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Abstract  

Lithium batteries are presently used in various applications, 

such as cell phones, electric vehicles, unmanned submarines, 

and energy storage systems, as main power sources. Therefore, 

for stable and safe use of this system, it is important to rapidly 

detect defects in the battery and accurately diagnose faults. 

Battery faults can be diagnosed by measuring their state of 

health (SOH), which is affected by various operating conditions. 

In this work, a battery SOH monitoring system is implemented 

to detect faults using a multilayer neural network state classifier 

(MNNSC) and an internal resistance state classifier (IRSC). In 

this system, the MNNSC uses discharge voltage data from a 

lithium battery operating at high temperatures. Further, the 

IRSC uses the open circuit voltage, terminal voltage, and 

current to calculate the internal resistance. Experimental results 

show that the proposed battery SOH monitoring method was 

high accuracy. 

Keywords: Lithium battery, State of health, Fault diagnosis 

system, Multilayer neural network, Internal resistance 

 

I. INTRODUCTION  

Lithium batteries are one of several types of devices used to 

store energy these days, which have attracted significant 

attention from users and researchers owing to their high energy 

and power density, long lifetime, and environmental 

friendliness [1]. Lithium batteries are used in applications such 

as cell phones, electric vehicles, unmanned submarines, and 

energy storage systems as the main sources of power [2, 3]. 

However, faults in the battery system can degrade device 

performance and even cause serious operational faults [4, 5]. 

As the risk of battery system faults have increased in recent 

years, research on their fault diagnosis and safety management 

has, therefore, become particularly important [6, 7]. There are 

several methods to diagnose faults in batteries; however, the 

status of a battery can generally be diagnosed by measuring its 

state of health (SOH). Existing methods typically determine the 

SOH of a battery based on the lifetime specified by the 

manufacturer or on the number of charge–discharge cycles, 

however, the lifetime of the lithium battery can be reduced, or 

faults may occur earlier, depending on the temperature and 

operating conditions.  

Currently, the field of estimating or diagnosing battery aging 

using SOH is as follows: EV(Electric Vehicles), drones, 

ESS(Energy Storage System) [8, 9].  In this field, since the 

capacity reduction of the battery affects the performance, it is 

important to know when to replace the battery early by using 

the SOH of the battery. 

Today, various methods of SOH estimation research are in 

progress. The SOH estimation methods are mainly the open 

circuit voltage (OCV) and Kalman filter methods. The Kalman 

filter method is used to predict the current state of the battery 

by predicting the internal resistance of the battery [10]. 

However, the Kalman filter method has the disadvantage of 

being difficult to apply, owing to the complexities of its 

parameters and algorithms. The open circuit voltage (OCV) 

method measures the output voltage of the battery under no-

load conditions and predicts the SOH according to the changes 

in the OCV [11]. However, it is difficult to apply the OCV 

method to real-time systems as measurements need to be 

obtained when the battery is in a state of internal chemical 

equilibrium. The SOH prediction using the RNN method feeds 

the previous parameters back and makes predictions using past 

information and the current data. However, learning from 

previous data is slow and the resulting low operation speed is a 

disadvantage [12-13]. 

Nowadays, neural networks have been applied in various tasks, 

such pattern recognition, identification, and classification. The 

neural networks can be characterized by the following three 

representative features. First, neural networks have the ability 

to learn complex nonlinear input-output relationships. Second, 

neural networks can use the sequential training procedures. 

Third, neural networks allow data adaptability. Neural 

networks have proven promising for machine intelligence by 

allowing the construction of algorithms that can learn from the 

input and output data and can perform data-driven decisions or 

predictions [14-15] Furthermore, neural networks can be used 

for efficient modelling of a variety of input-output relationships, 

and possess the advantage of shorter execution times compared 

to procedural models [16-17]. 

In this work, we propose an SOH monitoring method for a 

battery module using a multilayer neural network (MNN) and 

the internal resistance of the battery. The lithium battery 

characteristics change according to temperature. Therefore, 

when diagnosing the SOH, it is necessary to consider the 

change in characteristics of the battery by temperature.  [18-19]. 

In this study, to diagnose its state the battery was operated at a 

high temperature (40°C) for an extended period of time. Using 

experimental data, the battery faults were diagnosed by a 
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multilayer neural network state classifier (MNNSC) and an 

internal resistance state classifier (IRSC). 

 

II. MONITORING SYSTEM BASED ON MNNSC AND 

IRSC 

II.1 Lithium battery experimental setup 

The configuration of the battery experiment environment in this 

study is as follows [20]. Battery data are obtained by charging 

and discharging the battery in a chamber under a high 

temperature, i.e., 40°C in this experimental environment. The 

discharge of the battery proceeded to 1C, where C is the current 

rate. The current rate is a measure of the rate at which a battery 

is discharged relative to its maximum capacity. A 1C rate 

implies that the discharge current will discharge the entire 

battery in 1 h. 

II. 2 Battery SOH Algorithm 

The configuration of the lithium battery SOH monitoring 

system proposed in this study is shown in Fig 1. The proposed 

system comprises a battery controller, MNNSC, IRSC, and 

coordinator. The battery controller comprises a voltage and 

current sensor, battery protection circuit, and micro controller 

unit (MCU). It measures the voltage and current data when 

charging or discharging the battery and sends the data to the PC. 

The MNNSC is a state classifier that uses a multilayer neural 

network. The MNNSC receives voltage data from the battery 

controller and diagnoses the battery status as one of the three 

states: normal, warning, and fault [20]. The IRSC diagnoses 

normal or abnormal state by comparing the measured resistance 

to a threshold. Finally, based on the inputs from the MNNSC 

and IRSC, the coordinator outputs the diagnosis result as 

normal, warning, or fault, respectively. 

 

Fig. 1. Configuration of the battery SOH monitoring system. 

 

The fault diagnosis process of the battery proceeds as shown in 

Fig. 2. First, the OCV is measured, then the load voltage and 

load current are obtained, and the estimated resistance of the 

equivalent circuit model of the battery is calculated using 

Equation (1)-(4). Second, the input discharge voltage data are 

classified as normal, warning, or fault by the MNNSC. Further, 

the input parameters, such as OCV, current and discharge 

voltage, are input to the IRSC, whose output is either a normal 

or abnormal state indication. Finally, the coordinator 

categorizes the battery state as normal, warning, or fault using 

the outputs of the MNNSC and IRSC, and diagnostic rules. The 

coordinator diagnostic rules are shown in Table 1. 

 

 

Fig. 2. Process of battery SOH diagnosis. 

 

Table. 1.  The diagnostic rules for determining coordinator 

results 

 

1) Internal Resistance State Classifier 

In this work, the internal parameters of the battery are estimated 

using its equivalent circuit model shown in Fig. 3 [21]. 

 

Fig. 3. Equivalent circuit model of battery. 

 

In this model, 𝑉𝑂𝐶𝑉  is the OCV of the battery, 𝑉𝐿𝑂𝐴𝐷  is the 
battery load voltage, and V𝑅0 and  V𝑅1 are the voltages across 𝑅0 
and 𝑅1, respectively, 𝑉𝑂𝐶𝑉  is obtained as follows: 

 

𝑉𝑂𝐶𝑉 = 𝑉𝐿𝑂𝐴𝐷  + V𝑅0 +V𝑅1      (1) 

 

MNNSC result IRSC result Coordinator result 

Normal Normal Normal 

Normal Abnormal Warning 

Warning Normal or Abnormal Warning 

Fault Normal or Abnormal Fault 
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At the moment when the circuit is closed, V𝑅1  becomes 0, 
because of the capacitor C1, and 𝑉𝑅0 is calculated as follows: 

 

𝑉𝑅0 = 𝑉𝑂𝐶𝑉 – V𝐿𝑂𝐴𝐷  (2) 

 

According to Ohm’s Law, the 𝑉𝑅0 is expressed as follows: 

 

I × 𝑅0  = 𝑉𝑂𝐶𝑉  – V𝐿𝑂𝐴𝐷   (3) 

 
The battery state is estimated by measuring its internal 
resistance, 𝑅0, which is calculated as follows: 

 

𝑅0  =  
𝑉𝑂𝐶𝑉−𝑉𝐿𝑂𝐴𝐷

 I
   (4) 

 
As the battery ages, its internal resistance increases, therefore, 
when the SOH of the battery reduces to 0%, the values of the 
internal resistances, 𝑅0 and 𝑅1, are higher than those when the 
SOH is 100%. In other words, the internal resistance of the 
battery can be measured and used to diagnose its state. The 
internal resistance is defined as normal if it stays in the range of 
0.12–0.18 Ω, and abnormal for any value exceeding this range, 
respectively. 

 

2) Multilayer Neural Network State Classifier 

The MNN is the most basic learning model among the neural 

network models. The MNN is a model with two or more hidden 

layers between the input and output layers. Complex nonlinear 

problems can be learned through two or more hidden layers 

[22]. 

In this study, the MNN comprises one input layer, two hidden 

layers, and one output layer. The rectified linear unit (ReLU) 

was used as an activation function for each hidden layer, and 

the softmax was used for the output layer. The node of the 

model is composed of 3600-256-256-3. The discharge voltage 

and state of the battery are used as the input and output, 

respectively. The battery status yields one of the three states: 

normal, warning, and fault. As a learning algorithm, the weight 

was updated using the RMSProp algorithm. 

The RMSProp algorithm is an optimization algorithm that uses 
the moving average of squared gradients to normalize the 
gradient during neural network training. This normalization 
balances the step size, decreasing it for large gradients to avoid 
exploding and increasing it for small gradients to avoid 
vanishing [23]. The RMSProp algorithm is mathematically 
expressed as follows: 

 

𝐺𝑡 = γ𝐺 + (1 − γ)(∇𝜃𝑓𝑡(𝜃𝑡))2           (5) 

 

𝜃𝑡 =  𝜃𝑡−1 − √
𝜂

𝐺𝑡−𝜖
 ∙  𝛻𝜃𝑓𝑡(𝜃𝑡−1)         (6) 

where γ  is the decay rate (typically 0.9), 𝜃  is a network 
parameter, and 𝑓(𝜃) is the cost function. In this study, softmax 
is used. ∇𝜃𝑓(𝜃) is the gradient of the network, and t is a time 
step. Gt is an accumulated squared gradient. 𝜂 is the learning 
rate and is set to 0.001. 𝜖 refers to epsilon. 

The ReLU is an activation function used in neural network 
models [20]. This function returns 0 when it receives a negative 
input but returns it again for a positive x. The ReLU solves the 
problem of vanishing gradients in the sigmoid and has the 
advantage of fast convergence. The ReLU is expressed as 
follows: 

 

𝑓(𝑥) = {
0,   𝑓𝑜𝑟 𝑥 < 0

 𝑥,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 

The softmax normalizes all input values to values between 0 and 
1 as output, and the sum of output values is a function that 
always has a value of 1. The output comprises the number of 
classes to be classified. The class yielding the largest output 
value is used as the highest probability. The softmax function is 
mathematically expressed as follows: 

 

𝑝𝑖 =  
exp (𝑥𝑖)

∑ exp (𝑥𝑘)𝑘
   (8) 

 

where k is the number of input and output vectors and 𝑝𝑖  and 𝑥𝑖 
are the i-th output and input values, respectively. 

 

3) Graphical User Interface (GUI) of SOH Monitoring 

System 

The PC GUI of the battery SOH monitoring system developed 

in this work is shown in Fig. 4. The GUI program was created 

using LabVIEW. 

 

Fig. 4. GUI of the SOH monitoring system: ① - plot of voltage 

from the lithium battery, ② - output of the SOH monitoring 

system (normal, warning, or fault), ③ - individual results of 

MNNSC and IRSC, ④  - execution and stop buttons (after 

pressing the execution button, the MNNSC and IRSC start 

working and their outcomes are displayed in ③), ⑤ - field to 

input voltage data of the battery. 
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III. EXPERIMENT AND RESULTS 

The experimental setup configuration for conducting the 

experiments is shown in Fig. 5. Table 2 summarizes the 

specifications of the battery used in the experiment. 

 

Fig. 5. Circuit configured for experiment: ①: electronic load 

(replaced with power supply when charging), ② : battery 

system (battery, current and voltage sensor, and micro 

controller unit (MCU) to communicate with PC0), ③: PC and 

serial communication with battery system to receive battery 

voltage and current data and monitor battery SOH. 

 

Table. 2.  Battery internal resistance used in test  

 

 

 

 

To verify the performance of the proposed method, the voltage 

data of a lithium battery operated at a high temperature was 

used. The data used are shown in Fig 6. Fig 6 (a) shows the 

voltage data of a lithium battery used for learning. When the 

capacity of the battery reaches 80% of the rated capacity, it is 

defined as a fault. Therefore, we assumed that the state of the 

battery changes when the current capacity of the battery 

decreases by 10% from the original rated capacity. When the 

capacity reaches 90%–100% of the rated capacity, it is defined 

as a normal state. When the capacity reaches 80%–90%, it is 

defined as a warning state. When the capacity is less than 80%, 

it is defined as a fault state. In Fig 6 (a), patterns 1–5 were 

learned in a normal state. Patterns 6 and 7 were learned in a 

warning state. Patterns 8–10 were learned in a fault state. Fig. 

6 (b) shows the discharge graphs of another battery operated in 

the same environment as that of the test. In Fig. 6 (b), patterns 

1, 2, and 3 depict the normal state with SOH of 90% or more, 

patterns 4, 5, 6, and 7 depict the warning state with SOH close 

to 80%, and patterns 8, 9, 10, and 11 are for the fault state with 

SOH less than 80%, respectively. 

 

(a) The voltage data of the operated battery used in learning 

 

 

(b) The voltage data of the operated battery used in testing 

 

Fig. 6. Lithium battery discharge graph for operation at high 

temperature. 

 

Fig. 7 shows the test results by MNNSC for patterns 1 through 

11 of Fig. 6 (b). The MNNSC classified patterns 1, 2, and 3 as 

normal, patterns 4, 5, 6, and 7 as warning, and patterns 8, 9, 10, 

and 11 as fault states, respectively. From the results, it shows 

that the MNNSC method learned the characteristics of the 

battery well and also diagnosed battery status very well. 

 

Fig. 7. SOH diagnostic test results for battery operated at high 

temperature. 

 

The internal resistance of the battery used in the test in Fig. 6 

(b) is shown in Table 3. The final result diagnosis from the 

coordinator by MNNSC and IRSC is shown in Fig. 8. It shows 

that MNNSC and IRSC results were diagnosed by the 

diagnostic rules of coordinator very well. From the results, we 

know that the proposed SOH system diagnoses the battery 

status was high accuracy. 

Battery type Li-Po battery 

Capacity 1300 mAh 

Voltage range 2.4–4.28 V 

Nominal voltage 3.7 V 
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Table. 3.  Internal resistances of batteries used in the test 

 

 

Fig. 8. Final diagnosis results from the coordinator 

 

The performance of this system was evaluated using F1-Score 

[24]. The F1_Score is the harmonic mean of the precision and 

the recall. The precision is the ratio of correctly predicted 

positive observations to the total predicted positive 

observations, and is calculated as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                             (9) 

 

where TP is the number of true positives. These are the correctly 
predicted positive values, i.e., when the value of the actual class 
is true, and the value of the predicted class is also true. FP is the 
number of false positives, i.e., when the value of the actual class 
is false, but the predicted class value is true. 

The recall is the ratio of correctly predicted positive 
classifications to all indications of the actual class, and is 
calculated as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
,                          (10) 

 

where FN is the number of false negatives, i.e., when the actual 

class value is true, but the predicted class value is false. 

Variable F1_Score is defined as follows: 

 

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
.            (11) 

The accuracy is one of the most intuitive performance measures, 

and it is simply defined as the ratio of correctly predicted 

observations to the total number of observations: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝐹𝑃 +  𝐹𝑁 + 𝑇𝑁
.                  (12) 

 

TN is the number of true negatives, i.e., the correctly predicted 

negative class values, when the value of the actual class is false, 

and value of the predicted class is also false. 

Using Equations (9)–(12), F1_Score and accuracy can be 

calculated using the values in Table 4, 𝐹1_𝑆𝑐𝑜𝑟𝑒 = 2 ×  
1 × 1

1 + 1
=

1 , and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
3+4+4

11
 = 1 . The score shows that the 

diagnosis is perfect. 

In addition, patterns 1, 6, and 9 were used to diagnose the battery 
status in the GUI. Patterns 1, 6, and 9 were normal, warning, and 
fault states, respectively, and the GUI was able to correctly 
classify them and produce outputs for each pattern, as shown in 
Figs. 9 (a)–(c). 

 

 

(a) Normal state 

 

 

(b) Warning state 

 

(c) Fault state 

Fig. 9. SOH monitoring results for battery module. 

Pattern Internal resistance Result 

1 0.173 Normal 

2 0.13 Normal 

3 0.143 Normal 

4 0.208 Abnormal 

5 0.157 Normal 

6 0.257 Abnormal 

7 0.227 Abnormal 

8 0.223 Abnormal 

9 0.268 Abnormal 

10 0.252 Abnormal 

11 0.258 Abnormal 
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IV. CONCLUSION 

In this paper, the lithium battery SOH monitoring system based 

on MNNSC and IRSC was proposed. The battery was charged 

and discharged in a high-temperature chamber (40°C), and the 

battery discharge voltage data obtained in the experiment were 

used to diagnose the fault state of the battery using the proposed 

method. 

The experimental results demonstrated that the proposed state 

classifier well diagnosed the actual state of the battery by 

testing the discharge data of lithium battery of the same 

specification operated under the same experimental conditions. 

Moreover, a GUI for the SOH monitoring system was 

developed using LabVIEW that allows a user to check the 

status of the battery at a glance. 

In the future, we will apply the proposed method based on 

MNNSC and IRSC for multiple battery cells because an actual 

lithium battery is used as a battery pack comprising multiple 

battery cells. Moreover, future research will significantly 

improve the practicality of the system. 
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