
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 11 (2020), pp. 3555-3558
 © International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.11.2020.3555-3558

3555

Method of Geodata Processing

Shamil Aktasovitch Khamadeev1, Lenar Ajratovich Galiullin1

 1PhD, Associate Professor, Kazan Federal University,
ID Scopus: 57211321538, ORCID: 0000-0002-6981-6214,

 2PhD, Associate Professor, Kazan Federal University,
ID Scopus: 39361435200, ORCID: 0000-0001-8640-1734,

Abstract

An analysis of the developed system was carried out. As a
result of the analysis, the main precedents of the system
were determined, a BPMN diagram was built, an alternative
solution was analyzed, and the basic requirements for the
system were derived. The basic algorithms of the system
were designed, a block diagram of these algorithms was
built, and the features of working with OSM data were
considered. The technologies used to implement the project
were affected. The main application packages are described
and the classes of which the main packages are composed.
As a result, an application was obtained that meets the
requirements set for it. The mapping data update was
accelerated, the quality of the received data has not changed,
the OSM data processing algorithms work in accordance
with the tasks. The software implementation of the project
was completed. The following works were performed: the
technologies used were described, the software packages
were described, class diagrams for all application packages
were described. application design has been completed. Six
algorithms have been developed that describe the basic
processes necessary for the successful operation of the
system. These processes are: OSM data processing, Node
processing, Way processing, Relation processing, Data
writing to the database. Some difficulties that may arise
when working with OSM data were also considered.

Keywords: Geodata; Map; System; Programming; System.

I. INTRODUCTION

The use of cartographic data for the operation of various
kinds of applications is now becoming more and more
relevant [1]. Typical applications of this kind are navigators
and food or taxi services. The popularity of these
applications lies in the fact that these applications are easy to
use and give the client some visibility when using [2]. The
taxi service “Maxim” offers customers the opportunity to

order a taxi in a large number of cities, both in Russia and
abroad. The company has an application that uses map data
for its work. To use the map in the application, you need to
have a source that will supply map data, in this case, the
source is OpenStreetMap [3]. OpenStreetMap, abbreviated
as OSM, is a non-profit web-mapping project for creating a
detailed free and free geographical map of the world. Data

from OSM contains a rather large amount of information
and for most application cards this amount of information is
redundant, therefore, incoming information must be
processed [4]. It should also be borne in mind that
cartographic data is periodically updated, therefore maps in
the application must be updated for these changes. Given the
above circumstances, the company has developed an
additional application for data processing. Recently, the
company has been developing rapidly, opening branches in
many countries, which has increased the load on the data
processing application [5]. The processing process has
slowed down significantly, which affects the speed of
updating maps, so the application needs to be upgraded.
Thus, the relevance of this work is to accelerate the
processing of data from OSM.

II. METHODS

The current implementation of the processing process
consists of several stages:

1. Downloading data for processing.

2. Data processing using additional software.

3. Uploading processing data to the database.

4. Processing database data using SQL scripts.

This implementation is not the most optimal, since the
application acts as an intermediary between the additional
software and the database [6]. Most of the time the
application is in standby mode. Executing SQL scripts also
takes a lot of time, and the additional software used requires
quite a lot of memory resources to work.

To solve these problems, it was decided to include all the
operations performed in the application. The new data
processing option eliminates program downtime and will
also increase system performance due to the lack of work on
the database side.

There are many products that can process data from OSM
[7]. In this case, we will consider two of them: osm2pgsql
and Imposm 3.

osm2pgsql is a utility that converts the OpenStreetMap data
format into data for loading into a PostgreSQL database [8].

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 11 (2020), pp. 3555-3558
 © International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.11.2020.3555-3558

3556

This utility converts data with losses. It contributes only
those objects that have tags defined in the configuration file,
and it converts points and lines to lines and polygons. With
the help of this program, the current version of the
application works and its cons are described above [9].

Imposm 3 is a utility that works similar to osm2pgsql, but
this utility is developed using other technologies and works
much faster [10]. This utility is not suitable, because it will
act as additional software for our application, and before
processing the data, it creates additional NoSQL databases
from them, due to which data processing is accelerated, but
this increases memory costs. Another disadvantage is the
difficulty of adapting the processed data from this software
to the database schema used by the company.

III. RESULTS AND DISCUSSION

Based on the result obtained during the analysis of the
system, the basic algorithms necessary for the successful
operation of the system were compiled.

The system starts by entering the basic parameters. In fact,
this step is not always performed, since the system can be
started without entering parameters, then it will work with
default parameters. This is done to simplify the work with
the system for the end user. Next, read the settings from the
configuration files, which contain information about
countries for which data can be updated. With the help of
the main parameters, you can restrict data updates by
country or, on the contrary, update country data, despite any
restrictions. Next is a check for the need to update data. If
nothing is specified in the main parameters, a situation may
occur in which data updates for countries will not be made.
This is because the system checks the database for
information on the country whose data you want to update.
And if the database for this country is stored, then the update
will not be performed.

As soon as all countries for updating are identified, the
process of downloading files with OSM data will begin. In
parallel with this process, the operation of downloading the
substrate for the card will begin. In this case, under the
substrate is meant the basis for the card. The base is the
outline of the continents and oceans in simple colors. On top
of this foundation, OSM data will eventually be drawn. If
the data downloading process was successful, then the data
processing process begins.

The process of data processing is followed by the process of
storing the received information in the database. These two
processes will be discussed in detail later. After saving the
data regardless of the result, a report will be generated on
the program. The content of the report will depend on the
success of data recording. As soon as the report is generated,
the application will end.

The process of processing data by country, or more precisely
the processing of data from OSM, is the main application
process, which takes up most of the program and is most
difficult to design. This process will be divided into four
parts. The first part will describe the main part of the

process, and the remaining three will be handling OSM
entities. The beginning of the data processing algorithm
begins with reading the OSM file. It should be noted here
that the file is read line by line, which means that you cannot
return to the same object twice. As a result, there are some
difficulties when processing OSM entities. Reading a file
occurs line by line due to the fact that the file size contains a
huge amount of information and storing a file in memory all
the time is a very expensive procedure. After the start of
reading the file, the system will begin to receive OSM
entities and will receive them until the file is read to the end.
According to the format accepted in OpenStreetMap, there
are 4 types of entities:

-Bound;

-Node;

-Way;

-Relation.

We are only interested in Node, Way and Relation. Each of
these entities will be processed by the corresponding
algorithm. In the file for processing, all Nodes are listed in
order, then Way and at the end are Relation. If the entity is
necessary for updating the mapping data, then it will be
processed for subsequent writing to the database. If not all
necessary entities are processed before the file is read to the
end, then the file will be read again.

Each object in OSM is represented by a set of points or even
a single point. That point is the minimum unit of this
cartographic resource. Each object in OSM is represented by
a set of points or even a single point. That point is the
minimum unit of this cartographic resource. Point is a basic
element in the OSM data structure. A point has the
parameters “latitude” and “longitude”.

Points are used to define a line, however, a point can also be
an independent element of the map, and can be used to
designate a separate, unrelated object.

The points that make up the line often have no properties
and are needed only to describe the line; however, this is not
an unshakable rule. Figure 6 shows how Node is displayed
on the official OSM website.

However, this is a graphical representation of a point; data
will come to the system in the format of a binary file from
which data will need to be extracted.

The Node processing algorithm is the basis for all other
OSM entity processing algorithms used in this project. The
algorithm begins by checking for tags at the point. If the
point has tags, then it is checked whether the tag data is
needed for our data. In the case when the tag is suitable, all
the data necessary for drawing the point is extracted from
the point. Otherwise, the id of this point is checked. If the
point is part of another object, then all the data necessary for
rendering is also extracted from Node. If the point has not
passed through any parameters, the point is ignored.

The second type of entity that we need to process is Way or
a different line. A line is an ordered relationship of at least

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 11 (2020), pp. 3555-3558
 © International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.11.2020.3555-3558

3557

two and no more than two thousand points that describe
linear objects, such as streets, paths, railways, and so on.

The lines are closed and open. Closed lines can be polygons
if, in addition to the line itself, the object includes an area
that this line limits.

Processing Way at first is no different from processing
Node. First, the tags and id of the OSM entity are also
checked, and the need to process this entity is revealed.
Differences begin during the line information collection
process. Since the line consists of points, in order to build a
given line it is necessary to obtain information about all
these points. In the line itself there is only a link to these
points. Due to the fact that all OSM entities are read in turn,
it is impossible to obtain information about these points in a
single pass through the file. Therefore, Way builds in two
file reads. For the first time, we collect a list of points
necessary for assembling the line and all the necessary tags.
In the second pass, we collect information about the points
we need and collect the line.

The third type of data to process is Relation. Relations are
used to indicate the geographical relationship between
different objects. This entity is the most complex OSM data
element. The complexity of Relation is that a relation can
consist of any type of entities discussed earlier, including the
relation itself.

IV. SUMMARY

In the course of work, the process of updating the
cartography data of the taxi order service was analyzed. As a
result of the analysis, it was found that the processing speed
from OSM is not acceptable, and also that this process
consumes a large amount of memory resources. When
considering the problem process, it was revealed that in the
data processing application a large number of downtime due
to working with additional software and a database. As a
result, it was decided to modernize the process of processing
cartographic data.

To achieve the goal, the following steps were taken:

- An analysis was made of existing systems for processing
OSM data.

- Business requirements for the system were identified.

- User requirements have been identified.

- Functional requirements for the system have been
developed.

- Non-functional requirements have been developed /

Based on the data received, you can begin designing and
developing a new version of the OSM data processing
application.

V. CONCLUSIONS

When working with OSM data, certain difficulties may arise
that lead to incorrect operation of the system and its
algorithms. These difficulties arise from the fact that

OpenStreetMap is an open web mapping project supported
by the efforts of its members. The data is contributed by
many people from all over the world, and although the data
passes a certain check, errors sometimes appear in them or
the data is not formatted according to OSM standards.

One of the problems that may occur is the lack of an entity
in the file. Basically, this problem arises because there is too
much relation in the file that goes beyond the processed file,
and some of its dependent parts are missing from the file.
This problem leads to the fact that the entity cannot be fully
assembled, and while the system has not developed entities,
it does not stop working. To solve this problem, the
following was done: if no entity processing occurs during
the file reading, it is considered that the remaining entities
have parts that go beyond the file and the entity data is
removed from the processing queue.

Another problem is the lack of specific tags for the collected
entity. Relationship geometries, that is, their set of
coordinates is collected based on the geometry of their
dependent parts. These dependent parts have certain tags by
which you can understand that this entity is part of the
geometry. Tags are specified by the OSM editors
themselves, and sometimes they forget to put down the
necessary tags, or worse, indicate the wrong tags. If there is
no tag, the geometry will be incomplete, which can be
checked using the geometry validation, however this rule
only works for closed geometries. If the editor indicates the
wrong tags, then the geometry may pass validation, but it
will be incorrect and this problem will be noticeable when
rendering data. Unfortunately, this problem is very difficult
to fix on the part of the system, since automatic validation
does not give absolute results, and manual viewing of all
geometries is not advisable. Basically, this problem should
be solved by the OSM editors themselves, who periodically
fix these errors.

Sometimes problems arise when assembling entity
geometries. An entity of type Relation contains within itself
references to entities that are its constituent parts. The
constituent parts are in order, and all that is needed is to
assemble the geometries of the constituent parts of the entity
one after another until a complete geometry is obtained. This
rule is true if the relation consists only of points. However,
if there is a Way in the component parts. In this case, certain
difficulties may arise. To assemble a Relation consisting of
paths, it is necessary to assemble the geometries of these
paths. Each of these paths has its own starting point and its
ending point. And to connect these paths, it is necessary that
the starting point of one path coincides with the ending point
of the other path. But sometimes, instead, these two paths
may coincide with either start or end points. If this happens,
the geometry of one of the paths is turned over in order to
coincide with the other geometry.

ACKNOWLEDGEMENTS

The work is performed according to the Russian
Government Program of Competitive Growth of Kazan
Federal University.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 11 (2020), pp. 3555-3558
 © International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.11.2020.3555-3558

3558

REFERENCES

[1] Galiullin LA, Galiullin IA. Development of Methods
and Tools for the Internal Combustion Engines
Diagnostics. Journal of Computational and Theoretical
Nanoscience. 2019 Nov 1;16(11):4565-8.

[2] Galiullin LA, Galiullin IA. Fault diagnostic method for
Ic engines. Journal of Advanced Research in
Dynamical and Control Systems. 2019;11(8):2273-
2279.

[3] Khuzyatova LB, Galiullin LA. Optimization of
parameters of neuro-fuzzy model. Indonesian Journal
of Electrical Engineering and Computer Science.
2019;17(3):1206-1209.

[4] Khuzyatov S, Galiullin L. Algorithm of clusters
organization for internal combustion engine parts
manufacturing. Journal of Advanced Research in
Dynamical and Control Systems. 2019;11(8):1758-
1761.

[5] Iliukhin AN, Galiullin LA. Automation of the
production of ICE parts based on cluster analysis.
Journal of Advanced Research in Dynamical and
Control Systems. 2019;11(8):1779-1782.

[6] Valiev R, Bochkov V, Bashkirov S, Romanov E,
Chistjakov V. Mössbauer study of surface layers of
high-speed steel after laser treatment. Hyperfine
Interactions. 1992 Apr 1;69(1-4):589-92.

[7] Valiev RA, Gaisin FM, Romanov ES, Shakirov YI.
Synthesis of iron oxide powders in a discharge with a
liquid electrode. Physics and chemistry of materials
treatment. 1991 Nov;25(6):654-8.

[8] Valiev RA, Gajsin FM, Romanov ES, Shakirov YuI.
Synthesis of ferric oxide powders in liquid electrode

discharge. Fizika i Khimiya Obrabotki Materialov.
1991;6:90-95.

[9] Valiev RA, Gaisin FM, Shakirov YI. Special traits of
powder obtained in discharge between steel electrode
and electrolyte. Soviet Powder Metallurgy and Metal
Ceramics. 1991 Jun 1;30(6):448-50.

[10] Valiev RA, GAISIN F, Shakirov YI. Properties of the
powder produced in a discharge between steel
electrode and electrolyte. Poroškovaâ metallurgiâ

(Kiev). 1991(6):4-7.

BIOGRAPHIES OF AUTHORS

Shamil Aktasovitch Khamadeev – Associate Professor,
Naberezhnye Chelny Institute (branch) KFU/Higher
Engineering School/Department of Information Technology
and Energy Systems/Department of Information Systems,
NI. Academic degrees: Candidate (technical sciences),
specialty 05.13.06 – Automation and control of
technological processes and production (by industry).
Knowledge of languages: English (Independent Speaker).

Lenar Ajratovich Galiullin – Associate Professor,
Naberezhnye Chelny Institute (branch) KFU/Higher
Engineering School/Department of Information Technology
and Energy Systems/Department of Information Systems,
NI. Academic degrees: Candidate (technical sciences),
specialty 05.13.06 – Automation and control of
technological processes and production (by industry), the
title of the dissertation "Automation of the technological
process of diesel testing based on the fuzzy neural network
method".

