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Abstract 

Complex nonlinear dynamic systems with a tendency to self-

organization are considered herein. The article is aimed at 

obtaining a quantitative assessment of self-organization 

criticality in theoretical and practical aspects for computer 

calculations. The problem of direct processing of large arrays 

of non-Gaussian data is solved without the usual prior 

transformation into Gaussian data. The proposed method is 

relevant for situations when the cross-correlation of data in the 

array is significant, reflecting such processes as avalanches, 

chain reactions, and collective effects. In the simplest case of 

one-dimensional space, an algorithm is given for construction 

of a fractal manifold – a new mathematical object, the argument 

for which was proposed in [9]. The construction of the fractal 

manifold made it possible to reveal an unusual property of the 

Gauss function, which confirms the chosen approach. The 

fractal manifold method makes it possible to determine more 

accurately the average value due to its smaller scale in 

comparison to the Euclidean scale. The algorithm is invariant 

for linear transformations of the initial data set, has 

renormalization-group invariance, and determines the intensity 

of cross-correlation (self-organized criticality effect) of the 

data. The description of the self-organized criticality state is 

universal and does not depend on the nature of data correlation 

similar to the universality of the random variables’ distribution 

in the absence of data correlation. This method can be used with 

large sets of non-Gaussian or strange data obtained in 

information technology. 

Keywords: self-organized criticality, fractal manifold, scale 

invariance, avalanche, chain reaction, collective effect, the 

Gauss function, the Bessel function.  

 

I. INTRODUCTION 

The concept of self-organized criticality [1, 2] is recognized as 

a generalization with a paradigmatic meaning as a form of 

generalization that will characterize the next stage of physics 

[3]. The concept has provided a consolidation for the 

phenomena of a wide range of disciplines, covering solar 

physics, astrophysics, magnetospheric physics, geophysics, 

biophysics, and social sciences, which had no context [4]. The 

processes of self-organized criticality (SOC) are observed in 

some complex systems consisting of many components, 

interacting in the near and far order, for example, in neural 

networks, forest fires, and electrical networks that form 

avalanches, chain reactions, and collective effects. 

For example, according to experimental data, the brain of 

healthy mammals functions in a state of SOC. When brain 

function is impaired during epileptic seizures, the neural 

network loses its criticality characteristics [5]. Artificial neural 

networks do not simulate the process of SOC, which can be 

assessed as a problem requiring a solution [6]. 

SOC systems are characterized by scale invariance and 

criticality achievement without control parameters. The fractals 

are of great interest due to their scale invariance, and self-

similar geometry of fractal objects. However, the question 

“Fractals: Where's the Physics?” remains relevant [7]. 

Moreover, a criticality indicator is also required to compare 

quantitatively different self-organized systems and interpret the 

experimental data. This paper is aimed at obtaining a 

quantitative assessment of scale invariance, self-organization 

in theoretical and practical aspects of computer calculations. 

An important class of fractal objects forms sets that describe 

the geometry of percolation. Percolation theory or infiltration 

theory is a mathematical theory used in physics, chemistry and 

other fields of science to describe the emergence of connected 

arrays in random environments consisting of individual 

elements. Percolation is a critical process [8]; i.e. it assumes the 

existence of a certain threshold, below which the liquid 

propagation is limited to a finite region of the medium. Close 

to the critical threshold, percolation occurs along a fractal set, 

the geometry of which is determined exclusively by the laws of 

criticality. The criticality condition makes the geometric 

characteristics of the fractal independent of the microscopic 

properties of the medium. This phenomenon can be interpreted 

as universality.  

This paper introduces a method based on theoretical 

approaches in the understanding of the most common 

behavioral patterns of complex nonlinear dynamic systems 

forming the states of self-organization. Article [9-12] and 

review [13], introduce a number of non-standard ideas for the 

application of fractal objects to the description of the nonlinear 

dynamic system revealing a self-consistent convergence to 

collective states. In the vicinity of the state of self-organization, 

the number of degrees of freedom becomes minimal. In terms 

of the topology of the space, this means that the fractal 

dimension of the space decreases due to the appearance of 

fractional impermeable regions that model the state of self-

organization. Thus, the complexity of the nonlinear system is 

transferred to the complexity of the space.  
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For the development of these ideas, an example of fractal 

manifold construction in the one-dimensional Euclidean space, 

based on the Cantor dust fractal is presented herein.  

Pursuant to the proliferation of computing technology, an 

increasing number of industrial applications and an ever-

growing load of research generate arrays of data from a variety 

of sources. Gaussian distribution is a probability distribution 

commonly used in statistics, signal processing, and pattern 

recognition. However, not all of the data to be processed is 

Gaussian. In this regard, methods to address this are in demand 

and there is a wide practice of applying the transformation of 

non-Gaussian data to Gaussian one. Note the classic Box Cox 

transformation and publications [14-15] concerned with the 

processing of non-Gaussian data in machine learning. 

The question at issue is that possibly important information for 

the researcher about the physical processes that generate non-

Gaussian data is lost when transforming non-Gaussian data into 

Gaussian data and applying conventional statistical methods of 

data processing. The loss of universality in the description of 

physical processes when processing Gaussian (normal) data 

shows the scale of the difference. 

Fractal space is of interest due to the search for a solution to the 

problem of processing experimental data obtained in SOC 

phenomena, where the strange nature of the data caused by 

strong mutual correlation in the short-range and long-range 

orders is of fundamental importance. Large-scale invariance in 

the phenomena of self-organized criticality derives from the 

exclusiveness the customary meaning of the mean as the 

arithmetic mean. Linear programming methods are 

inapplicable in the vicinity of criticality, given the requirement 

for scale invariance of the result. The versatility of SOC 

phenomena also requires versatility in the method of 

mathematical processing of experimental data, which would 

not depend on the nature of the interaction of elements in a 

complex nonlinear dynamic system. 

The paper proposes a computational method for processing 

strange data directly, which allows for a quantitative 

comparison of the structural characteristics of big data sets 

without preliminary transformation into normal data. 

 

II. COMPUTATIONAL METHOD  

The transformed value of non-Gaussian data, which allows the 

quantitative comparison, must be invariant with respect to any 

linear transformation of the values of the original data [16]. The 

problem has a solution only for the ordered strange data and 

taking into account the vicinity in which nonlinearity reveals 

itself. As shown in the paper, the transformation should have a 

renormalization group invariance with respect to the size of the 

vicinity in which a quantitative comparison of the 

manifestations of nonlinearity takes place.  

The key step in the article is the algorithm for constructing a 

fractal manifold – a new mathematical object in the simplest 

case of one-dimensional space. The idea of a fractal manifold 

was expressed in the scientific work [9].  

The Cantor dust fractal or a geometric progression with an 

arbitrary value 0 < 𝑞 < 1 (in the classical Cantor set 

fractal 𝑞 = 2/3) has the symbolic form: 

𝐹 ~ 1 − (1 − 𝑞) − (1 − 𝑞)𝑞2 − (1 − 𝑞)𝑞3 − (1 − 𝑞)𝑞4 − ⋯ 

  (1) 

The following method is proposed for a fractal manifold 

construction: the fractal manifold for 𝑛 = 5 of an arbitrary set 

of five ordered numbers 𝑎𝑖 has the form: 

𝑎0
𝑅̃(𝑎, 5) = 𝑎0 − (1 − 𝑞)𝑎1 − (1 − 𝑞)𝑞𝑎2

− (1 − 𝑞)𝑞2𝑎3 − (1 − 𝑞)𝑞3𝑎4

− (1 − 𝑞)𝑞4𝑎0 − (1 − 𝑞)𝑞5𝑎1

− (1 − 𝑞)𝑞6𝑎2 − ⋯  

𝑎1
𝑅̃(𝑎, 5) = 𝑎1 − (1 − 𝑞)𝑎2 − (1 − 𝑞)𝑞𝑎3

− (1 − 𝑞)𝑞2𝑎4 − (1 − 𝑞)𝑞3𝑎0

− (1 − 𝑞)𝑞4𝑎1 − (1 − 𝑞)𝑞5𝑎2

− (1 − 𝑞)𝑞6𝑎3 − ⋯ 

𝑎0
𝐿̃(𝑎, 5) = 𝑎0 − (1 − 𝑞)𝑎4 − (1 − 𝑞)𝑞𝑎3

− (1 − 𝑞)𝑞2𝑎2 − (1 − 𝑞)𝑞3𝑎1

− (1 − 𝑞)𝑞4𝑎0 − (1 − 𝑞)𝑞5𝑎4

− (1 − 𝑞)𝑞6𝑎3 − ⋯  

𝑎1
𝐿̃(𝑎, 5) = 𝑎1 − (1 − 𝑞)𝑎0 − (1 − 𝑞)𝑞𝑎4

− (1 − 𝑞)𝑞2𝑎3 − (1 − 𝑞)𝑞3𝑎2

− (1 − 𝑞)𝑞4𝑎1 − (1 − 𝑞)𝑞5𝑎0

− (1 − 𝑞)𝑞6𝑎4 − ⋯ 

 

 

 

 

(2) 

With each fractal cycle 𝑚, where 𝑚 → ∞, a new value 𝑎𝑖 

appears from the sample of non-Gaussian data 𝑛 and then along 

the closed contour. Left and right directions of the contour are 

distinguished. Infinitely decreasing geometric progressions 

with different denominators are distinguished at a common 

factor(1 − 𝑞)𝑎𝑖. 

In general: 

𝑎𝑖
𝑅̃(𝑎, 𝑛) = 𝑎𝑖 −

1−𝑞

1−𝑞𝑛+1 [∑ (𝑞𝑘𝑎𝑚𝑜𝑑(𝑘+1+𝑖,𝑛+1))𝑛
𝑘=1 ]  

 (3) 

Similarly, for 𝑎𝑖
𝐿̃(𝑎, 𝑛), the following is obtained: 

𝑎𝑖
𝐿̃(𝑎, 𝑛) = 𝑎𝑖 −

1−𝑞

1−𝑞𝑛+1 [∑ (𝑞𝑛−𝑘𝑎𝑚𝑜𝑑(𝑘+𝑖,𝑛+1))𝑛
𝑘=1 ]  

 (4) 

The sets {𝑎𝑖
𝑅̃(𝑎, 𝑛) − 𝑎𝑖

𝐿̃(𝑎, 𝑛)} and {𝑎𝑖
𝑅̃(𝑎, 𝑛) + 𝑎𝑖

𝐿̃(𝑎, 𝑛)} form 

fractal manifolds, which are the first constructed example of 

fractal manifold. The expression for the signal-to-noise ratio 

(𝑆𝑁𝑅) is as follows: 

𝑆𝑁𝑅(𝑎, 𝑛) =
𝑆(𝑎,𝑛)

𝑁(𝑎,𝑛)
=

∑ (𝑎𝑖
𝑅̃(𝑎,𝑛)−𝑎𝑖

𝐿̃(𝑎,𝑛))
2

𝑛
𝑖=0

∑ (𝑎𝑖
𝑅̃(𝑎,𝑛)+𝑎𝑖

𝐿̃(𝑎,𝑛))
2

𝑛
𝑖=0

   

 (5) 

The scale-invariant SNR has no analogue in the spaces of 

integer dimension or carries the obvious meaning for the scale 

invariance of random numbers. The essence of the SNR in this 

simplest case of a one-dimensional space is similar to a new 

geometric characteristic of a fractal, called the connectivity 
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index and introduced to describe the topology of a fractal set 

[9].  

The main result hereof and the confirmation of the proposed 

constructions ((3), (4)), on which the authors rely in the 

development of the fractal manifold method, is the invariance 

of the formula (5) for the set of values of the Gauss function of 

the granularity n for a sufficiently large number of partitions n. 

The result obtained makes it possible to note the emergence of 

a new mathematical criterion for Gaussian data: the data is 

Gaussian if the form (5) is invariant from the granularity n for 

a sufficiently large number of partitions n. The discovered 

property of the Gauss function is independent of the method of 

fractal manifold construction and serves only as a justification 

for the chosen method of construction. 

The set of values taken by the Bessel functions satisfy the 

proposed criterion for Gaussian data. The real data contain both 

random effects and collective effects caused by cross-

correlation. Gaussian noise increases the fractal dimension of 

the data, if not filtered using an approximation. The 

approximation of the data by a finite series of the Bessel 

functions (approximately three to seven terms of the series) 

leaves only the contribution of random variations. The 

approximation of the data by the Fourier finite series followed 

by the 𝑆𝑁𝑅 transformation makes it possible to identify the 

self-organized criticality effect. 

When modeling the non-Gaussian data by the half-wave 

a𝑖 = sin (𝜋
𝑖

𝑛
), used in calculations with the preliminary 

approximation of the data by the finite Fourier series for 

sufficiently large values of 𝑛, the expression for the 𝑆𝑁𝑅 has 

the form: 

𝑆(𝑛, 𝑞) ≈
(1−𝑞)4(1+𝑞)2

𝑛−3
2𝜋2(1 + 4𝑞 + ⋯ )  (6) 

𝑁(𝑛, 𝑞) ≈
(1−𝑞)2(1+𝑞)2

(𝑛−3)2 2𝜋2(1 + 4𝑞 + ⋯ )  (7) 

and 

𝑆𝑁𝑅(𝑛, 𝑞) = (1 − 𝑞(𝑛))
2

(𝑛 − 3)   (8) 

Require the fulfillment of the invariance condition 𝑆𝑁𝑅(𝑛, 𝑞), 

which makes the strange data closer to the Gaussian ones: 

𝑑

𝑑𝑛
𝑆𝑁𝑅(𝑛, 𝑞(𝑛)) = 0    (9) 

The solution of the differential equation has the form: 

𝑞(𝑛) = 1 − √
𝜇

𝑛−3
    (10) 

The choice of the constant 𝜇 determines the scale of the 𝑆𝑁𝑅. 

For large values of 𝑛, the asymptotics of the fractal manifolds’ 

length parameters in the half-wave model has the form: 

𝑙𝑆~𝑛−
3

2 𝑎𝑛𝑑 𝑙𝑁~𝑛−
3

2    (11) 

The Hausdorff fractal dimension according to Kolmogorov 

[17] for the fractal manifolds, constructed taking into account 

the direction of traversal of a closed contour of n numbers, is 

equal to: 

𝐷 = − lim
𝑛→∞

[
ln(𝑛)

ln(𝑙)
] =

2

3
   (12) 

The requirement of method’s invariance with respect to any 

linear transformations of the initial data follows from the 

definition of fractal dimension (12). Thus, the set of values, 

taken by the trigonometric functions like sine and cosine, form 

a fractal manifold of dimension 𝐷 = 2/3.  

The average for the Gaussian numbers: 

lim
𝑛→∞

[
1

𝑛
∑ sin (𝜋

𝑖

𝑛
)𝑛

𝑖=0 ] =
2

𝜋
≈ 0.64   (13) 

differs from the average according to Kolmogorov for 𝐷 =
2/3. 

lim
𝑛→∞

[
1

𝑛
∑ (sin (𝜋

𝑖

𝑛
))

𝐷
𝑛
𝑖=0 ]

1/𝐷

≈ 0.60  (14) 

A half-wave in the degree p, for integer p greater than one, 

generates the fractal manifold of the dimension 𝐷 = 2/5, 

which is the smallest of the discovered dimensions of fractal 

manifolds.  

An example of the fractal manifold method, the calculations are 

given for binomial coefficients close to the Gaussian set, 

normalized by the asymptotics: 

𝑎𝑖 = 2−𝑛√
𝜋𝑛

2
[

𝑛!

𝑖!(𝑛−𝑖)!
]   (15) 

For sufficiently large values of n, the expression of the 𝑆𝑁𝑅 is: 

𝑆(𝑛, 𝑞) ≈ 3𝜋
(1−𝑞)4

√2𝑛+1
(1 + 6𝑞 + ⋯ )   (16) 

𝑁(𝑛, 𝑞) ≈ 9𝜋
(1−𝑞)2(1+𝑞)2

(2𝑛+1)3 2⁄
(1 + 6𝑞 + ⋯ )  (17) 

𝑆𝑁𝑅(𝑛, 𝑞) =
(1−𝑞(𝑛))

2

(1+𝑞(𝑛))
2

(2𝑛+1)

3
   (18) 

The renormalization-group equation for 𝑞(𝑛) has the form: 

𝑞(𝑛) =
√2𝑛+1−√3𝜇

√2𝑛+1+√3𝜇
    (19) 

The fractal dimension for the normalized binomial coefficients 

is 𝐷 = 4/5.  

The choice of the mean for the non-Gaussian data as for the 

Gaussian numbers, which is often made in calculations, is not 

unequivocal [16]. Not only the mean value itself but also the 

type of the mean value calculation formula is determined by the 

strange data. The fractal manifold method makes it possible to 

determine more accurately such a well-known characteristic of 

the structure as the average value, using the smaller 

scale 𝑙~𝑛−
3

2, compared to the Euclidean scale 𝑙𝐸~𝑛−1 as an 

instrument and to identify qualitatively the new structural 

characteristic the degree of cross-correlation of the data or the 

degree of collective data state determined by the 𝑆𝑁𝑅. 

The peculiarity of the discovered property lies in the fact that 

not all singularities of continuously differentiable functions are 

determined by an infinitely small neighborhood. The effect of 

cross-correlation is manifested in the short-range and long-

range orders at the “microlevel” (𝑙~𝑛−
3

2). 
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Thus, the emergence of a dependence of the 𝑆𝑁𝑅 on the 

number of samples n for the non-Gaussian (strange) data is 

explained by the presence of cross-correlation of the strange 

data. The introduction of the parameter q from the Cantor dust 

fractal and the application of the renormalization-group 

invariance method with respect to 𝑡ℎ𝑒 𝑆𝑁𝑅 makes it possible 

to proceed with the traditional analysis of the Gaussian data — 

the degree of data correlation in the 𝑆𝑁𝑅 definition (5). 

Preliminary calculations are performed for 𝑞 = 0 by the 

formulas (24)-(26). At the preliminary stage of calculations, 

when comparing different sets of the ordered data, the critical 

sizes of the descriptors 𝑛𝑘𝑟1 ,𝑛𝑘𝑟2  are obtained, which provide 

the maximum collective states in the data sets. Then the 

value 𝜇 = [𝑚𝑖𝑛(𝑛𝑘𝑟1 , 𝑛𝑘𝑟2 ) − 3] in the formula (10) is taken 

and the value 𝑆𝑁𝑅(𝑚𝑎𝑥(𝑛𝑘𝑟1 , 𝑛𝑘𝑟2 ))is calculated more 

accurately taking into account the invariance (20)-(23) of 𝑞. A 

comparison of the SNR values of different data sets is correct 

in the calculation performed on a single scale 𝜇. The peaks of 

𝑡ℎ𝑒 𝑆𝑁𝑅(𝑥𝑖 , 𝑛) characterize the presence of a structure in the 

data of the variable 𝑥 and delineate the vicinity of the collective 

state. The concept of a critical or collective state is 

characteristic of the strange kinetics approach, denoting a 

cluster of degrees of freedom that have a strong correlation [8, 

9; 18-21]]. 

The approximation parameters of the finite Fourier series and 

the size of the descriptor 𝑛 when the ordered data are passed 

with unit step are determined by the conditions of the maximum 

of the objective function –the maximum collective state in the 

system .  

In matrix form, the renormalization-invariant formulas for the 

SNR are as follows: 

𝑆𝑁𝑅(𝑎, 𝑛) =
(𝑎×𝑆𝑎)

(𝑎×𝑁𝑎)
    (20) 

𝑆 = −(𝑚𝑎𝑡𝑟𝑖𝑥(𝑛 + 1, 𝑛 + 1, 𝑓) − 𝑚𝑎𝑡𝑟𝑖𝑥(𝑛 + 1, 𝑛 +
1, 𝑓)𝑇)2  (21) 

𝑁 = [2𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦(𝑛 + 1) − (𝑚𝑎𝑡𝑟𝑖𝑥(𝑛 + 1, 𝑛 + 1, 𝑓) +
𝑚𝑎𝑡𝑟𝑖𝑥(𝑛 + 1, 𝑛 + 1, 𝑓)𝑇)]2 (22) 

where 

𝑓(𝑖, 𝑗) =
1−𝑞

1−𝑞𝑛+1 𝑞𝑚𝑜𝑑(𝑗−𝑖+𝑛,𝑛+1)   (23) 

The formulas (20)-(23) are equivalent to the formulas (3)-(5) 

and allow for the designing of an algorithm. The formulas are 

the practical aspect in the solution for the problem of scale 

invariance and self-organized criticality, announced in the 

article’s introduction.  

In calculations, based on 𝐾 = 𝑛/2 + 1 unique ordered 

spectrum data, a symmetric closed-loop vector is constructed: 

𝑎 = (𝑎0, 𝑎1, 𝑎2, ⋯ , 𝑎𝐾−1, 𝑎𝐾 , 𝑎𝐾−1, ⋯ , 𝑎2, 𝑎1) (24) 

For 𝑞 = 0, taking into account the symmetry of the matrices 𝑆 

and 𝑁, the formulas for the 𝑆𝑁𝑅 (20)-(23) acquire a usable 

form for processing big data: 

𝑆 2⁄ = 𝑎0(𝑎0 − 𝑎2) + 𝑎1(𝑎1 − 𝑎3)

+ ∑ 𝑎𝑖(−𝑎𝑖−2 + 2𝑎𝑖 − 𝑎𝑖−2)
𝐾−2

𝑖=2

+ 𝑎𝐾−1(−𝑎𝐾−3 + 𝑎𝐾−1)
+ 𝑎𝐾(−𝑎𝐾−2 + 𝑎𝐾) 

 

(25) 

 

 

𝑁 2⁄ = 𝑎0(3𝑎0 − 4𝑎1 + 𝑎2)
+ 𝑎1(−4𝑎0 + 7𝑎1 − 4𝑎2 + 𝑎3)

+ ∑ 𝑎𝑖(𝑎𝑖−2 − 4𝑎𝑖−1 + 6𝑎𝑖

𝐾−2

𝑖=2

− 4𝑎𝑖+1 + 𝑎𝑖+2)
+ 𝑎𝐾−1(𝑎𝐾−3 − 4𝑎𝐾−2 + 7𝑎𝐾−1

− 4𝑎𝐾)
+ 𝑎𝐾(𝑎𝐾−2 − 4𝑎𝐾−1 + 3𝑎𝐾) 

 

 

 

(26) 

As already noted, a correct comparison of the structural 𝑆𝑁𝑅 

characteristics of different data sets should be carried out on a 

single scale 𝜇 with allowance for 𝑞 invariance (20)-(23).  

The method is used for large sets of data obtained in good 

resolution, which makes it possible to increase the scale of the 

comparison 𝜇 with the preservation of the invariance.  

 

III. CONCLUSIONS 

The fractal manifold method makes it possible to process non-

Gaussian data without prior transformation into the usual 

Gaussian data, which gives the researchers an option of 

expanding the range of problems to be solved and allows for 

obtaining more information about the processes that generate 

non-Gaussian data arrays. The proposed method is in demand 

when the cross-correlation of data in the array is significant, 

reflecting such processes as avalanches, chain reactions and 

collective effects. It becomes possible to quantify SOC events. 

The solution to the problem of processing directly non-

Gaussian data is based on a new mathematical construction – 

fractal manifold (formulas (3)-(5)). The success in solving the 

problem under consideration is confirmed by the revealed 

property for the set of values taken by the Gauss function, 

namely, in the invariance of the form (5) of the granularity n 

for sufficiently large values of n. The Gauss and Bessel 

functions are widely used in various fields of knowledge and 

the discovery of a new mathematical property in them in the 

proposed research is an independent result. The revealed Gauss 

function property makes it possible to propose a new criterion 

for Gaussian data. For example, it is shown that the binomial 

distribution is a fractal manifold with dimension D = 4/5 and it 

does not satisfy the criterion for Gaussian data, and the set of 

values taken by the Bessel functions is Gaussian. 

The fractal manifold method makes it possible to determine 

more accurately the average value due to the smaller scale 

compared to the Euclidean scale in a one-dimensional case. 

There is a fundamental possibility of quantitative comparison 

of SOC effects, manifested in different fields of knowledge. In 

accordance with the universality of the topological approach, it 

becomes a reality, for example, a quantitative comparison of 

the collective effect in sociology and cosmophysics. 
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The construction of a fractal manifold for a closed contour is 

achieved using simple rules (formulas (3)-(5)). At the same 

time, the indicated formulas are instrumental only in analytical 

calculations and can not be applied to processing large scale 

arrays of data. In the proposed study, it is recommended to use 

the formulas (20)-(23), which allow for processing large scale 

arrays of data. The formulas (20)-(23) are obtained by 

proceeding from the condition that the results are identical with 

analytical calculations. 

The proposed fractal manifold method for processing non-

Gaussian data is an approximate approach; the main factor of 

approximation is the preliminary approximation of non-

Gaussian data by a finite Fourier series. Fourier approximation 

reduces the effect of random Gaussian values. Further research 

is required on the method of estimation of the error in non-

Gaussian data processing when traditional statistical 

approaches are not applicable. In determining the reliability of 

non-Gaussian data processing, the fractal dimension of the 

approximating functions is of great importance. Gaussian noise 

increases the fractal dimension if not filtered. The smaller the 

fractal dimension of the approximating functions, the more 

accurately the dimension of the criticality is determined. A 

limitation in the proposed approach is the consideration of only 

one-dimensional arrays of non-Gaussian data. 

The prospective [3, 13] to the concept of self-organized 

criticality, which is shared by many researchers as having a 

paradigmatic meaning is noted in the introduction section. In 

this regard, there is a demand for a method of setting the 

problem that would correspond to the new paradigm in physics 

– what is to be determined? The present study is aimed at the 

identification of some marks (features) in the future 

formulation of the problem. 
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