
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 11 (2020), pp. 3564-3567
 © International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.11.2020.3564-3567

3564

Method for Developing Unique Database Identifiers

Lenar Ajratovich Galiullin1, Rustam Asgatovich Valiev2

1PhD, Associate Professor, Kazan Federal University, Russia.
 ID Scopus: 39361435200, ORCID: 0000-0001-8640-1734,

2PhD, Head of the Department of Information Systems, Kazan Federal University, Russia.
 ID Scopus: 7103235085, ORCID: 0000-0002-2589-6208,

Abstract

At the stage of analyzing the application for the
implementation of the structure allowing to optimize this
task, the following tasks were performed: the analysis of the
system's business processes was carried out; analysis of the
system architecture; the problem is posed. At the next stage,
the architecture of the structure of a unique identifier and its
mathematical model were designed, and its uniqueness was
tested and proved. At the last stage, the implementation,
generator and application were described as a web service of
the system. All the tasks and development requirements
were met, the work was completed in full and on time. The
unique identifier has surpassed the one in the .Net platform
in performance, is compatible with all CLI languages,
allows you to optimize the search not only for a specific
relational database, but also for many other databases that
use the principle of balancing unique values on the left N
bytes in B-Tree, such bases are: MySQL, SQLite, MariaDB.
The possibility of fast work with strings of one register and
one encoding is revealed, due to the fast hashing algorithm.

Keywords: Information; Structure; Analyzing;
Modification; Logic.

I. INTRODUCTION

Many information systems, as they are used, accumulate a
large amount of data, which is interpreted and stored in
permanent storage [1]. It is not difficult to assume that the
linear growth of data owned by the system lies behind the
duration of operation.

Undoubtedly, the speed with which the system operates on
this data is of no small importance. If inserting into the data
warehouse is not always important, then reading is a critical
operation and can affect the performance of the entire
system as a whole [2]. Therefore, to solve this problem,
different databases use different structures to provide quick
access to data.

In the case of a relational database, connected graphs that
emulate a tree-like structure of nodes with certain conditions
of edge orientation are more preferable for this task.

In an information view, such structures constitute a
relationship between elements, organized using data that is
located in heap and contains pointers to its children [3]. This
whole mechanism represents a way of building an index.

Obviously, the index, just like the table data, depends on the
number of records, and as the amount of data grows, it
increases its actual size and loses search efficiency in
percentage.

To solve this problem, systems strive to organize the
heuristic of data restructuring in the graph, based on the
alignment of the type that acts as a node key, which gives
rise to an inductive task - the comparison of data structures.

In this paper, we will focus on the development of a
structure that will optimize the speed of index comparison,
to solve the problem of finding data in tables with rows
exceeding 500 thousand [4]. The structure generator and its
mathematical model will be considered. The structure
application will be used on the example of the information
system [5]. As a result, the approbation and asymptotic
complexity of the structure generation algorithm is
evaluated, and its uniqueness is proved.

In conclusion, the following features will be highlighted:

- portability of the structure to CLI compatible programming
languages of the .Net platform;

- productivity;

- the ability to use dynamic, linear, asynchronous
programming for tasks;

- the ability to use the structure as a non-clustered index of a
relational database table.

II. METHODS

The architectural style of microservices provides a set of
services that communicate with other services via HTTPS
(from English - Hyper Text Secure Protocol) data transfer
protocol, with support for SSL (from English - Secure
Sockets Layer) certificate [6]. Each service is built around
the business needs of the system and is deployed
independently using a fully automated environment.

The use of HTTPS can be described according to the fact
that HTTPS is a lightweight data transfer protocol, a
continuation of the HTTP technology with the inclusion of
the fact that transport mechanisms use data encryption,
which makes it possible to exclude packet retransmission for
the purpose of their malicious use.

mailto:2rustvali@mail.ru

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 11 (2020), pp. 3564-3567
 © International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.11.2020.3564-3567

3565

Each microservice has a clear physical boundary, which
allows it to use a set of technologies declared by business
requirements, where the main criterion is to support
interaction over the network with other services [7].

Based on isolation, each service can be scaled and built
independently from other system components [8]. Isolation
allows you to call a service a component, that is, a piece of
software that can be replaced or updated without any
consequences for the functioning of the infrastructure.

The choice for a distributed system, in contrast to a
monolithic one, was based on the fact that the first has
increased fault tolerance, in comparison with the second,
because the failure of one service allows you to immediately
replace it with another [9]. It is also important, which is
important, to reduce the costs of complex monitoring
systems that would allow monitoring the state of the system
and notifying about its failures.

Fault tolerance is quite important in our system, since the
system has payment data that, if lost, can cause serious
losses, both for the business process and its financial return,
and for the entire Solvintech company as a whole.

Undoubtedly, due to the fact that each microservice can be
deployed on a separate computer, it also significantly
increases its performance, since the server receives the load
exclusively from the web service process, which allows it to
prioritize all hardware resources only on the service hosting
process.

Especially, as we can see, the destructuring of the
presentation and logic layers arises due to the fact that each
web service, regardless of the presentation and its
addressing, can perform many different operations on data,
where this feature is achieved by the fact that each service
has a unit of modularity [10]. And also owns a set of
functions that allows you to interact with a user client based
on the execution of remote procedures that initially arrive at
the router and, according to the addressing table, are
redirected to a specific service.

III. RESULTS AND DISCUSSION

The API router used in the system allows:

a) encapsulate information from the client about how many
endpoints are used by the application server;

b) based on point 1, improve the safety of the entire system;

c) significantly reduce the binding of client logic;

d) create optimization when one page is in the client. the
application may require multiple calls to many services.
This can result in a lot of network communication between
client and server, adding significant latency. Aggregation at
the middle tier in the form of a router will improve the
performance and usability of the client application.

The main purpose of the router is to play the role of a proxy
service for incoming requests, organize an internal queue of
messages between services, and also execute a certain series

of domain logic, such as checking rights, validating
requests, etc.

An equally important feature that the API router has in our
system is the ability, regardless of web services, to scale the
entire system by adding such components to its architectural
scheme as: a load balancing mechanism, other services,
addressing to external services, and etc.

Due to the fact that each microservice encapsulates a certain
unit of all business logic, accordingly, it owns a certain set
of data that can be collected, processed and stored in
permanent storage for long-term use. Such an array of stored
data forms a database local to the microservice, which in our
case is PostgreSQL - an object-relational system for
managing a persistent storage server.

The decision to use a database for each service generates a
number of advantages, such as:

a) the database entity schema can be changed without
directly affecting others;

b) domain data is hidden in the service;

c) each data warehouse can scale independently;

d) data failure in one service will not affect the data of other
services.

The choice in favor of a relational database was agreed upon
according to the fact that most control systems that differ
from this paradigm do not possess the advantages of
classical DBMS. NoSQL (not only SQL, from English -
Non-Relational) databases lack basic availability that can
guarantee that every request to the data source will complete
(successfully or unsuccessfully).

They do not contain the flexibility of the states of the entire
system, that is, the condition can change even regardless of
the fact that there is no insertion of new data and their
consistency is not achieved.

The data in NoSQL does not support the possible
consistency, that is, at some slice of time, the data may
undergo an inconsistency, but eventually consistency will be
guaranteed.

It is also worth mentioning that NoSQL and relational
DBMSs have excellent internal storage design, which
creates different implementations for accessing and reading
information. As an implication from the given, it generates
in its system a domain transactional system, etc., but in the
case of a DBMS, the atomicity of transactions, mandatory
data consistency, isolation of the conduct, and the stability
of the entire system are still achieved.

Relational databases allow you to support complex queries,
search for data in nested structures, and create relationships
between tables.

Proactive ACID support for relational DBMSs allows the
system to have data that requires a number of mandatory
security parameters: the physical organization of the security
of the file environment, organization and work with data.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 11 (2020), pp. 3564-3567
 © International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.11.2020.3564-3567

3566

Such data in our system can be payment information,
personal data of the user, and so on.

 According to NoSQL research, databases can be exposed to
application-level dangers, namely the ability to manipulate
REST (Representational state transfer) interfaces and forge
inter-network requests, use escape characters to modify a
substring with predictable behavior, contain execution
scripts within user clients, significantly reducing general
safety.

Therefore, based on all of the above, the system uses
relational databases for each microservice.

Each web service that you deploy is a set of remote
procedures that provide access to the endpoints of a client /
server architecture as the result of making remote calls over
the Internet protocol.

All service endpoints are calculated on the API router that
provides access to the nodes of the system using URL-based
redirection (from the English - Uniform Resourse Locator)
addresses of incoming data packets. The nodes are static,
otherwise the system could not guarantee the correct
functioning of all requests from the client.

As a working environment and framework, the system uses
Asp.Net Core technology from Microsoft and is
implemented using the high-level object-oriented language
C #. According to this, all related technologies that are used
for the development and operation of the system are
compatible and supported by the .Net platform.

The main paradigm of the .Net platform is the formation of
managed code, that is, the method of organizing the
exchange of information between the program and the
runtime environment.

For this purpose, Microsoft has developed an intermediate
code IL (from English - Intermediate Language). IL is the
code that generates the compiler of a specific language (for
example, C # - Roslyn - in the Visual Studio IDE or csc.exe,
as well as F # - fsi.exe, Visual Basic - QuickBasic.exe, etc.)
for further compilation into machine code. The advantages
of this approach are a higher level of abstraction over
writing low-level code, security assurance, and platform
independence.

IL is a higher-level language than most other machine
languages. It allows you to work with objects and has
commands for creating and initializing objects, invoking
virtual methods, and directly manipulating array elements. It
even has commands for throwing and catching exceptions to
handle errors. IL can be thought of as an Object Oriented
Machine Language.

Since IL code is compiled just before execution, this CLR
component is often referred to as a Just In Time (JIT)
compiler. The JIT compiler knows the method to call and
the type in which it is defined. The JIT compiler looks in the
metadata of the corresponding assembly for the IL code of
the method being called. The JIT compiler then examines
and compiles the IL code into machine instructions, which
are stored in a dynamically allocated block of memory.

After that, the JIT compiler returns to the internal data
structure of the type created by the CLR and replaces the
address of the called method with the address of a memory
block containing ready-made machine instructions [10].
Finally, the JIT compiler transfers control to the code in this
block of memory, which allows you to write optimized code
without building solutions based on the capabilities of the
hardware platform.

The version of Asp.Net Core, in contrast to Asp.Net, is used
due to the fact that the Core implementation of this
framework supports cross-platform execution on different
operating systems, which allows you to deploy the system
on different platforms, thereby indirectly reducing the cost
of operation, as well as system administration ... Another
equally important plus is that as a long-term planning, the
Core version will have a longer maintenance from
Microsoft, compared to the classic version.

IV. SUMMARY

The scenario for each microservice is that by listening to
ports and address space, the Kestrel server, which is used in
the Asp.Net Core framework, transfers control of the
HTTPS context according to the routing defined by the
controller.

The controller, in turn, is a class that contains methods for
processing incoming requests, as well as having the ability
to create responses with support for various data types. The
controller itself can store a certain state of the entire
execution and, in the case of its nonterminal transition, call
and handle an exception.

V. CONCLUSIONS

As the number of system users grew, the number of records
stored in the database increased linearly. As they increased,
the search for values by a specific criterion was significantly
reduced and this led to the fact that the expectation of a
response from the web page also increased, which led to a
negative reaction from users.

ACKNOWLEDGEMENTS

The work is performed according to the Russian

Government Program of Competitive Growth of Kazan

Federal University.

REFERENCES

[1] Galiullin L, Khaziev E. Automation of ICE
production planning. Journal of Advanced Research
in Dynamical and Control Systems. 2019;11:1771-
1774.

[2] Khamadeev SA, Galiullin LA. Automation of
computer technology analysis. Journal of Advanced

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 11 (2020), pp. 3564-3567
 © International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.11.2020.3564-3567

3567

Research in Dynamical and Control Systems.
2019;11(8):1767-1770.

[3] Zubkov EV, Galiullin LA. Automation of testing for
internal combustion engine under real conditions of
driving. Journal of Advanced Research in Dynamical
and Control Systems. 2019;11(8):1775-1778.

[4] Khaziev E, Galiullin L. Algorithm for modeling the
technological process of ICE production. Journal of
Advanced Research in Dynamical and Control
Systems. 2019;11(8):1754-1757.

[5] Galiullin LA, Galiullin IA. Modeling of ic engines.
Journal of Advanced Research in Dynamical and
Control Systems. 2019;11(8):425-431.

[6] Yarullin MG, Mingazov MR, Galiullin IA. Historical
review of studies of spatial nR linkages. International
Review of Mechanical Engineering. 2016;10(5):348-
56.

[7] Yarullin MG, Galiullin IA. Kinematic Research of
Bricard Linkage Modifications. InAdvances in
Mechanical Engineering 2016 (pp. 17-29). Springer,
Cham.

[8] Khaziev EL. Control of Linear Servo Pneumatic
Drive Based on Fuzzy Controller and Knowledge
Base. InInternational Russian Automation Conference
2019 Sep 8 (pp. 17-25). Springer, Cham.

[9] Khaziev EL, Khaziev ML. Intelligent diagnostic
system for hydraulic actuator. In2019 International
Conference on Industrial Engineering, Applications
and Manufacturing (ICIEAM) 2019 Mar 25 (pp. 1-6).
IEEE.

[10] Galiullin IA, Galiullin LA. Fault diagnostic method
for Ic engines. Journal of Advanced Research in
Dynamical and Control Systems. 2019;11(8):2273-
2279.

BIOGRAPHIES OF AUTHORS

Galiullin Lenar Ajratovich – Associate Professor, Naberezhnye Chelny Institute (branch) KFU/Higher Engineering
School/Department of Information Technology and Energy Systems/Department of Information Systems, NI. Academic degrees:
Candidate (technical sciences), specialty 05.13.06 – Automation and control of technological processes and production (by
industry), the title of the dissertation "Automation of the technological process of diesel testing based on the fuzzy neural network
method".

Valiev Rustam Asgatovich – Head of the Department of Information Systems, Naberezhnye Chelny Institute (branch)
KFU/Higher Engineering School/Department of Information Technology and Energy Systems/Department of Information
Systems, NI (internal part-time). Academic degrees: Candidate of Physics and Mathematics.

