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Abstract  

Relay Node Placement (RNP) is a critical design problem in 

Wireless Sensor Networks (WSNs).  Network performance and 

energy efficiency can be highly affected by the placement 

strategy of RNs. It is an NP-hard optimization problem which 

can be effectively addressed with multi-objective formulation 

and solved using metaheuristics. The main aim of this research 

work is to efficiently optimize the unconstrained deployment 

of energy-harvesting RNs in a pre-established stationary WSN. 

The focus is on optimizing different conflicting objectives, 

namely network coverage, energy consumption, and 

deployment cost. This was approached in this paper using a 

novel integrated approach combining the Genetic Algorithm 

(GA) with a greedy technique. The greedy algorithm plays a 

vital role in the optimization process as it effectively guides GA 

during convergence. The outcome of the greedy algorithm is 

used to limit the search space complexity of GA and realize the 

critical places at which RNs might be placed. The greedy-

integrated GA approach was evaluated extensively with 

different WSN scenarios, in comparison to the classic GA when 

used independently. The experimental results clearly 

demonstrate that the solutions to RNP problems, with 

considerably large search space and good number of sensors, 

can be significantly improved using the proposed placement 

strategy considering both solution quality and convergence 

time. 

Keywords:  Wireless Sensor Networks, Relay Node Placement, 

Genetic Algorithm, Greedy Algorithm 

 

I. INTRODUCTION  

Wireless Sensor Networks (WSNs) provide effective support 

for many applications in different domains. Common WSN 

applications include environmental sensing, surveillance, fire 

detection, health monitoring, battlefield reconnaissance, and 

natural disaster prevention. In such applications, a set of sensor 

nodes having computing, sensing, and communication 

resources is deployed in different terrain and environmental 

conditions. Sensor nodes are typically small-sized devices of 

limited processing and communication capabilities. They are 

commonly operated using batteries as power sources which 

would limit their lifespan. Moreover, the battery replacement 

process is demanding in cost, time, and manpower. This makes 

energy efficiency of great significance for WSNs.  

In wireless sensor networks, energy consumption is mostly 

counted for wireless radio communications. Therefore, low-

power wireless communication technology has become widely 

utilized to minimize energy consumption and maximize 

network lifetime. Although it helps in reducing transmission 

power of sensor nodes, this approach comes at the cost of 

limiting network coverage in practice. Without addressing such 

limitations of WSNs, real-world deployments of the different 

WSN applications can be easily hindered. One strategic 

approach in this context is the deployment of Relay Nodes 

(RNs) in optimal locations to improve the performance of 

WSNs. RNs typically have larger energy capacity compared to 

sensor nodes as they would be mains-powered or energy-

harvesting devices. Accordingly, RNs are costly components 

thus demand well-planned deployment for better cost 

management in regards to maintenance and deployment.  

This challenging problem is known as the Relay Node 

Placement Problem (RNPP). It is classified as a Non-

Deterministic Polynomial-time (NP)-hard optimization 

problem. Adopting approximate techniques to solve such a 

problem rather than exact techniques is more effective to 

maintain lower computing time as the problem dimension 

increases. Therefore, the RNPP can be efficiently addressed 

using metaheuristics. There are many metaheuristics among 

which evolutionary algorithms (EAs) are widely adopted due 

to their simplicity and effectiveness. multi-objective problems 

can be addressed using EAs which are capable of solving 

problems of different types without prior knowledge of the 

problem domain. The RNPP can be solved with Multi-

Objective (MO) formulation using metaheuristics to optimize 

different conflicting objectives in simultaneous manner.  

There are different considerations regarding routing structure, 

connectivity requirements, deployment strategies in the context 

of RN placement in WSN. Routing structure is classified into 

single-tiered and two-tiered structures. In the former, the 

network is structured in a star topology to connect each sensor 

node to at least one RN. The two-tiered structure organizes the 

network into multi-hop clusters such that RNs become the 

clusters’ heads. For the connectivity requirements, RN 

placement can be accomplished according to the connected and 

survivable network models which ensure the connectivity and 
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bi-connectivity of the sensor nodes, respectively.  In regards to 

deployment strategies, it is possible to carry out unconstrained 

deployment which enables anywhere RN placement. However, 

constraints which would be posed in some applications (e.g. 

limiting placement locations or physical distance) can also be 

considered when placing RNs.  

In this paper, the problem was formulated as a two-tiered RNPP 

with connected and unconstrained deployment. We address 

efficient deployment of energy-harvesting RNs in pre-

established WSNs with stationary sensor nodes. It was 

approached as a multi-objective NP-hard optimization problem 

using the Genetic Algorithm (GA) integrated with a greedy 

technique to optimize network coverage, energy consumption, 

and deployment cost. Integrating the greedy algorithm helps in 

limiting the search space for placing RNs which would lead the 

GA to better convergence time. From the experimental results, 

it is evident that the solutions to RNPPs, with considerably 

large search space and good number of sensors, can be 

improved significantly with this integration considering both 

the quality of solution and convergence time. 

In the following section, a number of relevant research works 

are discussed. Section III presents the main assumptions 

considered for this work. In Section IV, the mathematical 

model is presented whereas the integrated approach is 

described in Section V. The evaluation setup is illustrated in 

Section VI in addition to a discussion of the evaluation results. 

Section VII concludes this research paper and gives a 

perspective on the future enhancements to the current work. 

 

II. RELATED WORK 

Metaheuristics, in particular GA, have been widely adopted to 

address different optimization problems in WSN. These 

include clustering [1], Routing [2], and node scheduling [3]. In 

recent studies, researchers carried out different surveys on 

different multi-objective problems found in WSNs [4-6]. It is 

also evident that RNPP was given considerable attention by the 

research community as different approaches using varying 

evolutionary algorithms were introduced [7-9]. Among these, 

GA was a popular method to approach the RNPP in an effective 

manner.  

In [10], the RNPP was approached using a GA-based algorithm 

in addition to a greedy algorithm. The focus was on the 

deployment of the minimum number of RNs in a predetermined 

set of locations with the objective of establishing k-

connectivity between each sensor node and RNs. It was found 

out that the GA-based approach outperformed the greedy 

placement strategy in different experimental setups. In a further 

research work [11], another GA-based solution was presented 

to factor in additional objectives including the network 

coverage of sensor nodes. As in both proposals, however, the 

RNPP was addressed without considering energy efficiency 

which is a critical objective to optimize network lifetime. The 

authors in [12] adopted the GA to address the RNPP 

considering the minimization of the number of RNs while 

maintaining maximum connectivity among sensor nodes and 

RNs. Other solutions have also been proposed to place RNs at 

a set of candidate positions. This approach is referred to as 

Constrained RNPP (C-RNPP) [13]. It has been shown that this 

approach enables the placement of a minimum number of RNs 

in predetermined potential positions [14].  

In order to facilitate effective multi-objective optimization for 

WSN, further modification and integration were applied to the 

GA in different research efforts. In [15], the GA was modified 

to incorporate a novel-sorting process. In [16], the proposed 

approach for solving the RNPP was based on the integration 

and cooperation of an exact method and metaheuristic. The GA 

was integrated with the Mixed-Integer Linear Programming 

(MILP) to support the genetic operations. The target was to 

optimize two main objectives namely end-to-end delay and 

network throughput. In [17], the GA was made more flexible 

by incorporating variable-length encoding and modifying the 

crossover and mutation operations. This approach enables fine-

grained deployment while flexibly adjusting the number and 

position of the nodes. In [18], a combination of evolutionary 

algorithms and the concept of quantum computation was 

considered to minimize computational complexity. A GA-

based solution inspired by quantum principles was proposed to 

address the RNPP considering two-tiered WSN architecture. It 

provides a solution for ensuring full coverage of sensor nodes 

using the minimum number of RNs while having connectivity 

established among the RNs at the top layer of the architecture. 

On the other hand, the deployment of RNs in WSNs provides 

an effective approach to address different optimization 

objectives. Among of which are those targeting better 

connectivity, full coverage, limited energy consumption, 

improved performance, and effective cost management. 

Therefore, the optimization of the RN placement in WSNs was 

approached considering single optimization objectives such as 

maximizing network lifetime [19-21] but mostly achieved with 

varying combinations of different objectives. The majority of 

the reviewed literature focused on cost-effective deployment 

and the minimization of the total number of RNs in addition to 

other critical objectives. These include establishing full 

connectivity among the deployed nodes in order to maintain 

sustainable WSN communications [10, 11, 22-30]. Minimizing 

overall energy consumption across the network is another 

objective that was also combined to maximize network lifetime 

[31-33]. Adopting network coverage as an integrated 

optimization objective was also considered to ensure more 

effective WSN deployment [34].  

Other research efforts were also made to incorporate more 

objectives to address more effective optimization of RNPP. In 

some of these, network lifetime was improved with few RNs 

while maintaining fully connected networks [35-36] or 

ensuring better network coverage [37-38]. A solution targeting 

cost-effective deployment was also proposed to provide full 

network coverage and connectivity with the lowest number of 

RNs [11, 18, 39-40]. Other combinations considering the 

maximization of network lifetime, coverage, and connectivity 

without limitation on the number of deployed RNs were also 

considered [41-42]. 

This work, to the best of our knowledge, is the first attempt that 

integrates a greedy algorithm with the GA in order to guide it 

during convergence. The greedy algorithm plays a vital role in 

the optimization process. First, it provides an estimated number 
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of RNs for GA so that it can apply fixed-size encoding of a 

chromosome. The actual number of RNs that will be included 

for the solution in each chromosome is controlled by a set of 

predefined rules. These rules are flexible and can be controlled 

by algorithmic parameters so that the GA can get out of local 

optima. The outcome of the greedy algorithm is used to limit 

the search space complexity of the GA as well as to spot the 

places where multiple RNs might be placed to reduce energy. 

 

III. ASSUMPTIONS 

We consider a two-tiered hierarchical WSN architecture as 

shown in Figure 1. At the lower tier, there are a number of 

stationary sensor nodes which are battery-powered and 

equipped with short-range wireless transceivers of limited data 

rate. These are small-sized sensor devices that operate at low-

power and sleep once they become idle. It is assumed that the 

sensor nodes are pre-deployed in the field at random positions 

or strategic locations over a 2D Euclidean area having no 

obstacles. They are only deployed to periodically collect 

application-specific data. The collected data is transmitted in 

packets of certain size to the RNs at the upper tier of the 

architecture. The transmissions take place over a network path 

of single hop at a certain time interval with constant 

transmission power. Received data at the RN are forwarded to 

the Internet infrastructure through base stations. Ideal situation 

is assumed such that there is no collision, external interference, 

nor retransmission during data communication.  

It is assumed that the energy of sensor nodes is adequate to 

sense and collect the required data. Such operations would 

incur less power consumption compared to data 

reception/transmission. Therefore, power cost due to 

reception/transmission is only considered. On the other hand, 

RNs are not responsible for data collection and have no sensing 

modules. RNs receive and transmit data whereas sensor nodes 

only transmit data without reception of any data. 

Another important assumption is the use of the same 

transmission and reception range for all the sensor nodes and 

RNs. Devices such as Tmote, MicaZ, and TelosB motes can 

reach up to 125m in outdoor environments. On the other hand, 

base stations are assumed to have enough range to interconnect 

all the deployed RNs in the deployment area. Connectivity 

between a sensor node and a certain RN is assumed according 

to the Euclidean distance. They are considered connected as 

long as they have an Euclidean distance shorter than the 

minimum of their communication ranges. 

RNs are deployed to form a network topology of single hop 

connectivity without specific topological constraints. Using the 

single hop connectivity model would be feasible to maintain 

better lifetime of the network as sensor nodes are typically 

power-constrained devices. As they can be positioned 

differently, each RN can interconnect a varying number of 

sensor nodes. Therefore, RNs can end up with different data 

traffic loads and consume different transmission power. 

However, each RN is mains-powered or energy-harvesting 

device, thus there should be no concerns in regards to energy 

depletion of the RNs. 

 

Fig. 1. Two-tiered Hierarchical WSN Architecture. 

 

IV. MATHMATICAL MODEL 

The main objective of this work is to find out the applicability 

of integrating a greedy algorithm with a simple meta-heuristic 

optimization technique to solve large problem instances. We 

understand that there exist a number of powerful meta-heuristic 

algorithms in the literature and complex mathematical models 

to explain RNPP, but we focus on our primary objective. The 

technique of integrating a greedy algorithm with a simple meta-

heuristic algorithm can be equally applicable to other powerful 

meta-heuristic algorithms. We did our experimentations on a 

very simple mathematical model to represent RNPP. We 

assume that a near optimal solution suggested by our solution 

to this simple model should be also a near-optimal solution to 

a relatively complex model. For the same reason, we further 

simplify RNPP by converting it to a single-objective 

optimization problem, where each of the objectives is 

multiplied with a weight.  

The mathematical model of RNPP is formulated by first pre-

processing the search spaces as described in subsection A. 

Accordingly, the locations of both sensor nodes and RNs are 

redefined, which is explained in subsection B. We then describe, 

in subsection C, the objective function considered for our 

RNPP. The notations used throughout this section are listed in 

Table 1. 

IV.I. Search Space Pre-procession 

Input to RNPP is a list of sensor nodes, each of which is 

described by a point. The list of points is drawn from a 2-D 

space. We will consider this as the search space associated with 

the given RNPP. Note that the unit of our search space is 

arbitrary. We limit this search space by computing both 

maximum and minimum values in both X and Y directions. The 

solution to RNPP is also a set of points, each of which describes 

the location of a RN. It should be noted that both input and 

output data are supposed to be continuous variables. This 

makes a RNPP computationally hard as the optimal points can 

have arbitrary precision during the optimization process. To 

overcome this situation, we build a mathematical model of our 

problem which deals with only integers while describing the 

locations of both sensor nodes and RNs. As we are looking for 

a near-optimal solution, this conversion does make sense [43].  
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Let d be a small value such that if a sensor or relay node’s 

location is moved d units in X or Y direction, it causes 

negligible effect on our near-optimal solution, and the distance 

between any two sensor nodes is more than d. Let (xmin, ymin), 

(xmax, ymin), (xmax, ymax), and (xmin, ymax) be the four corners of 

the smallest rectangle of our search space such that all input 

points (locations of sensor nodes) are inside of it and the 

distance from any sensor node to any side of the rectangle is 

more than d. For simplicity, let the length of each side of the 

rectangle be a multiple of d. We divide the rectangle by ((xmax 

- xmin)/d - 1) straight lines that are parallel to Y and ((ymax - 

ymin)/d - 1) straight lines that are parallel to X. These two groups 

of straight lines will divide the rectangle in such a way that it 

will have ((xmax - xmin)/d ) * ((ymax - ymin)/d ) number of squares, 

each of the squares has area d2 units. This makes the 

discretization of any point in the search space straight forward, 

which can be described as follows: let (xi, yi) be a point in our 

search space, then this point is located in the square marked by 

a pair of two integers (floor(xi/d), floor(yi/d)).  

The above procedure redefines not only the sensor nodes’ 

positions but also the search space itself. Our new search space 

becomes a grid having ceil((xmax- xmin)/d) and ceil((ymax- ymin)/d) 

squares in X and Y directions, respectively.  In this new search 

space, our computation involves only integers considering the 

locations of sensor nodes and RNs. The output to our integrated 

approach will be a set of pairs of integers. Each pair defines a 

particular square in the search space, into which we can place a 

RN. The actual position of the RN should not affect our near-

optimal solution according to the definition of d. 

Table 1. Units for Magnetic Properties 

Symbol Quantity 

S Sensor Nodes Matrix 

s Total Number of Sensor Nodes 

Q List of sensor nodes 

d The length of square 

w Physical Communication Range 

c Discretized Communication Range 

R RNs Matrix 

r Total Number of RNs 

P 
A list of pairs of integers that describes 

a solution to RNPP 

max Upper bound on the number of RNs 

Rgreedy RN Matrix from greedy algorithm 

rgreedy Total RNs by greedy algorithm 

rfirstKind Number of RNs of first kind 

rsecondKind Number of RNs of second kind 

cgreedy 
Discretized Communication Range 

used in greedy algorithm 

I Influence Matrix 

couterCircle 
Artificial Communication Range for 

first kind of RN in GA 

mouterBox, 
Extension of search space to have 

flexible 

nouterBox Number of RNs of second kind 

 

IV.II. Redefinition of Point in Search Space Domain 

Let m = ceil ((xmax- xmin)/d) and n = ceil ((ymax- ymin)/d). Now the 

sensor nodes can be described by S, a zero-one matrix of order m 

and n, where: 

𝑆[𝑖][𝑗] = {
1, 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑠𝑒𝑛𝑠𝑜𝑟 𝑛𝑜𝑑𝑒 𝑖𝑛 (𝑖, 𝑗) 𝑠𝑞𝑢𝑎𝑟𝑒,
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

s is the total number of sensor nodes such that 𝑠 =

∑ 𝑆[𝑖][𝑗]0<𝑖<𝑚,0<𝑗<𝑛 .  

In addition, Q is a list of s unique pairs of integers, where each 

pair (i, j) describes a square where a particular sensor is located 

or S[i][j] = 1. 

Let w be a value such that a sensor node’s signal can travel at 

best. Let c = floor(w/d). It means that a sensor can communicate 

with a RN if and only if the distance between the RN and the 

sensor node is at most c square units. In other words, if the 

nearest RN of a sensor node is c squares away from it in both X 

or Y directions, the sensor node cannot communicate with the 

nearest RN. 

R is a zero-one matrix of order m and n to store the positions 

of RNs, as follows: 

𝑅[𝑖][𝑗] = {
1, 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑅𝑁 𝑖𝑛 (𝑖, 𝑗) 𝑠𝑞𝑢𝑎𝑟𝑒,
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Let r be the total number of RNs, which we expect to find by 

our solution. Then, 𝑟 = ∑ 𝑅[𝑖][𝑗]0<𝑖<𝑚,0<𝑗<𝑛 .  

The output of our solution is P, a list of r unique pairs of 

integers, where each pair (i, j) describes a square in our search 

space in the 2-D space and R[i][j] = 1. We consider P as a near-

optimal solution to RNPP.  

 

IV.III. Objective Functions 

An optimal solution to a RNPP is to find out the locations for a 

set of RNs, such that (i) the number of RNs in the set is 

minimum, (ii) each of the sensor nodes can reach at least one 

RN, and (iii) the energy consumed by each sensor node is 

minimized. We will call each of these expected properties as 

Cost, Coverage and Energy, respectively. We expressed each 

of these properties by a numerical value as follows: 

(i) Cost: the cost associated with the procurement, installment, 

and maintenance of RNs that are suggested in a candidate 

solution. Let, max be an integer that we assume to be an upper 

bound for the expected number of RNs. So, for any candidate 

solution, Pcandidate, let rcandidate  be the number of RNs to solve a 

RNPP, where rcandidate ≤ max. We compute cost as the ratio 

between rcandidate and max as follows:  

𝑓1  =  
𝑟𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

𝑚𝑎𝑥
                              (1) 

This ratio is then multiplied by 100 to normalize it with other 

metrics. This normalized value is further multiplied with a 

weight factor w1. 

(ii) Coverage: the fraction of sensor nodes that can 

communicate with at least one RN. This value is further 

multiplied with a weight factor w2. Let 𝑠′ be the number of 
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sensor nodes that can communicate with at least any RN for a 

given solution. Then, the network coverage rate is computed as 

follows:  

𝑓2  =  
𝑠′

𝑠
                                    (2) 

(iii) Energy: Let the maximum distance possible for a sensor 

node to reach the nearest RN is limited by c squares. Let the 

sum of distances in square units by the sensors, which has the 

nearest RN in c square, be Distance. We compute energy 

consumption rate as the ratio between Distance and s*c as 

follows:  

𝑓3  =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑠∗𝑐
                               (3) 

This ratio is then multiplied by 100 to normalize it. This 

normalized value is further multiplied with a weight factor w3. 

The objective value for Pcandidate is the weighted sum of (1), (2), 

and (3) as follows: 

𝐹 = 𝑤1 𝑓1 +  𝑤2(−𝑓2 )  +  𝑤3 𝑓3                (4) 

Accordingly, the optimization problem is formulated as a 

minimization problem. The actual values for the weights w1, 

w2 and w3 depend on user requirements. For example, we keep 

w1 < w2, if we emphasize more on coverage than cost.  

Algorithm 1 describes the above procedure. 

 

 

 

 

V. SOLUTION 

Our greedy-integrated GA solution has two main steps. In the 

first step, we apply a greedy algorithm to find out some squares 

on the search space in which we observe signals from a 

maximum number of sensor nodes. In other words, the greedy 

algorithm tries to place RNs to reduce the energy consumption 

by sensor nodes. As the greedy algorithm is used to accelerate 

the convergence in the GA, we are not looking for any complete 

solution from it. Once the greedy algorithm returns the list of 

squares, in which RNs are in need, we instrument and execute 

the GA with the help of that list of squares. The following 

subsections provide detailed descriptions of these two stages: 

the greedy algorithm and greedy-integrated GA.  

 

 

 

V.I. The Greedy Algorithm 

We need to list the following notations in order to explain the 

working principle of our greedy algorithm. Let Rgreedy be a zero-

one matrix of order m and n, where: 

 

Algorithm 1 OBJECTIVE 

 

Input:  Pcandidate, w1, w2, w3, rcandidate 

 

Output: a real value that is the evaluation of the given 

candidate solution Pcandidate 

 

Begin  

1:  total_cost = cost* rcandidate 

2:  norm_cost= w1*100*(total_cost/(max*cost)) 

3:  coverred_sensor = 0 

4:  total_distance = 0 

5:  total_dist_coverred = 0 

6:  for each pair (i, j) in Q do 

7:        (a, b) =  closest(Pcandidate , (i, j))     

                   //closest() finds RN at (a,b) from Pcandidate  

                       //which is closest to (j,j) 

8:        total_distance += distance (a, b) to (i, j)  

9:      if distance (a, b) to (i, j) < c then 

10:            ++coverred_sensor 

11:             total_dist_coverred += distance (a, b) to (i, j) 

12:      end if 

13:  end for 

14:  norm_energy= w3*100*(total_distance/(s*c)) 

15:  norm_coverage= w2*100*(coverred_sensor/s) 

16:  return (norm_energy + norm_cost +norm_coverage) 

 

End 

 

Algorithm 2  ComputingInfluence 

Input:  Set G 

Output:  Matrix I of order m and n 

Begin 

1:  Create a zero matrix I of order m and n 

2:  for each sensor g in G; where g is at (i, j) do 

3:       for each square (x, y) in I do  

4:               if distance from (i, j) to (x, y) ≤ cgreedy then 

5:                   I[x][y] = I[x][[y]+1 

6:               end if 

7:        end for 

8:  end for 

9:  return I 

End 

Algorithm 3   GREEDY 

Input:  Set Q 

Output:   Rgreedy 

Begin 

1:  Set Q1 = Q 

2:  Create a zero matrix Rgreedy of order m and n 

3:  While Q1 ≠ null do  

4:      I = ComputingInfluence(Q1)  

5:      I(i,j) = max(I) 

6:      Rgreedy[i][j] = 1 

7:      for each sensor g in Q1; where g is at (x, y) do   

8:             if distance from (x, y) to (i, j) ≤ cgreedy then  

9:                    delete g from Q1 

10:           end if 

11:     end for 

12: end while 

13: return Rgreedy 

End 
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𝑅𝑔𝑟𝑒𝑒𝑑𝑦[𝑖][𝑗] = {
1, 𝑖𝑓 𝐺𝑅𝐸𝐸𝐷𝑌 𝑝𝑢𝑡𝑠 𝑎 𝑅𝑁 𝑖𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 (𝑖, 𝑗),
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Let rgreedy be the total number of RNs that our greedy algorithm 

suggests to be placed across the search space. It is clear that 

𝑟𝑔𝑟𝑒𝑒𝑑𝑦 =  ∑ 𝑅𝑔𝑟𝑒𝑒𝑑𝑦[𝑖][𝑗]0<𝑖<𝑚,0<𝑗<𝑛 . 

In the greedy algorithm, we assume that each sensor node can 

connect to a RN if the distance between them is equal or smaller 

than cgreedy squares. cgreedy is an artificial value such that cgreedy > 

c. It is expected that rgreedy is inversely proportional to the value 

of cgreedy. 

 
Our greedy algorithm is explained with the 

ComputingInfluence and GREEDY algorithm as presented in 

Algorithm 2 and 3, respectively. The input to 

ComputingInfluence is a set of sensor nodes, G. The output of 

this algorithm is I, an integer matrix of order m and n. I[i][j] is 

the number of sensor nodes from G whose signal can be reached 

at square (i, j) assuming that the signal from each sensor node 

can be propagated cgreedy squares in all directions. 

The GREEDY algorithm is an iterative algorithm. The input 

to this algorithm is Q, which is the set of all sensor nodes. In each 

iteration, it computes I using ComputingINfluence. It then finds 

the maximum value in I. Let I[i][j] contains maximum value, it 

then updates with R[i][j] = 1 and deletes the sensor nodes which 

could be served by placing a RN at (i,j) before starting the next 

iteration (if any). 

 

V.II.  The Greedy-Integrated Algorithm 

The GA algorithm is executed once the greedy algorithm has 

completed its execution. Two very important pieces of 

information are obtained from the greedy algorithm: (i) the 

approximate number of RNs that can be used to serve all sensor 

nodes, (ii) the squares in the search space where RNs are more 

likely to be placed. This two outputs from the greedy algorithm 

will be used to effectively configure a GA to solve the RNPP. 

Hence, we call it an integrated approach. 

There are two kinds of RNs that are expected from the GA 

algorithm. These are: 

(i) rfirstKind: First Kind RNs are the relay nodes that are being 

tried to place near to the squares suggested by the greedy 

algorithm. To describe this kind of RNs, we need to introduce 

another artificial communication range couterCircle, where cgreedy > 

couterCircle > c. In total, GA will try to place rgreedy number of RNs 

of this kind. The range of each of the RN’s coordinate values is 

by both adding and subtracting cgreedy with the corresponding 

coordinate positions from greedy algorithm. The main purpose 

of these RNs is to increase the coverage metric. During the 

convergence phase of GA, a RN will be considered for fitness 

value if it is, by random choice, not more than couterCircle away 

from the position suggested by the greedy algorithm. This 

technique gives us the flexibility for our GA on the number of 

RNs. We use rfirstKind, to represent the total number of RNs of first 

kind. 

(ii) rsecondKind: Second Kind RNs are the RNs that are being 

tried to place anywhere in the search space. To describe this kind 

of RNs, we need to introduce mouterBox, nouterBox, where mouterBox > 

m and nouterBox > n. The GA will try to place a number of RNs of 

second kind. The range of coordinates of each RN is defined as 

(0, mouterBox) and (0, nouterBox). The main purpose of these RNs is 

to get rid of local optima that might be caused by those of first 

kind. The number of RNs of second kind will depend on the 

complexity of RNPP. If the solution from the GA algorithm is 

not satisfactory considering energy consumption and network 

coverage, it can be increased. During the convergence phase of 

the GA, a RN will be considered for fitness value if it is, by 

random choice, placed in the legal boundary of the search space. 

This technique gives us the flexibility for our GA on the number 

of RNs. We use rsecondKind, to represent the total number of RNs 

of second kind. 

 

VI. EVALUATION 

This section provides a description of the experiments carried out 

to evaluate the proposed integrated approach. It also presents and 

discusses the obtained experimental results.  

 

VI.I. Experimental Setup 

To demonstrate its efficiency, the proposed greedy-integrated 

GA was compared with a baseline algorithm, namely the 

classical GA algorithm. Both algorithms were tested using an 

experimental dataset, consisting of four randomly generated 

instances to represent fairly complex RNPP scenarios of small to 

large setups. In each instance, the deployment of a static 

traditional WSN was considered with a square area of a different 

dimension and sensor node count. These are as listed in Table 2. 

The number of sensor nodes in each scenario was set to the 

minimum needed to cover the whole area. Figure 2 shows the 

case of SC3 which presents a total of 250 sensor nodes deployed 

in a square region of 500×500 m2 in size with a random 

distribution. The communication ranges of the sensor nodes and 

RNs in all the scenarios were assumed to be 40m [44, 45] and d 

was set to 4m. 

Both algorithms were implemented using MATLAB R2018b, 

and executed using a system having an Intel Core i5, 2.5 GHz 

CPU, 4 GB RAM, and Mac OS. The basic parameters of the GA 

were similarly set for both algorithms. The initial population 

varies for the different scenarios and increases as the size of the 

network increases. For both models, the number of RNs is given 

by the greedy algorithm as an input to the GA process. However, 

the proposed greedy-integrated GA, the number of decision 

variables or the number of RNs that the GA will try to place is 

the sum of RNs of first, and second kinds. The domain of each 

of the RNs of first kind is defined by the corresponding RN from 

greedy algorithm and couterCircle. The domain of each of the RNs 

of the second kind is defined as (0, mouterBox) and (0, nouterBox). The 

crossover rate was configured to be 8%. In regards to the stop 

condition, the stall generation was set to 50 and the function 

tolerance value was 1e-3. The values of the weight factors, W1, 

W2 and W3, can be any nonzero positive value. For example, we 

keep W1> W2 > W3 if cost is the most important objective over 

coverage and energy and coverage is more important than 

energy.  
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Table 2 . Basic Details of the Experimental Instances 

SCENARIO AREA SIZE (M2) S R 

SC1 200×200 100 10 

SC2 300×300 150 17 

SC3 500×500 250 40 

SC4 800×800 400 81 

 

To account for randomness in the GA procedure, each 

algorithm was run for 30 independent times on each instance. 

The confidence level was set to 95%. The obtained results were 

then averaged over the 30 runs. 

The performance of the proposed integrated approach was 

evaluated by establishing a comparison with the performance 

of the classical GA. The comparison was carried out using two 

main evaluation measures, similar to [16, 17, 40]. First is the 

solution quality indicated by the objectives values. This was 

collected for the objectives: network coverage, energy 

consumption, and cost. The second measure was time 

efficiency for which we considered a machine-independent 

metric. That is the total number of generations run by the 

algorithm before the code terminates. 

 

 

Fig 2. Representation of the SC3 dataset 

 

VI.II. Results and Discussion 

Tables 3 and 4 summarize the average values of the considered 

objective functions for all the instances. It is evident that the 

proposed integrated algorithm performed similar to the 

classical GA in SC1 with a relatively small setup. Figure 3 also 

shows that the same number of RNs was outputted by both 

algorithms. However, the greedy-integrated GA algorithm 

converged to the near-optimal solution with less GA iterations. 

As it can be seen in Figure 4, it required about 32% less 

generations before reaching terminating condition. 

Increasing the size of the experimental setup resulted in overall 

degradation of the performance of both algorithms as indicated 

by the obtained results. Nevertheless, less performance 

degradation was experienced by the proposed approach in these 

scenarios. Comparing the results of the classical GA in SC2 to 

those of SC3, the network coverage rate decreased by about 19% 

and the power consumption rate increased by about 14%. For 

the same scenarios, the proposed algorithm experienced less 

reduction on the network coverage rate (decreased by only 8%) 

and a less increase on the power consumption rate (increased 

by only 7%). 

Table 3. Network Coverage Results 

SCENARIO 
CLASSICAL-GA GREEDY-INTEGRATED GA 

MEAN STD MEAN STD 

SC1 99.5 ±0.9 100 ±0 

SC2 90.5 ±2.8 95.2 ±2.1 

SC3 72.9 ±2.7 86.8 ±0.8 

SC4 60.1 ±2.7 77.4 ±0.5 

 

Table 4. Energy Consumption Results 

SCENARIO 

CLASSICAL-GA GREEDY-INTEGRATED GA 

MEAN STD MEAN STD 

SC1 60.6 ±1.5 60.1 ±1.7 

SC2 66.5 ±2.1 65.4 ±1.6 

SC3 75.5 ±1.4 70.1 ±1.1 

SC4 81.7 ±1.3 74.9 ±1.2 

 

 
Fig 3.  Number of Generation Comparison. 

 
Fig 4.  Number of RNs Comparison. 
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As the setup size increased, better improvement on the 

considered objective was achieved by the proposed algorithm 

compared to the classical GA. For example, it succeeded in 

Scenario SC3 to provide an increase by about 19% on the 

network coverage rate and a decrease by about 7% on the power 

consumption rate. Figure 5 and 6 show how the RNs were 

positioned by the classic GA and the proposed integrated 

algorithm, respectively. This is for the SC3 case presented in 

Figure 2 and after having the search space pre-processed. In a 

relatively very large setup such as SC4, the rates of network 

coverage and power consumption improved by about 29% and 

8%, respectively, compared to the classical GA. Figure 3 also 

shows that the proposed algorithm required less number of RNs 

to perform similar to GA. It succeeded to reduce the RNs 

number by more than 25% particularly in large scenarios. 

 
Fig 5.  Output of the Classical GA for Scenario SC3. 

 
Fig 6.  Output of the Proposed Algorithm for Scenario SC3. 

It can also be noticed from Figure 4 that the proposed algorithm 

tended to converge faster than the classical GA in small and 

large setups. In Scenario SC4, for example, the algorithm 

required a number of generations less than the classical GA by 

about 29% before reaching terminating condition. Overall 

improvement of more than 22% on the convergence rate was 

achieved by our algorithm in all the instances. It is important to 

note that there is a randomness effect which needs to be 

considered in this regard. However, it was observed that the 

proposed algorithm managed to minimize such effect to some 

extent. 

In further experiments, we compared our proposed integrated 

approach with the classical GA when keeping the generation 

number fixed at the value of 1000. In other words, we want to 

investigate the convergence or improvement achieved by each 

algorithm if it is given more number of generations. We only 

considered the large scenarios, SC3 and SC4, as we found that 

the GA did not perform well on these two large problems. One 

might think that the GA might perform well for these cases, if 

we keep it running for more generations. We performed this 

experiment to check this statement experimentally. In the case 

of scenario SC3, we compared the convergence of both 

algorithms when similar performance in terms of network 

coverage and power consumption was achieved. For scenario 

SC4, we compared the solution quality of both algorithms after 

reaching the maximum number of generations. In both setups, 

the experiments were carried out with varying numbers of RNs 

for further performance investigation.  

Table 5 presents the results of both algorithms in the case of 

Scenario SC3. It is evident that less number of generations is 

required by the greedy-integrated GA to achieve similar 

performance of the classical GA. The integrated algorithm 

effectively succeeded in converging to a better solution with 33% 

less GA-iterations for 40 RNs. It can also be noticed that the 

integrated algorithm achieved almost 100% network coverage 

rate with 46 RNs and 15% less number of generations. For the 

other case, the results of both algorithms considering Scenario 

SC4 is presented in Table 6. It can be seen that the proposed 

algorithm outputted better solution quality compared to the 

classical GA. For network coverage, the proposed algorithm 

succeeded in covering about 90% of the sensor nodes with 97 

RNs whereas the classical GA at most achieved coverage rate 

of less than 70%. It is also evident that the proposed algorithm 

reduced the rate of energy consumption by about 8% in average 

considering the deployment of both 81 and 97 RNs. 

VII. CONCLUSION 

The novel integrated approach introduced in this paper 

addresses the complexity of the search space considering 

unconstrained placement of RNs in large-scale WSNs. An 

effective greedy placement strategy is integrated with the GA 

to effectively support its search process and accelerate its 

convergence. The experimental results demonstrated how the 

proposed approach succeeded towards such a goal and 

achieved a considerable reduction in the GA iterations. 

Moreover, it was found that the classical GA did not perform 

well in large WSN deployments, and that the greedy technique 

helped it to effectively output better solution quality. The 

proposed greedy-integrated GA was able to increase network 

coverage and reduce power consumption while providing cost-

effective solutions saving at most one third of RNs. This is 

evident even after varying the configurations of the GA by 

increasing and fixing the maximum number of generations and 

adding more populations. Such improvements provide an 

effective contribution towards better WSN deployments for 

different applications with large-scale setups.  However, no 

noticeable improvement was achieved in small-scale scenarios. 

In future, we plan to extend our work to other variations of the 

RNPP considering varying-scale scenarios. The focus will be 

on establishing k-connectivity in multihop and 3D setups for 

heterogeneous WSN deployments. 
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