
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 11 (2020), pp. 3367-3371

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.11.2020.3367-3371

3367

On Screen Display Module

Esperanza Camargo Casallas1, Luis Alberto Jaime Hernández2, Cristian Ancizar Bermúdez Bello3

1 Professor, Dept. of Telecommunications Engineering, Universidad Distrital Francisco Jose de Caldas, Bogotá -Colombia
2 Student, Dept. of Telecommunications Engineering, Universidad Distrital Francisco Jose de Caldas, Bogotá -Colombia
3 Student, Dept. of Telecommunications Engineering, Universidad Distrital Francisco Jose de Caldas, Bogotá -Colombia

1ORCID: 0000-0002-6320-4049, 2ORCID: 0000-0003-2400-9205, 3ORCID: 0000-0001-5672-5746

Abstract

Design and implementation of an image capture module with

different perspectives in non-stationary space exploration

probes. It was developed on a reduced plate where the

processing and storage of information for four strategically

located cameras is centralized, obtaining a multidirectional

spatial vision. The four cameras are controlled by a Script

developed in an interpreted programming language (Python),

and a digital switch was used for the multiplexing sequence. In

the development of the Script, various libraries were used to

capture images and process the encapsulation on a virtual

environment, complementing the images with data information

considered input parameters to the module. The video sections

with autosave functionality are generated through bursts of

images for fixed periods.

Keywords: Cameras, demultiplexing, graphical interface,

multiplexing, OSD (On Screen Display), sensors.

I. INTRODUCTION

The design of modules for monitoring is used in places that

require supervision; the primary duty of the systems is to show

the images of the set of cameras with different types of

information. Video is a computationally intensive task, so when

we need to display multiple video streams, we can run into

problems due to the processing power required [1]. When the

number of monitoring cameras for the system covers an

increasing area, there are problems in displaying the

information; consequently, basic techniques are used with

various concepts in the framework of the development and

implementation of tuning for the systems, offering a description

specific of applied operation and possible failures of the

technologies used to give efficiency and quality in the system.

The main aim of the project is to develop an OSD (On Screen

Display) video processing module for non-stationary space

exploration probes; this will allow recognizing the nearby

atmosphere observing the current state and serving as

informative visual support presenting a combination of

information and images of video taken keeping a history of

reference data for future missions or studies.

In 2013 the FAC launched the SUE probe, which only had HD

video capture from a single camera, evidencing the non-

existence of a video processing system; later in 2014, the SUE

II probe's launch with the same video system as its predecessor.

We evidenced the need to implement a module to capture

images that allow recognizing the environment in detail. [2]

In the capture of images by a system, the terms of focus,

resolution, and processing must be of the best quality, for this

the Python OpenCV module and multiplexing schemes in

embedded systems were used, as proposed by M. Ashourian in

his article "A video multiplexing scheme using data

embedding," where the decomposition of time for multiple

images in the same communication channel is proposed. A pre-

processing block and another post-processing are proposed, a

robust coding scheme is developed for selected data in

parameters and digital watermarks. [3]

II. METODOLOGY

In the OSD video processing module for non-stationary space

exploration probes, the programming card on which it develops

is of great importance; It must be capable of optimal image

processing, low weight, and low energy consumption. The

chosen microcontroller was Raspberry Pi B + for its processing

capacity and robustness in hardware. The chosen software was

Raspbian Jessie based on Linux, due to its ease in configuring

the ports with the GPIO library for Python [4].

The cameras selected were the camera modules on the card due

to the excellent image quality that offers their complete

compatibility, dimensions, and physical characteristics.[5]

These work in a cycle with a multi-adapter module using a CSI

connector (serial interface for a camera) [6], in the reception of

information that complements the images is obtained in SPI

protocol due to its wide use in different microcontrollers. The

module's output is HDMI, which provides excellent resolution

and can be viewed on different projectors or screens. [7]

II.I Cameras cycle routines

The connection of the cameras is made with a CSI connector

with a custom design; the cameras are controlled by SSH

protocol from the Raspberry Pi [8]; once the system is updated,

the configuration of the cameras can be enabled in option 5 of

the tools software configuration as shown in figure 1.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 11 (2020), pp. 3367-3371

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.11.2020.3367-3371

3368

Fig. 1 Raspberry Pi Configuration window

After enabling the cameras' functionality by SSH protocol,

JPEG images are generated and stored in the Raspbian

execution directory; the image capture speed has a variable

capture period with the '-timeout' command, this can be

configured as required.

To process audio and video on a Raspberry Pi is omxplayer.

This multimedia player runs from a terminal and allows us to

control it easily from a simple ssh connection. For the video

capture, OMXPLAYER was used to corroborate the saving of

the video. This audio process was installed by default in

Raspbian, so no additional package must be installed [9].

For the realization of this module, two phases were used; the

first tests were carried out on a single camera's connection and

processing; gradually, executions were done, adding cameras

and evaluating the system's operability and response time.

II.II Multiplexing

For the mounting of the cameras, a multi-adapter was used,

connecting the cameras to the available ports of the multi-

adapter board and from this to the GPIO pins of the Raspberry

Pi.

Fig. 2 Multi-adapter assembling with four cameras

In executing the second phase of video capture with the four

cameras, it caused continuity problems due to the conflict

between the alternate cameras' data lines and the reception of

the Raspberry Pi's CSI port. For this reason, the video was

generated taking a series of photos in a period, supporting the

change of transmission lines generated by the digital switch on

the CSI. Taking a photo every 60 seconds (60000 milliseconds)

for 2 hours (7200000 milliseconds), it was resulting in a

sequence of 120 images [10], with the command raspistill -o

myimage_% 04d.jpg -tl 60000 -t 7200000, the "% 04d " will

result in a four-digit number appearing in each file name.

In creating the video was carried out a "For" cycle, it was

implementing the code in the Multi-adapter Module. By using

functions of this type, we ensure the execution of a type of cycle

with several non-simultaneous tasks.

II.III On Screen Display System

For the graphic interface, the Pygame library was used to create

the OSD, adding text and images to the video. The method used

for the images is "blit," and the text is "render" these functions

are called within an infinite cycle to reserve shifts; each time

the photo is taken, the cameras are turned on for their respective

work and then turned off, in order to avoid conflict with the

communication line.

Script mcfor.py was developed to couple the cameras with the

Debian Linux distribution, each port worked correctly as

individuals, but when operating the four ports with the multi-

adapter, it did not work It was tested with the Raspberry card-

carrying Rasbian Jessie, where the four cameras had been

working, and the Multi-Adapter Module operated correctly; it

was found that this error was caused by the Debian operating

system, opting for the use of the Rasbian Jessie operating

system for the use of the Script.

II.IV Visualization interface

The primary graphical interface was presented in a window

with the cameras' video frame's parameter data. This Script

used the raspistill command in the Rasbian terminal from the

Python Script; this has little efficiency for image processing

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 11 (2020), pp. 3367-3371

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.11.2020.3367-3371

3369

and was found with low processing speed, reaching about six

fps (frames per second).

In a second display, the test was used to Open CV that is cross-

platform, and there are versions for GNU / Linux, Mac OS X,

and Windows. It contains more than 500 functions covering a

wide range of areas in the vision process, such as object

recognition (facial recognition), camera calibration, stereo

vision, and robotic vision. Intel's built-in performance

primitive's system can also be used, a set of low-level routines

specific to Intel processors. [11]

For the installation of OpenCV on the Raspberry Pi board, it is

necessary to download libraries such as GTK so that OpenCV

can display images, build simple graphical interfaces, and

perform different mathematical operations with the Numpy

library. To be packaged and launched together with the

operating system, the CMAKE tool was used.

The Script works under the same principle of an infinite cycle,

adding functions to change cameras, expressed by the change

of pins directly in the cycle, the CSI terminal is always active,

managing to keep the cameras on permanently and without

sudden changes in its electrical current. It also captures up to

32 fps, and text strings are added to each one and then arranged

in an array in Numpy, creating a raw video frame stored in a

cycle period.[12]

III. RESULT

III.II First Camera Phase

In this first phase, it was possible to see the capture of images

in jpg format and video recording with a single camera,

checking the Raspberry Pi's correct operation in the camera

module.

III.II Cameras multiplexing phase

When trying to capture video with the four cameras of the

previous stage, it caused continuity problems due to the conflict

between the alternate cameras' data lines and the reception of

the CSI port of the Raspberry pi.

The possibility of using the module on another operating

system other than rabian was also reviewed. However, the

Multi-adapter Module for cameras worked with anomalies on

the Debian operating system, when different tests were carried

out, showing that each port worked correctly individually.

Nevertheless, at the time of using the four ports, the multiplexer

worked erroneously, confusing port A with port B and port C

with port D, obtaining images from only 2 cameras instead of

4, so the Rasbian Jessy system was definitely working.

The module was tested by adding elements that obtained

information of interest to print over the image; the Raspberry

Pi B + programming card was used; this card presented a high

current deficiency due to the number of connected peripherals

and processes ongoing. To cause the motherboard's processor

will work in a less-than-optimal way, stopping the video frame

and the OSD process in a short time. When showing short times

for the purpose of this project, it was decided to use the

Raspberry pi 3 board, which facilitated the process because

when compared with the previous card, it does not go into a

current deficiency in a short time and has a better processor that

provides greater reliability in the use of the software for a more

extended period as evidenced in tables 1 and 2.

Table 1. Processing video times using Raspberry pi B+.

Table 2. Processing video times using Raspberry pi 3.

III.III Multiplexing phase using Open CV.

In this phase, it was possible to obtain continuity in the frames

generated with a more straightforward OSD design that did not

demand from the system more processing capacity per image.

Additionally, it allowed the handling of the data that will be

entered to print on the image with less latency and without

having inconveniences due to the current demand by the

different input devices; in this phase, different tests of the

device were carried out operating during travel, experiencing

movement and several hours on.

III.III.I Test of device

1) Sierra Morena test in Ciudad Bolívar

Fig. 3 Triple camera test and sensor devices, Sierra Morena

Number of Cameras Time

2 Cameras 3h 27m

3 Cameras 40m 20s

4 Cameras 4m 10s

Number of cameras Time

2 Cameras 5h 00m

3 Cameras 1h 40m

4 Cameras 28m 22 s

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 11 (2020), pp. 3367-3371

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.11.2020.3367-3371

3370

A problem was found with the photo’s storage, a maximum of

122 photos were saved; afterward, they were rewritten; the

code was structured so that more photos could be saved

3)Test on the way to Guadalupe

Fig. 4 Triple camera test with input sensors, road to cerro de

Guadalupe- Bogotá

On the way to Guadalupe, due to the error of only storing 122

photos, it was not possible to have relevant captured, but the

software was stable for 4 hours and 45 minutes.

4)Test on the way to Guadalupe II

In the second test in Guadalupe, with errors corrected, 99

photos stored every 5 minutes, four cameras in use, and all

sensors connected, a tremendous current deficiency was found

for the Raspberry PI due to the large amount of charge that is

connected to its Gpio. The test lasted 2 hours and 57 minutes,

software in perfect working order, 2754 photos are taken on the

route.

Fig. 5 Photo taken at the start of the test, on the way

Guadalupe II

Fig. 6 Photo number 1406, maximum height reached through

the test, cerro de Guadalupe

Fig. 7 Final test photo, on the way to Guadalupe II

5) Test, El Ensueño

Hereby, we verified the efficient operation of Script and the

HDMI video output along with the compound video output that

was implemented in the Raspberry pi board; the different

approaches of the cameras were also projected as to what can

or can not be observed, for example, the upper chamber of the

probe has the function of monitoring the balloon.

Fig. 8 Photo of the parachute and the probe taken by the

probe’s top camera

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 11 (2020), pp. 3367-3371

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.11.2020.3367-3371

3371

IV. CONCLUSION

In the development of the module with the Debian Linux

distribution, each port worked right individually, but when

using the four ports, the multiplexer worked erroneously,

confusing port A with port B and port C with D, obtaining

images only with 2 cameras instead of 4, so it is advisable to

use multiplexer with the Raspbian Jessy distribution that does

not present this problem.

Tests were carried out with input parameters to the system in

Raspberry Pi B +, this card presented a high current deficiency

due to the amount of connected peripherals and started

processes, causing problems in the processor, stopping the

video frame and the OSD processing. The results showed that

the maximum operating time of the system in this version is 3

hours and 27 minutes, with the use of two cameras, which was

not optimal. When demonstrating the functionality times, it was

decided to use the Raspberry pi 3 board, since it presented a

system functionality time improved in an additional 45%

compared to the Raspberry Pi B +. A good power supply is

necessary to avoid Raspberry pi to reboot due to power failure,

it is recommended to use a 5 volt 1- or 2-Amp adapter for

proper operation.

When working with OpenCV there is evidence of an

improvement in image processing with OSD, using an array of

matrices with Numpy, this facilitates a faster photo sequencing

compared to the time it takes to use Pygame. It is advisable to

work with OpenCV and the necessary libraries within a virtual

environment immersed in the operating system; in it you can

install all the required files without affecting the operating

system.

REFERENCES

[1] V. Bautista and F. Gallego, GPU: Application for CCTV

systems. Tecnol. Segur. (ICCST), Conf. Int. sobre

Carnahan, 2014.

[2] FAC, ‘Globo Sonda SUE II Desarrollo Aeroespacial

Colombiano | Fuerza Aérea Colombiana’, 2014. [Online].

Available: https://www.fac.mil.co/globo-sonda-sue-ii-

desarrollo-aeroespacial-colombiano (accessed Jul. 25,

2020).

[3] M. Ashourian, ‘A video multiplexing scheme using data

embedding’, in 2006 International Conference on

Computing & Informatics, 2006, pp. 1–4, doi:

10.1109/ICOCI.2006.5276579.

[4] M. Pérez, ‘TUTORIAL RASPBERRY PI – GPIO

[PARTE 2]: CONTROL DE LEDs CON PYTHON -

Geeky Theory’, 2014. [Online]. Available:

https://geekytheory.com/tutorial-raspberry-pi-gpio-parte-

2-control-de-leds-con-python/(accessed Jul. 25, 2020).

 [5] Raspberrypi, ‘Buy a Camera Module V2 – Raspberry Pi’,

2016. [Online]. Available:

https://www.raspberrypi.org/products/camera-module-v2/

(accessed Jul. 25, 2020).

[6] L. Jackson, ‘Multi Camera Adapter Module for Raspberry

Pi - Arducam’, 2015. [Online]. Available:

https://www.arducam.com/multi-camera-adapter-module-

raspberry-pi/ (accessed Jul. 25, 2020).

[7] Raspberrypi, ‘Camera Modules - Raspberry Pi

Documentation’, 2014. [Online]. Available:

https://www.raspberrypi.org/documentation/usage/camera

/ (accessed Jul. 25, 2020)

[8] C. Enriquez, ‘Acceso Remoto a la Computadora Raspberry

Pi’, 39, 2014. [Online]. Available:

http://www.boletin.upiita.ipn.mx/index.php/ciencia/510-

cyt-numero-39/365-acceso-remoto-a-la-computadora-

raspberry-pi (accessed Jul. 25, 2020)

[9] R. Velasco, ‘Cómo usar Omxplayer para ver películas en

alta definición (HD)’, 2014. [Online]. Available:

https://www.redeszone.net/raspberry-pi/como-usar-

omxplayer-para-ver-peliculas-en-alta-definicion-hd/

(accessed Jul. 25, 2020)

[10] Matt, ‘Creating Timelapse Videos With The Raspberry Pi

Camera-Raspberry-spy’, 2013. [Online]. Available:

https://www.raspberrypi-spy.co.uk/2013/05/creating-

timelapse-videos-with-the-raspberry-pi-camera/ (accessed

Jul. 25, 2020).

[11] OpenCV team, ‘OpenCV’. [Online]. Available:

https://opencv.org/ (accessed Jul. 25, 2020).

[12] A. Mordvintsev, ‘OpenCV: Introducción a los tutoriales de

OpenCV-Python’, 2013. [Online]. Available:

https://docs.opencv.org/master/d0/de3/tutorial_py_intro.h

tml (accessed Jul. 25, 2020)

