an asymmetric section; good 

agreement between theoretical calculations and experimental 

data is shown. 

Keywords: crane girder, girder wall, concentrated pressure, 

compensating load, stresses.      

 

INTRODUCTION  

Crane girders operate under more severe conditions than other 

frame elements, since the vertical pressure of the bridge crane 

rollers is applied to them in the form of concentrated pressure 

(see Fig. 1a, b).   

In crane girders, the greatest amount of damage in the form of 

cracks is observed during operation in the upper zone of the 

wall, where local stresses from the action of the bridge crane 

rollers have maximum values (see Fig. 1c). The problem of 

preventing fatigue cracks in these areas affects the quality of 

manufacturing girders, standardizing the sizes of permissible 

defects, observing operating rules, the quality of steel and 

welding used, and other aspects. However, one of the most 

important places is occupied by the task of correctly 

determining local stresses in the upper zone of the wall. This 

problem will be relevant until the problem of increasing the 

longevity of the crane girders to terms comparable with the 

longevity of the remaining frame elements is completely 

resolved. 

 

Fig. 1. Crane girder and vertical loads from crane rollers: 

a - arrangement diagram of the rollers of an overhead crane 

on a crane run; b - crane structures in cross section; c - 

concentrated pressure transmission scheme 

 

A review of studies of the stress state of the walls of steel I-

girders under the action of concentrated forces showed that 

stresses are usually conditionally divided into two parts, 

namely, stresses calculated according to elementary beam 

theory and stresses characterizing the local effect in the zone of 

the point of application of concentrated force, and the latter are 

self-balanced inside the section.  In real constructions, local 

stresses are commensurate and even exceed general bending 

stresses. 
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Known methods for determining local stresses from the action 

of concentrated pressure in the wall of a steel girder have 

several disadvantages that impede their use:   

-many simple methods involve the determination of only 

individual components of the stress state at one point (in the 

wall under the force [10]), or along the line of conjugation of 

the shelf with the wall (methods of G. Stokes [20], S.P. 

Timoshenko [11], M. Bio [12], U. Hiroyuke[14], I. Rive [19], 

E.V. Parkes [18], B. M. Brode [3], A.A. Apalko [1,2], V.M. 

Gorpinchenko [4,5] and others), therefore, they do not give a 

complete picture of the stress state in the wall;   

 - some methods are based on the use of the well-known 

Businesq-Flaman solution for the half-plane (methods of K. 

Girkman [13], I. Lukash [15.16], O.F. Ivankov, A.I. Putilov and 

I.E. Spengler [6] and others), however, these methods do not 

take into account one of the main differences between local 

stresses in the girder and half-plane - in the girder, the local 

tangential stresses change stepwise, since they complement the 

jump-like change in the shear stresses of the general bend, and 

in the half-plane the local tangential stresses change smoothly, 

passing at the origin through zero.  Since the stress components 

are interconnected by differential dependences, the normal 

stresses in the half-plane and in the wall will also have 

differences;    

   - more informed solutions made by B.B. Lampsey [7], E. A. 

Ryvkin [9], X-G. Fogele [21] and others are essentially 

approximate, since they are associated with approximate 

calculations of Fourier integrals or the summation of 

trigonometric series, which can be calculated only with a 

certain accuracy.  However, the more significant drawback of 

more informed decisions is the complexity and 

cumbersomeness of the calculations, the inconvenience of 

working with tables that make it difficult to analyze the stress 

state at any section or point; analysis of the stress state by 

numerical methods (mainly, by the finite element method) is 

performed only for particular cases of a constructive solution - 

see, for example, the work of P. Osterider and I. Oksfort [17]. 

Assessing the influence of individual design parameters that 

vary over a wide range is a laborious and therefore difficult task 

that has not yet been solved by numerical methods. 

The proposed method for determining local stresses from 

concentrated pressure does not have the listed disadvantages.   

 

METHOD.  

The stress function for the wall can be represented as terms: 

                                                  

,21

дкко•                                              (1) 
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function for the half-plane loaded with concentrated force (F is 

the concentrated force, x y,  are the coordinates of the 

Cartesian system, wh  is the half-height of the wall section in 

the girder,

ww h
yy

h
xx  ;  is the relative coordinates,

wt  is the wall thickness in the girder);
о  - the same for efforts 

from general bending, from which stresses are determined 

under the hypothesis of flat sections by conventional methods 

of resistance of materials (not considered further);
кк
21 ,  - the 

same for compensating distributed loads;
д  - the same for 

additional tangential stresses along the contours of the wall 

arising from the interaction and compatibility of deformations 

of the shelves and the wall. 

 The wall of the I-girder can be considered as a strip loaded 

along the contour with distributed loads, while the loads are 

adequate to the stresses acting along the interface lines of the 

upper and lower zones with the wall. In the proposed solution, 

the stresses along the contours of the strip (wall) are divided 

into four component parts, namely (see Fig. 2): 

1. Stresses for the part of the half-plane below x the half-

plane contour (see the dashed line in Scheme 1). 

 2. Stresses for a strip loaded on the lower wall contour with a 

distributed compensating load acting normally to the circuit 

(diagram 2).  To determine local stresses, it is sufficient to 

consider the conditional loading diagram 2a. 

 3. Stresses for the strip loaded on the lower contour of the wall 

with tangential compensating loads (diagrams 3 and 3a). 

  4. Tangent stresses on the upper and lower circuits from 

common bending stresses (diagram 4).  At the point of change 

in the direction of action of the tangential stresses in theoretical 

and experimental studies, a characteristic surge is noted, while 

the main stresses determined by the Zhuravsky formula (see the 

dashed line in diagram 4) and the additional ones presented in 

diagram 4a can be distinguished.   

 

RESULTS AND DISCUSSION. 

We define local stresses in the wall as the sum of local stresses 

according to diagrams 1-4. Let us consider alternately the 

diagrams presented in Fig. 2. 

DIAGRAM 1. Stresses in the adopted coordinate system: 

                                         

 

 
;

)(

2
222

3

1

yxx
xx

th
F

ww
x







                            (2)    

                                        

 
;

)(

)(2
222

2

1

yxx
yxx

th
F

ww
y







                               (3)          

                                        

 
.

)(

)(2
222

2

1

yxx
yxx

th
F

ww
xy







                               (4)            



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4855-4860 

© International Research Publication House.  http://www.irphouse.com 

4857 

The distancex  from the condition of equality of the 

maximum normal stresses x1  in the girder along the interface 

line between the flange and the wall and in the half-plane at y 

= 0.  The maximum normal stresses in the girder will be 

assigned according to the well-known solution of B. M. Brode 

[3], then

wh
x



2
      

 where 325.3
w

ft

t
J

  is the conditional length of the 

distribution of concentrated pressure in the wall of the steel 

girder; - J ft the sum of the moments of inertia of the shelf 

and rail. 

DIAGRAM 2a. Consider the equilibrium of a portion of a strip 

of unit thickness under the action of compensating loads 

located within y  ,   
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We set the stress function in the form  
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  Internal forces (M, N, Q) in the cross section of the wall: 
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Equating external (5) and internal (12) moments, and taking 

into account that N = 0, we find: 
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Condition (14) is satisfied at F y3 0( )  .   

When x x 0 02 , then F y4 0( )  .   

When x и x xy  0 2 02 .  

When x qx x 2 2 . 

Finally, under the action of the load according to diagram 2 for 

a wall of thickness tw: 
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DIAGRAM 3a. Considering the equilibrium of the wall 

section, we find: 
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Equations (12) - (14) as applied to diagram 3a for a similar 

stress function will have the form: 
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  Solving together (21) and (22), we find:  
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Condition (23) is satisfied at F y3 0( )  .  
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Finally, for diagram 3a: 
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DIAGRAM 4a.   Additional tangential stresses on the wall 

contour depend on the magnitude of the jump in tangential 

stresses obtained from the total bend along the interface line 

between the flange and the wall.    

The author performed an analysis of various distributions of 

additional tangential stresses, which provide relatively good 

agreement with experimental data. The best match was 

provided by the following formulas:  

- for the upper contour at  y  0     
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              -for the bottom contour   
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Rates   and  may vary. The analysis showed that the best 

results are achieved when     035. ;h hw w . 

Considering the equation of equilibrium of the plot within the 

limits y   under the action of additional tangential stresses, 

we obtain: 

N q y q y xxyв xyв y
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    
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0

2
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 or, taking into account the stress function (8),  

 

   x                                    x                                 x 

Fig. 2. Wall loading patterns under the action of concentrated  pressure on the girder (the separate action of stresses along the 

contour is determined using the solution for the half-plane) 
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Boundary conditions. 
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 Considering conditions (34), (36 ... 38), we find: 
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To determine local stresses, all components should be 

summarized, that is: 
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Equations (45) - (47) are universal:  
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в

f

н

    0 0 0 0( ), ; , 

then we get a solution for a strip loaded with concentrated force, 

and if, moreover hw  , we get a well-known solution for a 

half-plane;    

            - if the cross-section of the I-girder is symmetrical

 q qxyв xyн , then the stresses are

  x y xy4 4 4, ,  determined by the formulas 
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-If the section is T-shaped, S qf

н
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then: 
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A comparison of theoretical calculations by formulas (45), (46) 

and (47) with experimental data [21] was performed in 

graphical form in Fig. 3. It can be noted that the results are 

acceptable from a practical point of view: at a horizontal level, 

located at a distance of 40 mm from the upper zone in the wall, 

the differences in stress
м
х м

ху  do not exceed 5%, and stresses 

-
м
у  10%.    

 

CONCLUSION 

The developed method for determining local stresses in the 

walls of I-girders under the action of concentrated loads has a 

number of advantages compared with the known solutions:  

1.  Computational efficiency.  All calculation formulas are 

obtained explicitly and do not require the use of 

numerical methods. 

2.  A larger number of parameters are taken into account in 

relation to known solutions.  The solution is generalized 

in nature, so it can be applied to calculations of a half-

plane, strip, T-girder and I-girder, including asymmetric 

section. 

3.  Good agreement between theoretical and experimental 

data was confirmed. 
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 Designations: 

 ……………… experimental data 

                          theoretical data 

------------------ General bending stresses (elementary) 

Fig. 3. Comparison of experimental data [21] with theoretical     
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