
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 11 (2020), pp. 3546-3550
 © International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.11.2020.3546-3550

3546

Method for Optimal Route

Aleksey Nikolaevich Iliukhin1, Lenar Ajratovich Galiullin2

1PhD, Associate Professor, Kazan Federal University, Russia.

ID Scopus: 56622584900, ORCID: 0000-0002-3333-5566,
2PhD, Associate Professor, Kazan Federal University, Russia.

ID Scopus: 39361435200, ORCID: 0000-0001-8640-1734,

Abstract

Describes the work on modern scientific achievements in
graph theory, studying the developed algorithms, comparing
their advantages and disadvantages, the reason for choosing
the Ford-Bellman algorithm as a tool for solving the
problem. The principle of the Ford-Bellman Algorithm and
its structure were also described. The works on designing
the architecture of Ford-Bellman algorithms in C #
language, designing a class hierarchy for geometric objects
modeling graphs, designing a model that implements three-
dimensional geometric space were described. The
architecture of the graphical interface and the hierarchy of
its classes were also described. The paper describes the
implementation of the model, which searches for the
shortest route between any two points of the graph, the
implementation of the graphical interface through which the
algorithm is controlled. As a result of the work, the design
and development of the application for finding the shortest
route in a weighted connected pseudograph was carried out.
The algorithm has been tested. The algorithm works and
successfully performs the task. The algorithm was
encapsulated and allocated to a separate class library, which
makes it possible to use it in many other projects of different
industries. It can be used for engineering calculations in
which the problem can be represented as a graph; in tasks
where it is necessary to find the shortest path from one point
to another; in robotics and systems with artificial
intelligence.

Keywords: route; method; automation; map; programming.

I. INTRODUCTION

The most visually obvious example of solving the
optimization problem is to find the shortest road route
between two settlements [1]. This problem is solved by
minimizing a certain parameter. This parameter may vary
[2]. It can be the travel time, the long travel, and the gas
mileage, cost, etc. This task is relevant in itself, but with the
development of computing power and artificial intelligence,
it becomes possible to use graph theory to automatically
determine the optimal route.

This problem can be described in terms of graph theory,
where a graph models all possible paths from one settlement

to another. In such a graph, the peaks will model points that
can be reached, and the edges - the paths between any two
points. Each edge has a weight; this is a numerical value that
describes any path parameter.

Such a graph can be analyzed and, using combinatorial
operations, select a list of edges that correspond to the set
condition, that is, it will be a route that is minimal in weight
[3]. Based on this information, a person and another
automatic algorithm or neural network can make a decision.

II. METHODS

At present, Graph Theory is a dynamically developing
branch of science. Algorithms in graph theory are well
understood [4]. Studied such graphs as:

-oriented graphs;

non-oriented graphs;

-trees;

bipartite graphs;

Hypergraphs

-hypergraphs;

-flat graphs;

-planar graphs;

Open algorithms such as:

Ford-Bellman algorithm;

-prima algorithm;

Kraskal algorithm;

Magu-Weisman algorithm;

Hungarian algorithm;

-heuristic algorithm;

gamma algorithm.

Route search algorithms are used to find paths between
geographic features on online cartographic services [5].

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 11 (2020), pp. 3546-3550
 © International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.11.2020.3546-3550

3547

Examples of popular cartographic web services:

- Google Maps;

- Yandex maps;

- Yahoo! Maps;

- Bing Maps;

- Apple Maps.

Depending on the problem being solved, different shortest
path search algorithms are used [6]. The main algorithms for
finding the shortest path:

-Dijkstra algorithm - works with a weighted graph. In graphs
with negative weights, it is not applicable, since it creates an
infinite loop;

-wave algorithm - based on a breadth-first search, that is, by
structure it is a recursive algorithm;

Johnson's algorithm - finds the shortest paths between all
pairs of vertices of a weighted directed graph;

-Warshell-Floyd algorithm - finds the shortest paths between
all the verins of a weighted oriented graph;

-search algorithm A*;

-Ford-Bellman algorithm - works with a weighted graph.
Applicable to graphs with negative weights.

III. RESULTS AND DISCUSSION

The solution to the problem of finding the shortest route was
decided to be carried out on a graph, which is a model of
geographical space. As a model, a weighted connected
pseudograph was chosen as the most suitable for modeling
[7]. The vertices of the graph model all possible destination
points, the edges - the existing paths between two points.
And the weights of the edges are the distance between two
points [8]. The graph includes only edges and does not
include arcs, since it is assumed that for any path from point
A to point B, there is a return path from point B to point A
[9]. It is also assumed that the return path requires the same
costs as the direct one [10]. As the weights of the ribs, the
path length and the optimal route were used, this is such a
route whose total path length is minimal.

The tool for solving the problem, it was decided to choose
the Ford-Bellman algorithm for the following reasons:

-universality - the Ford-Bellman algorithm works in both a
weighted and an unweighted graph. If all the edges are the
same weight, then the algorithm finds the shortest path. If
the weights of the edges are different, then the algorithm
finds the least weight path;

-algorithm is simple to implement and does not require
special programming techniques (for example, a recursive
algorithm or additional sortings), which saves resources and
improves productivity;

-reliability - the algorithm does not give closed endless
cycles like the Taryan algorithm, which allows you not to

overload the algorithm with preconditions for error
checking;

- simplicity - the algorithm does not require additional data
processing and preliminary operations such as Dijkstra's
algorithm;

-algorithm can be encapsulated in a separate class library,
which allows you to use it in other projects.

-algorithm is easy to test and verify its reliability.

The algorithm was divided into functional elements that
work separately and are connected with the main object
using composition.

FordBellmansAlgorithmBody is the main class containing
the basic structural elements of the algorithm. It contains
links to:

- ConverterOfGraphToMatrix - the object responsible for
converting the graph into a matrix of weights;

- MakerOfLambdaTable - the object responsible for
compiling the lambda table from the resulting weight
matrix;

-ConstructorOfTrace - the object responsible for compiling
the shortest route and issuing it as a collection of
coordinates;

Also FordBellmansAlgorithmBody contains methods:

-DoMainWork - a method that accepts a collection of graph
edges and the number of vertices that delegates commands
to other objects, coordinates and exchanges data;

-SetBeginAndEndOfTrace - a method that sets from which
point to start and at what point to end the calculation of the
shortest route;

-GetShortestWay - getting the shortest route in the form of
collections of Id points in it.

Detailed analysis of objects contained in the
FordBellmansAlgorithmBody class:

-ConverterOfGraphToMatrix - takes a collection of graph
edges and converts it into a two-dimensional weight matrix,
where the first index is the rows of the matrix and the
second index is the columns of the matrix. The row indexes
of the matrix are the Id number of the point of origin of the
edges, and the column indices of the matrix are the Id
number of the point of end of edges. Since only edges are
used and no arcs are used, the matrix is diagonally
symmetric. Main fields:

-DefaultValue - The default value for the edge weight. By
default, a sufficiently large number is used, the most
disadvantageous for building a route.

-Matrix - matrix of weights in which weights of all edges are
stored

The class also contains the Convert method, which receives
a collection of edges in the graph and the number of vertices
in the graph.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 11 (2020), pp. 3546-3550
 © International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.11.2020.3546-3550

3548

The method performs the following algorithm:

- an array of the required size is created and initialized;

- in the array, default values are set;

- all the weights of the edges from the resulting graph are
read;

- all weights of the edges are transferred to the array.

MakerOfLambdaTable - takes in a matrix of weights and on
its basis returns a lambda matrix. Where rows are vertex
indices and columns are lambda indices. Main fields:

WeightToChooseMinimalN - a list of edges from which an
edge with a minimum weight is selected.

RefToAdjacrncysTable - reference to the matrix of weights.

DefaultValue - the default value for the matrix cell is the
same as in the weight matrix.

Matrix - the lambda matrix itself.

The class also contains the Calculate method, which
receives a two-dimensional array of edge weights and
converts it into a two-dimensional lambda array.

The method performs the following algorithm:

-obtaining a matrix of weights;

-initialization of the lambda matrix;

-setting the values of the cells of the lambda matrix by
default;

-nulling the first element of the matrix;

-calculation of all cells of the lambda table using the Ford-
Bellman algorithm;

ConstructorOfTrace - accepts a weight matrix, lambda
matrix, default value. And on the basis of this data, it
computes a collection of indices of points that make up the
shortest route between two selected points.

Contains fields:

-WeighToChooseMininmalWeight - a collection containing
the weight of the ribs from which the edge with the
minimum weight is selected

-ShortestTrace - a collection of Id points that enter the
shortest route between two selected points.

-RefToAdjacencyMatrix - link to the edge weight matrix.

-RefToLambdaTable - link to the lambda table.

-DefaultValue - default matrix cell weight value. Same as in
other classes.

The class contains methods:

-SetParameters - sets the weight matrix and lambda matrix,
as well as the default value of the matrix cell.

-Construct - creates a collection of points, which are the
shortest route between two selected points.

The method performs the following algorithm:

-installation of selected points as the beginning and end of
the route;

-search of the shortest path by computing the matrix of
weights of edges and lambda matrix;

-creation of collections of points and adding to this
collection of points belonging to the shortest route;

Interaction with the library is carried out using the Adapter
pattern, which adapts the graph class to the format that the
library accepts. To do this, the adapter implements the
IRibzContainer interface, which must contain methods:

-GetVertex1IdOfRibN - returns the Id of the first vertex at
the edge with the specified index;

-GetVertex2IdOfRibN - returns the Id of the second vertex
at the edge with the specified index;

-GetWeightOfRibN - returns the weight of the edge with the
specified index;

-GetCount - returns the length of the collection of edges;

This makes the class library encapsulated and independent
of other classes, which makes it possible to use it in other,
unrelated projects, regardless of their architecture.

IV. SUMMARY

To implement the algorithm, the Windows platform and the
C # programming language were chosen. This choice was
made for the following reasons:

- C # language is focused on work with stationary computers
with high performance;

- C # language supports object-oriented programming and
static typing;

- C # language contains libraries that implement default
design patterns;

-Support for inheritance and interfaces;

- C # language has a developed development environment
and tools for testing and debugging code;

- C # language has standard libraries for creating a graphical
interface, which allows focusing on business logic of the
program on distracting tasks;

-in C # language it is easier to implement the Model Visual
Controls pattern;

-the presence of a garbage collector;

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 11 (2020), pp. 3546-3550
 © International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.11.2020.3546-3550

3549

At the same time, the C # programming language has
several disadvantages:

-the presence of the garbage collector leads to inevitable
performance losses, which prevents the use of C # programs
in real-time devices in which an immediate reaction to
changes is needed;

- undeveloped elements of functional programming can
serve as an obstacle to further work when introducing
artificial intelligence systems into the program;

- incompatibility with other systems (for example, with
Linux) may create problems in the future when it becomes
necessary to use the program on other platforms;

All these shortcomings were recognized as insignificant, and
they do not have much impact in the framework of this
work.

The application architecture was designed based on the
following patterns:

-singleton - used as a single class responsible for the storage
and implementation of the work of all other classes;

- mediator - provides interaction between classes that
implement interface elements and classes that implement
models;

-command - provide encapsulation of individual commands
thereby relieving the code of unnecessary intricacies;

-bridge - provides independence of classes that implement
model from classes that implement visual;

-observer - provides notification of classes that implement
model about events that occur in PaintArea in real time.

-template method - provides the versatility of the classes of
the graphical interface.

factory method - provides a single way to create interface
elements.

-adapter - provides the connection of different class libraries
with each other.

V. CONCLUSIONS

The algorithm can easily be transferred to any programming
language and any technological platform. It is universal and
works with any weighted graph of arbitrary size. The
algorithm is applicable in completely different optimization
problems, not necessarily related to geolocation and has no
restriction in application.

The study of this algorithm can be continued further in
several directions:

- complication of the structure of the algorithm. The use and
calculation of not one optimal solution, but several. Their
sorting, enumeration, comparison and storage in memory;

-binding the algorithm with neural networks and training
artificial neurons to recognize and remember the optimal
solutions found by this algorithm.

ACKNOWLEDGEMENTS

The work is performed according to the Russian
Government Program of Competitive Growth of Kazan
Federal University.

REFERENCES

[1] Iliukhin AN, Galiullin LA. Clusters in the production
of ice. Journal of Advanced Research in Dynamical
and Control Systems. 2019;11(12):1371-1375.

[2] Valiev RA, Galiullin LA. Information support of an
automated personnel management system based on
web technologies. Journal of Advanced Research in
Dynamical and Control Systems, 2019;11(8):2834-
2837.

[3] Tazmeev AK, Galiullin LA. Database of precedents
for technological processes of internal combustion
engines parts. Journal of Advanced Research in
Dynamical and Control Systems, 2019;11(8): 2795-
2797.

[4] Khamadeev SA, Galiullin LA. Database structure of
the technological route for the ice production. Journal
of Advanced Research in Dynamical and Control
Systems, 2019;11(8):2798-2800.

[5] Tazmeev AK, Galiullin LA. Decision support system
for the production of internal combustion engines.
Journal of Advanced Research in Dynamical and
Control Systems. 2019;11(8):2801-2804.

[6] Khafizov AA, Shakirov YI, Valiev RA, Valiev RI.
Determination of regression materials mircohardness,
processed by low-temperature plasma dependence on
process conditions. Journal of Physics: Conference
Series. 2017;789(1): 10, article №012024,.

[7] Valiev RI, Shakirov YI, Khafizov AA, Valiev RA,
Nuriev IM. Generalized current-voltage characteristics
of electric discharge liquid cathode. InJournal of
Physics: Conference Series 2017 Jan (Vol. 789, No. 1,
p. 012067). IOP Publishing.

[8] Shakirova GY, Shakirov YI, Ilyin VI, Valiev RA,
Drogaylova LN. Determination of steel bar dispersed
mass in electric discharge with alternative electrode.
InJournal of Physics: Conference Series 2017 Jan
(Vol. 789, No. 1, p. 012050). IOP Publishing.

[9] Khafizov AA, Shakirov YI, Valiev RA, Valiev RI,
Khafizova GM. Study of thermal and electrical
parameters of workpieces during spray coating by
electrolytic plasma jet. InJ. of Phys.: Conf. Ser 2016
Jan (Vol. 669, p. 012030).

[10] Shakirov YI, Valiev RI, Khafizov AA, Valiev RЮ,

Khakimov RG. Erosion of electrode metal in the
electric discharge under the exposure of the electrolyte
stream. InJournal of Physics: Conference Series 2016
(Vol. 669, No. 1, p. 012064). IOP Publishing.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 11 (2020), pp. 3546-3550
 © International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.11.2020.3546-3550

3550

BIOGRAPHIES OF AUTHORS

Aleksey Nikolaevich Iliukhin – Associate Professor,
Naberezhnye Chelny Institute (branch) KFU/Higher
Engineering School/Department of Information Technology
and Energy Systems/Department of Information Systems,
NI. Academic degrees: Candidate (technical sciences),
specialty 05.13.06 – Automation and control of
technological processes and production (by industry).
Knowledge of languages: German (Basic Speaker), English
(Basic Speaker).

Lenar Ajratovich Galiullin – Associate Professor,
Naberezhnye Chelny Institute (branch) KFU/Higher
Engineering School/Department of Information Technology
and Energy Systems/Department of Information Systems,
NI. Academic degrees: Candidate (technical sciences),
specialty 05.13.06 – Automation and control of
technological processes and production (by industry), the
title of the dissertation "Automation of the technological
process of diesel testing based on the fuzzy neural network
method".

