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1. INTRODUCTION

Nadler[11] introuced set valued contractive mappings in metric
spaces and proved existence of fixed points for such mappings.
Later many authors extended and generalised the work of
Nadler in different directions.

Considering the convergence of certain sequences, Presic [13]
proved the following :

Theorem 1.1. Let (X, d) be a metric space, k a positive
integer, T : Xk −→ X be a mapping satisfying the following
condition :

d(T (x1, x2, . . . , xk), T (x2, x3, . . . , xk+1))

≤ q1.d(x1, x2) + q2.d(x2, x3) + · · ·+ qk.d(xk, xk+1)

(1.1)

where x1, x2, . . . , xk+1 are arbitrary elements in X and
q1, q2, . . . , qk are non-negative constants such that q1 +
q2 + · · · + qk < 1. Then, there exists some x ∈ X
such that x = T (x, x, . . . , x). Moreover if x1, x2, . . . , xk
are arbitrary points in X and for n ∈ N xn+k =
T (xn, xn+1, . . . , xn+k−1), then the sequence < xn > is
convergent and lim xn = T (lim xn, lim xn, . . . , lim xn).

Note that for k = 1, the above theorem reduces to the
well-known Banach Contraction Principle.
Ciric and Presic [5] generalising the above theorem proved the
following:

Theorem 1.2. Let (X, d) be a metric space, k a positive
integer, T : Xk −→ X be a mapping satisfying the following
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condition :

d(T (x1, x2, . . . , xk), T (x2, x3, . . . , xk+1))

≤ λ.max{d(x1, x2), d(x2, x3), . . . d(xk, xk+1)
(1.2)

where x1, x2, . . . , xk+1 are arbitrary elements in X and
λ ∈ (0, 1). Then, there exists some x ∈ X such that
x = T (x, x, . . . , x). Moreover if x1, x2, . . . , xk are arbitrary
points inX and for n ∈ Nxn+k = T (xn, xn+1, . . . , xn+k−1),
then the sequence < xn > is convergent and lim xn =
T (lim xn, lim xn, . . . , lim xn). If in addition T satisfies
D(T (u, u, . . . u), T (v, v, . . . v)) < d(u, v), for all u, v ∈ X
then x is the unique point satisfying x = T (x, x, . . . , x).

The above theorems have been generalised by Pacurar [12],
Reny George et al [9]. Nadler [11] generalised the Banach
Contraction to set valued functions and proved the following:

Theorem 1.3. Let (X, d) be a complete metric space and T
be a mapping from X into CB(X) where CB(X) denotes all
closed bounded subsets of X such that for all x, y ∈ X ,

H(Tx, Ty) ≤ λd(x, y) (1.3)

where 0 ≤ λ < 1. Then T has a fixed point.

Several fixed point theorems have been established in various
topological spaces using Set Valued / hybrid contractions. (see
[1-4],[6-8],10,15,17). The present paper is aimed at proving
fixed point theorems for set valued mappings of Presic Type
there by generalising the above theorems and other proven
results.

2. PRELIMINARIES

The following definitions are needed in the sequel:

Definition 2.1. Let (X, d) be a metric space, k a positive
integer, T : Xk → X and f : X → X be mappings.

(a) An element x ∈ X is said to be a coincidence point of
f and T if and only if f(x) ∈ T (x, x, ...., x). If x ∈ f(x) =
T (x, x, ...., x) then we say that x is a common fixed point of
f and T .
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(b) Mappings f and T are said to be commuting if and only
if f(T (x, x, ...x)) = T (fx, fx, ...fx) for all x ∈ X.

(c) Mappings f and T are said to be weakly compatible if
fx ∈ T (x, x, ......x) implies T (f(x, x, ...) ⊆ T (fx, fx...fx).

Remark 2.2. for k = 1, the above definitions reduces to
the usual definition of commuting and weakly compatible
mappings in a metric space.

The set of coincidence points of f and T is denoted by
C(f, T ).

Definition 2.3. Let A be a non-empty subset of a metric space
(X , d). For x ∈ X , define

d(X,A) = inf{d(x, y) : y ∈ A} (2.1)

Let CB(X) denote the set of all nonempty closed bounded
subsets of X. For A, B ∈ CB(X), define

δ(A,B) = sup{d(x,B) : x ∈ A} (2.2)

H(A,B) = max{δ(A,B), δ(B,A)} (2.3)

Then H is a metric on CB(X) and is called Hausdorff metric.

Remark 2.4. Let (X, d) be a metric space and A,B ∈
CB(X). Then for all ε > 0 and a ∈ A, there exists a point
b ∈ B such that d(a, b) ≤ H(A,B) + ε.

3. MAIN RESULTS

Consider a function φ : Rk → R such that
(a) φ is an increasing function,i.e x1 ≤ y1, x2 ≤ y2, ....xk ≤
yk implies φ(x1, x2, ....xk) ≤ φ(y1, y2, ....yk).
(b) φ(t, t, t, ...) ≤ t, for all t ∈ X
(c) φ is continuous in all variables (d) φ(t1, t2, ....tk ≤ Max
(t1, t2, ....tk)

Now we present our main results as follows :

Theorem 3.1. Let (X, d) be a metric space. For any positive
integer k, let T : Xk → CB(X) and f : X → X be mappings
satsifying,

T (XK) ⊆ f(X) (3.1)

H(T (x1, x2, ...xk), T (x2, x3, ...xk+1))

≤ λφ(d(fx1, fx2), d(fx2, fx3), ...(fxk, fxk+1))
(3.2)

where x1, x2, ...xk+1are arbitrary elements in X and λ ∈
(0, 1) and

f(X) is complete (3.3)

then f and T have a coincidence point, i.e., i.e. C(f, T ) 6= ∅

Proof. Let R > 0 where,

R = max{d(fx1, fx2)
θ

,
d(fx1, fx2)

θ2
,

d(fx1, fx2)

θ3
, ........

d(fx1, fx2)

θk
}

(3.4)

with θ = λ
1
k {ε} ⊂ X be a sequence satisfying

0 < εn and εi ≤ Rθk+i (3.5)

Let x1, x2, ....xn be arbitary elements in X. By (3.1), (3.4)
and remark (2.4), there exist xk+1, xk+2 in X, such that
yk+1 = fxk+1 ∈ T (x1, x2.....xk) and yk+2 = fxk+2 ∈
T (x2, x3.....xk+1) such that
d(yk+1, yk+2) = d(fxk+1, fxk+2)

≤ H(T (x1, x2, .....xk), T (x2, x3, .....xk+1) + ε1

≤ λφ(d(fx1, fx2), d(fx2, fx3), ...(fxk, fxk+1)) + ε1

≤ λφ(Rθ,Rθ2, .....Rθk) + ε1

≤ λφ(Rθ,Rθ, .....Rθ) + ε1

≤ λ(Rθ) + ε1 ≤ Rθk+1 + ε1

≤ 2Rθk+1

Also,
d(yk+2, yk+3) = d(fxk+2, fxk+3)

≤ H(T (x2, x3, .....k+1), T (x3, x4, .....xk+2) + ε2

≤ λφ(d(fx2, fx3), d(fx3, fx4), ...(fxk+1, fxk+2)) + ε2

≤ λφ(Rθ2, Rθ3, .....2Rθk+1) + ε2

≤ λφ(Rθ2, Rθ2, .....Rθ2) + ε2

≤ λRθ2) + ε2 ≤ λ2Rθk+1 + ε2

≤ 3Rθk+2

Continuing this process we can form the sequence < yn >
such that yn+k=fxn+k ∈ T (xn, xn+1, xn+2....xn+k−1) with

d(yn, yn+1) ≤ (n+ 1)Rθn (3.6)

for all n. Now, for p, n ∈ N , we have
d(yn, yn+p) ≤ d(yn, yn+1), d(yn+1,

yn+2), .......d(yn+p−1, yn+p)

≤ (n+ 1)Rθn + (n+ 2)Rθn+1 + ......(n+ p)Rθn+p−1

= nRθn
∑p−1
i=0 θ

i +Rθn
∑p
i=1 iθ

i−1

As, n→∞, we have d(yn, yn+p)→ 0

Clearly {yn} is Cauchy sequence and since f(X) is complete,
we have some u, v ∈ X such that limn→∞yn = v = fu. Now,
d(fu, T (u, u, ...u)) ≤ d(fu, fxn+k)
+d(fxn+k, T (u, u, ...u))

=d(fu, fxn+k)+ H(T (xn, xn+1, ....xn+k−1), T (u, u, ....u))

≤ d(fu, fxn+k) + H(T (u, u, ....u), T (u, u, ...xn)) +
H(T (u, u, ....xn), T (u, u, ...xn, xn+1))+.....
+........H(T (u, xn, xn+1, .....xn+k−2), T (xn, xn+1, .....xn+k−1))

The above reduces to,
d(fu, T (u, u, ...u)) ≤ d(fu, yn+k)
+λφ{d(fu, fu), d(fu, fu), . . . , d(fu, fxn)}
+λφ{d(fu, fu), d(fu, fu), . . . , d(fu, fxn), d(fxn, fxn+1)}+
· · ·
+λφ{d(fu, fxn), d(fxn, fxn+1), . . . d(fxn+k−2, fxn+k−1)}.
= d(fu, yn+k) + λφ(0, 0, . . . , d(fu, fxn))

+λφ(0, 0, . . . , d(fu, fxn), d(fxn, fxn+1)) + · · ·
+λφ(d(fu, fxn), d(fxn, fxn+1), . . . d(fxn+k−2, fxn+k−1)).
= d(fu, yn+k) + λφ(d(fu, fxn),
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d(fxn, fxn+1), . . . d(fxn+k−2, fxn+k−1)).

Taking, limn→∞ in RHS, we get,
d(fu, T (u, u, ...u)) = 0.
As, T (u, u, ...u) ∈ CB(X), we have, v = fu ∈
T (u, u, u, ...u)

i.e., u is coincidence point and v is point of coincidence of f
and T .
Thus C(f, T ) 6= ∅

Theorem 3.2. Let (X, d) be a metric space. For any positive
integer k, let T : Xk → X and f : X → X be two mappings
satisfying all conditions of Theorem (3.1), with

u ∈ C(f, T )⇒ T (u, u, u, ...u) = {fu} (3.7)

with λ ∈ (0, 1k ). Then T and f have unique point of
coincidence. Further if f and T are weakly compatible, then
f and T have a unique common fixed point.

Proof. From Theorem 3.1, C(f, T ) 6= ∅ with u ∈ C(f, T ).
i.e. f(u) = T (u, u, u.....u) = v for some v ∈ X . So v
is a point of coincidence of f and T . We claim the point of
coincidence is unique. If not, let there exist u

′
in X such that

{v} = {fu} = T (u, u, ....u) and
{v′} = {fu′} = T (u

′
, u

′
, ....u

′
)

d(v
′
, v) = H({v′}, {v})

d(v
′
, v) = H(T (u

′
, u

′
, u

′
, .....u

′
), T (u, u, u, ...u))

≤ H(T (fu
′
, u

′
, ....u

′
), T (u

′
, u

′
, u

′
, ....u)) +

H(T (u
′
, u

′
, ....fu, u), T (u

′
, u

′
, u

′
, ...u, u))+

.......H(T (u
′
, u, u, ...u, u), T (u, u, ....u))

≤ λφ{d(fu′
, fu

′
), d(fu

′
, fu

′
), ....., d(fu

′
, fu)}

+λφ{d(fu′
, fu

′
), d(fu

′
, fu

′
), .....d(fu

′
, fu), d(fu, fu)} +

...

+λφ{d(fu′
, fu), d(fu, fu), ...d(fu, ffu)}.

= λφ(0, 0, ....., d(fu
′
, fu))

+λφ(0, 0, .....d(fu
′
, fu), 0) + ...

+λφ(d(fu
′
, fu), 0, 0, 0, ...0)).

= kλd(fu
′
, fu).

= kλd(v
′
, v)

Repeating n times, we get, d(v
′
, v) ≤ knλnd(v′

, v)

As n→∞, knλn → 0 and hence d(v
′
, v)→ 0.

So v = v
′
, i.e. point of coincidence of f and T is unique.

Since f and T are weakly compatible, we have,
fv = ffu = f(T (u, u, ...u)) ∈ T (fu, fu, ...fu)
i.e., fv ∈ T (v, v, ...v) = w

Since Point of Coincidence is unique, w = v.
Therefore, fv = T (v, v, v, ....v) = v

So v is unique common fixed point of f and T .

Remark 3.3. For k = 1 and f = Id (identity mapping),
Theorem 3.2 becomes set valued contraction of Nadler type.

Example 3.4. Let X = R2, X = [0, 2] and d : X ×X → R
such that d(x, y) =| x − y | . Then d is a metric on X Let
A be the collection of all non empty subsets of X of the form
A = {[0, x] : x ∈ X}. Denote H : A × A → X with
respect to d as follows: H(A,B) =| x − y | for A = [0, x]
and B = [0, y]. T : X2 → X and f : X → Xbe defined as
follows.
T (x, y)=[ 0,(x2+y2)

4 + 1
2 ] if (x, y) ∈ [0, 1]× [0, 1]

T (x, y)=[ 0,(x+y)
4 + 1

2 ]if (x, y) ∈ [1, 2]× [1, 2]

T (x, y)=[ 0,(x2+y)
4 + 1

2 ]if (x, y) ∈ [0, 1]× [1, 2]

T (x, y)=[ 0,(x+y2)
4 + 1

2 ] if (x, y) ∈ [1, 2]× [0, 1]
f(x) = x2 if x ∈ [0, 1]
f(x)=x if x ∈ [1, 2]

Case 1. x, y, z ∈ [0, 1]
H(T (x, y), T (y, z))= | T (x, y)− T (y, z) |
=| (x

2+y2)
4 + (y2+z2)

4 |
=| (x

2−y2)
4 + (y2−z2)

4 |
≤ 1

2 .max{d(fx, fy), d(fy, fz)}

Case 2. x, y ∈ [0, 1] and z ∈ [1, 2]

H(T (x, y), T (y, z))= | (x2+y2)
4 − (y2+z)

4 |=| (x2−y2)
4 +

(y2−z)
4 |≤ 1

2 .max{d(fx, fy), d(fy, fz)}

Case 3. x ∈ [0, 1] and y, z ∈ [1, 2]

H(T (x, y), T (y, z))= | (x
2+y)
4 − (y+z)

4 |=| (x
2−y)
4 + (y−z)

4 |≤
1
2 .max{(fx, fy), d(fy, fz)}

Case 4. x, y, z ∈ [1, 2]

H(T (x, y), T (y, z))= | (x+y)
4 − (y+z)

4 |=| (x−y)
4 + (y−z)

4 |≤
1
2 .max{(fx, fy), d(fy, fz)}
Similarly in all other cases we see that d(T (x, y), T (y, z)) ≤
1
2 .max{(fx, fy), d(fy, fz)}
and f and T satisfy the condition (3.2) with φ(x1, x2) =
max(x1, x2). It can be seen that C(T, f) = {0, 1}, f and
T commute at 0 and 1 and so are weakly compatible. Finally,
Fix(f, T ) = {0, 1}. f and T do not satisfy condition (3.6).
Hence the Fixed point is not unique.

Example 3.5. Let X = R2, X = [0, 2] and d : X ×X → R
such that d(x, y) =| x − y | . Then d is a metric on X.
Let A be the collection of all non empty subsets of X of the
form A = {[0, x] : x ∈ X}

⋃
{{x} : x ∈ X}. Denote

H : A×A→ X with respect to d as follows:

H(A,B) =


| x− y | forA = [0, x]andB = [0, y].

| x− y | forA = {x}andB = {y}.
max{y, | x− y |}forA = [0, x]andB = {y}
max{x, | x− y |}forA = {x}andB = [0, y]

T : X2 → X and f : X → Xbe defined as follows.
T (x, y)=[ 0,(x2+y2)

8 ] if (x, y) ∈ [0, 1]× [0, 1]

T (x, y)=[ 0,(x+y)
8 ]if (x, y) ∈ [1, 2]× [1, 2]

T (x, y)=[ 0,(x2+y)
8 ]if (x, y) ∈ [0, 1]× [1, 2]
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T (x, y)=[ 0,(x+y2)
8 ] if (x, y) ∈ [1, 2]× [0, 1]

f(x) =

{
x2

2 ifx ∈ [0, 1]

xifx ∈ [1, 2]

As in previous example we can show that f and T satisfy all the
conditions of Theorem (3.1) with φ(x1, x2) = max(x1, x2)
and λ=1

4 . Clearly C(f, t) = {0} and T (0, 0) = 0. Thus all the
conditions of Theorem 3.2 are satisfied and Fix(f, t) = {0}.

Corollary 3.6. Let (X, d) be a metric space. For any positive
integer k, let T : Xk → CB(X) and f : X → X be
mappings such that f(X) is a closed subspace of X and
T (x1, x2, ...., xk) ⊂ f(X) for all x1, x2,....xk, satisfying the
following conditions:

f(X) is complete (3.8)

H(T (x1, x2, ...xk), T (x2, x3, ...xk+1)) ≤
k∑
i=1

αid(fxi, fxi+1)

(3.9)
where x1, x2, ...xk+1are arbitrary elements in X and αi are
non negative constants such that

∑k
i=1 αi < 1. Then f and

T have a point of coincidence, v ∈ X . and Further if f and
T are weakly compatible, then f and T have a common fixed
point.

Proof. Proof follows from Theorem 3.1 and 3.2 by taking
φ(t1, t2....tk) ≤Max((t1, t2....tk).

Taking f = Ix in the above Corollary and proceeding as before,
we get the following :

Corollary 3.7. Let (X, d) be any complete metric space, k a
positive integer. Let T : Xk → CB(X) be a set valued Presic
Type contraction, with

∑k
i=1 αi < 1, Then T has a fixed point

v ∈ X .

Remark 3.8. Cor (3.6) and (3.7) are the main theorems 3
and 4 of Sukhla et al [16]. Corollary (3.6) is an extension
of the theorem of Nadler [11] in product spaces which also
generalises Theorem 1 for set valued mappings.

Let us consider the following:
Let φ : Rk → R such that
(a) φ is an increasing function,i.e x1 � y1, x2 � y2, ....xk �
yk implies φ(x1, x2, ....xk)� φ(y1, y2, ....yk).
(b) φ(t, t, t, ...) ≤ t, for all t ∈ X
(c) φ is continuous in all variables.

Theorem 3.9. Let (X, d) be any metric space, λ a positive
integer, Let T : Xk → CB(X) and f : X → X be two
mappings such that T (x1, x2, ...., xk) ⊂ f(X) for all x1,
x2,....xk, satisfying the following conditions:

H(T (x1, x2, ...xk), T (x2, x3, ...xk+1))

≤ λφ(d(fxi, fxi+1)), fori = 1tok
(3.10)

where x1, x2, ...xk+1are arbitrary elements in X . Suppose
there exists u ∈ X such that

d(fu, T (u, u, u, u...u) ≤ d(fx, T (x, x, ....x)forallx ∈ X
(3.11)

Then f and T have a point of coincidence, v ∈ X and
Further if f and T are weakly compatible, then f and T have
a common fixed point.

Proof. Let G(x) = d(fx, T (x, x, ....x)), for all x ∈ X . Then
we have,

G(u) ≤ G(x)forallx ∈ X (3.12)

If v = fu ∈ T (u, u, ....), then u is a coincidence point and v
is point of coincidence of f and T . If not,
G(u) = d(fu, T (u, u, ...u)) > 0. Since T (u, u, ......u) ∈
CB(X) and T (u, u...u) ⊂ f(X), let y = fz = T (u, u, ...u) be
aribitary.
From (3.11) we have, G(u) ≤ G(z) = d(fz, T (z, z, ...z)
≤ H(T (u, u, ....u), T (z, z, .....z)
≤ H(T (u, u, ...u), T (u, u...u, z))
+H(T (u, u, ..., u, z), T (u, u...u, z, z))

+H(T (u, z, ..., z, z), T (z, z...z, z))
≤ λφd(fu, fz) + λφd(fu, fz) + ..........λφd(fu, fz)
≤ λd(fu, fz)
⇒ G(u) ≤ λd(fu, y), for all y ∈ T (u, u, ...u)
⇒ G(u) ≤ λd(fu, T (u, u, ...u))
Since 0 < λ < 1, we have G(u) < λG(u), which is a
contradiction.
⇒ G(u) = 0, i.e., d(fu, T (u, u, ...u) = 0.
⇒ v = fu ∈ T (u, u, ...u)
Thus u is a coincidence point and v is point of coincidence of
f and T . i.e., C(f, T ) 6= ∅.
The rest of the proof follows from Theorem 3.2.

Corollary 3.10. Let (X, d) any metric space. For any positive
integer k, let T : Xk → CB(X) and f : X → X be
mappings such that f(X) is a closed subspace of X and
T (x1, x2, ...., xk) ⊂ f(X) for all x1, x2,....xk, satisfying the
following conditions:

H(T (x1, x2, ...xk), T (x2, x3, ...xk+1)) ≤
k∑
i=1

αid(fxi, fxi+1)

(3.13)
where x1, x2, ...xk+1are arbitrary elements in X and αi are
non negative constants such that

∑k
i=1 αi < 1. Suppose there

exists u ∈ X such that

d(fu, T (u, u, ...u) ≤ d(fx, T (x, x, ...x))forallx ∈ X,
(3.14)

then f and T have a point of coincidence, v ∈ X . Further if
f and T are weakly compatible, then f and T have a common
fixed point.

Proof. Proof follows from Theorems (3.9) and (3.2).

Remark 3.11. The above corollary corresponds to Theorem 5
and 6 of Sukhla et al [16].

Corollary 3.12. Let (X, d) be any metric space, k a positive
integer. Let T : Xk → CB(X) be a set valued Presic Type
contraction, with

∑k
i=1 αi < 1. Suppose there exists u ∈ X

such that

d(u, T (u, u, ...u) ≤ d(x, T (x, x, ...x)) for all x ∈ X,
(3.15)
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Then T has a fixed point v ∈ X .

Proof. Taking f = Ix in the above Corollary and proceeding
as before, the result will follow.
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