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Abstract 

Most of the present-day process discovery methods group 

events with the help of case identifiers available in the event 

logs and use the ordering relations that exist among those 

events to generate process models. However, this may not be 

possible in many circumstances when the real-world event logs 

are unstructured in nature and they do not have case identifiers. 

In such cases, process discovery becomes challenging as it 

would be difficult to correlate events belonging to the same 

process instance. The present paper proposes a two-phase 

approach where the first phase involves discovering the non-

overlapping sequential distinct event patterns from an 

unlabeled event log and the second phase deals with building a 

process model by establishing correct combinations of those 

discovered patterns. The applicability of the proposed approach 

has been tested by carrying out experiments on available real-

world event log data. 

Keywords: Process Mining, Process Discovery, Non-

overlapping patterns, Business Process Intelligence, Business 

Process Management. 

 

I. INTRODUCTION 

Process mining [1], [2], [3], [4], [5], [6], [7], [8], and [9] is a 

novel discipline which roots its foundations from data mining 

and business process intelligence. In the recent decade process 

mining has attracted many researchers to focus their research 

in this area. Process mining provides a range of tools which can 

be used for process improvement as well as extracting data 

driven insights about business processes. The execution 

histories of a business process (or process instances) are 

captured in an event log. Hence, an event log serves as a basic 

source of information for process mining techniques. Further, 

the information gathered from an event log is primarily used 

for process discovery [1], which generates a process model for 

a particular business process.  

Majority of the process discovery techniques require at least the 

following three features in an event log: (i) an identifier that 

indicates the name of the executed activity, (ii) an identifier of 

the case to which that particular activity belongs, and (iii) the 

recorded time (or time-stamp) at which the execution has been 

over for that activity [2]. An event log might also contain other 

information, e.g., resource (i.e., the one who executes the 

activity). Thus, an event log is a collection of all the above 

features for each recorded event. An example of event log is 

given in Table 1 which consists of 9 events in 3 cases. Process 

discovery algorithms try to trace a process model by correlating 

different events based on their case identifiers and then, 

forming correlated event clusters. As an example, , ,A B C  , 

and , ,A D E   are the two different traces of execution which 

can be captured from event logs from Table 1. It can be clearly 

seen that , ,A B C  can be derived from cases 1 and 3 whereas 

, ,A D E   can be derived from case 2. The corresponding 

business process model is shown in Figure 1 which has been 

mined by the Disco process mining tool [9].  

 

Table 1. An example of an event log 

Caseid Activity Timestamp 

1 A 01:22 

2 A 01:24 

1 B 01:26 

2 D 01:29 

3 A 01:33 

3 B 01:37 

1 C 01:43 

2 E 01:48 

3 C 01:52 

 

 

 

Fig. 1. Generated business process model from the event log 

given in Table 1. 
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The task of assigning an event to a case for process model 

discovery is termed as correlation challenge [5]. This task is 

challenging in applications where there is limited support 

available from process-aware systems which cannot record 

case identifiers. Thus, there are circumstances when it is 

possible to record a large event log without correlating the 

available events to specific process instances. Typically, in 

these scenarios the case identifier attribute is missing, and the 

resulting event log would be a stream of unlabeled events. As 

consecutive events may be recorded from different instances of 

processes, it would be difficult to determine whether two events 

are related or not. In addition to this, also it is unknown that 

how many process instances are available. This scenario is 

illustrated in Table 2, which displays the same events from 

Table 1, but this time the case identifier attribute is not available 

in the log. Identification of different cases in this event log is 

not possible and, as a result, it is also not possible to form 

clusters of related events to form a business process model. 

Moreover, it is difficult to know which event belongs to which 

case. Referring to the example event log given in Table 2, both 

event A that is recorded at 01:22 and event A that is recorded at 

01:24 could be related to B that is recorded at 01:37. Certainly, 

discovering process models in these instances is under-defined. 

Therefore, the objective of this paper is to develop a method to 

discover process model from unlabeled event logs or the event 

logs where the case identifier attribute is missing. 

 

Table 2. An event log example without caseid 

Activity Timestamp 

A 01:22 

A 01:24 

B 01:26 

D 01:29 

A 01:33 

B 01:37 

C 01:43 

E 01:48 

C 01:52 

 

The remaining sections of this paper are organized as follows: 

Section II gives a glimpse of process mining and covers the 

literature review relating to the progress made in the field of 

process discovery. We then present a brief description about 

event logs and business process models. In the following 

section, we propose a novel approach to discover process 

model from an unlabeled event log by using non-overlapping 

distinct event patterns. Evaluation of the proposed approach 

and analysis of the same is presented in the following section. 

The final section contains the conclusion along with future 

scope of improvement.  

II. LITERATURE REVIEW 

The fundamental aspects of process discovery are inherited 

from data mining and business process intelligence. Several 

process discovery algorithms and the insights about those 

algorithms can be found in the works described [10], [11], [12], 

[13], [14], [15], and [16]. 

The two broad divisions of process discovery algorithms are: 

“local” or “global” [39]. Algorithms like Alpha [17], Alpha++ 

[12], and Heuristic Miner [11] belong to local approaches 

which rely on the activities present in an event log and the 

ordering relations that exist among the activities to generate 

process models using those ordering relations. On the other 

hand, Genetic [18], [19] and region mining [14], [15] are 

“global” approaches where a full model is built first, and then 

successive improvements are done on that model later. 

A method to discover process models where caseids are 

unavailable in the event logs has been proposed by Ferreira and 

Gillblad [16]. The authors have used a probabilistic approach 

based on an iterative expectation-maximization approach to 

discover process models. 

Greco [20], Song [21] and [22] in their works proposed trace 

clustering abstractions to mine complex processes with noise. 

Very similar to their work, activity level clustering along with 

appropriate abstractions are proposed by Dongen [2] and 

Gunther [23], [3] to mine noisy complex processes. 

A robust process discovery method has been proposed in [24]. 

The authors of this work developed a process discovery method 

where negative examples were infused in an event log to 

enhance the learning of the process discovery method. 

To mine event logs of large size, a divide-and-conquer strategy 

has been proposed in [25], [26], [27], and [28] by van der Aalst. 

In this work very large event logs have been first decomposed 

by adopting a divide and conquer method and then mined. 

A heuristic based method to discover process model in case of 

streaming event data has been presented in [29]. This approach 

does not include periodic updating of the discovered model. 

Rather, it is based on rediscovering the model periodically. In 

this work, the authors have developed a method where a finite 

queue of events is updated periodically with new events. 

Van Eck proposed a state-based process model discovery in 

[30]. Unlike other process discovery methods which relied on 

the ordering relations between events in an event log, this 

method involved identifying different facets, or perspectives 

for process discovery. 

In [31], the authors have tried to localize events by assigning a 

non-empty set of regions to each event to develop a generic 

process discovery method. To make a communication or 

interaction between these regions, shared events have been 

used. 

The challenges in service mining has been reported by van der 

Aalst in [32] which include the correlation challenge, that we 

have tried to overcome in this paper. 

The authors in their work in [33] proposed a novel technique 

for process discovery using Maximal Pattern Mining (MPM) to 

construct patterns based on the whole sequence of events seen 
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on the traces from an event log having case identifiers. The 

method ensures soundness of the mined models and can handle 

loops, duplicate tasks, non-free choice constructs, and long-

distance dependencies. 

In [34], the authors have proposed a frequent item set mining-

based method to extract interesting patterns for knowledge 

discovery from event logs. But this method considered event 

logs with case identifiers. 

Pourmirza et al in their work in [35] and [36] have presented 

correlation miner to discover process models from event logs 

where the case identifiers are missing. 

If infrequent behaviors are recorded and considered for process 

discovery, then we may end up with a complex process model. 

In [37] and [38] the authors developed filtering methods to 

remove infrequent behavior from event logs.  

The quality of a discovered model is evaluated through several 

parameters. One such parameter is generalization. In [39] a k-

fold cross validation method based on generalization was 

proposed to evaluate the modeled behavior against the 

observed behavior of an event log. 

The authors in their work in [40] proposed an enhancement 

over the Heuristic Miner [41]. It was a two-step approach which 

included discovering accurate but, unstructured and unsound 

process model in the first step, and filtering out a sound 

structured model from that unstructured model in the next step. 

In [42] the authors presented a method based on autoencoders 

to improve the quality of process event logs by considering 

anomalous and missing values of attributes in event logs. 

Author of the paper [43] presented a process discovery and how 

that can be used for effective management of process life cycles 

to attain ever-growing organizational performance. 

At present, a vast literature on process discovery techniques is 

available which can be tracked from the work presented [44]. 

Majority of the works listed in [44] either solve the problems 

like noise present in the event logs, loops in process models, or 

based on clustering techniques, divide-and-conquer strategies 

to discover process models. However, the strategy of 

discovering process models from event logs without case 

identifiers has been least explored. Except [16], [35], and [36] 

the process model discovery methods proposed by other 

researchers either rely on case identifier or any other attribute 

like case identifier in an event log. However, in many 

circumstances an event log may be unstructured in nature and 

it may not have a case identifier field. For example, a firewall 

log or a web-server log where an event log is a collection of 

events generated through web page clicks may not have a case 

identifier field. Thus, extracting a process model from these 

unstructured logs with the help of present-day process 

discovery methods may not be suitable. The present paper 

proposes a novel approach to discover process models from an 

unlabeled event log by extracting non-overlapping sequential 

event patterns. 

 

III. EVENT LOGS AND BUSINESS PROCESS MODEL 

Several instances of a process may be running simultaneously 

in a business process management system. Each such instance 

has an instance number (i.e. caseid), the name of the event or 

activity being performed, and the timestamp of that activity. 

These run time execution instances of that process are recorded 

in an event log and hence, an event log can be treated as a 

collection of several such process instances or cases [5]. The 

execution of an activity within a process is synonymous to 

completion of an event type in a typical business process 

management system. The event log example shown in Table 1 

consists of 9 events over 3 cases. A chronologically ordered 

sequence of events or activities present in a process instance or 

case can be called as a trace and that can be symbolically 

represented as  . Hence, trace ( )  = ( 1  )it for i n   

where it  is an activity at time point i . The event log which is 

taken as an example in Table 1 contains the following three 

traces: 

1 3 ABC   , 2 ADE   

However, the above description may not be appropriate for the 

scenario mentioned in Table 2 as it contains an event log 

without case identifier. Hence, the redefinition of an event log 

can be given as follows. 

Let   and   denote the set of activities and timestamps 

respectively. Thus, an event log L  can be defined as 

L    . a  denotes the set of events for activity a  , 

such that {( , ) | ( , ) }a a t a t L   Similarly, timestamp at 

which event ae   has completed can be represented by et . 

A process discovery algorithm aims at building a process model 

and in literature there are several notations available to 

represent a discovered business process model (e.g. Petri-Nets, 

BPMN, Workflow net, YAWL) [5]. We have adopted the 

business process model definition available in Disco [9] 

process mining tool for our paper. 

We denote a business process model as a directed weighted 

graph ( , , )G    such that: 

 {( , ) | | }|aa n a n      , where   represents 

the set of activities and n  denotes the frequency of that 

activity in the event log for each node;  

 The set of edges   can be represented as ( )    ; 

 : N    is a mapping function which assigns natural 

numbers to the edges, where ( , )x y n   if and only if it 

is found that the activity y  directly follows the activity x  

in an event log n  times. Hence, e   if and only if 

( ) 0e  . 

 

IV. NON-OVERLAPPING DISTINCT EVENT 

PATTERNS FOR PROCESS DISCOVERY 

One of the fundamental problems in bioinformatics is pattern 

discovery which has applications in multiple sequence 

alignment, protein structure and function prediction, drug target 

discovery, characterization of protein families, and promoter 
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signal detection [45]. The primary objective of any pattern 

discovery approach is to identify an unknown pattern in each 

set of sequences. Similarly, in process discovery which is one 

of the fundamental disciplines in business process mining, the 

primary objective is to build a business process model by 

extracting event sequence behavior from an event log. But, in 

most of the cases the challenge is simplified as the case 

identifiers are available to let us know which events belong to 

which process instances. Considering the event log given in 

Table 2, the challenge of discovering a process model can be 

drafted as a problem of discovering event patterns and building 

process model from the discovered event patterns. 

The challenge of pattern discovery is computationally hard in 

many cases which means that it cannot be guaranteed that there 

exists a fast algorithm that would generate the best possible 

solution to the problem. Thus, many approaches are based on 

the exhaustive search mechanism. In the worst case these 

approaches may run in exponential time, but sophisticated 

pruning techniques can be adopted to make feasible searches 

for typical input data. 

In the simplest form, the working of exhaustive search can be 

described as follows. In the first step, all possible patterns 

which satisfy the constraints imposed by the user are 

enumerated. In the second step, the number of instances of each 

such pattern in input sequences are calculated. In the third step, 

a statistically significant score is assigned to each pattern based 

on the number of instances counted for each pattern. At last, 

based on a threshold score the patterns which qualify that 

threshold are generated as output patterns and the rest are 

discarded. 

 

IV.I. Discovering non-overlapping distinct-event patterns 

and their frequencies 

Discovering non-overlapping event patterns from a given 

sequence was first proposed by Ding et al. [46]. We have 

adopted the same method to discover non-overlapping event 

patterns and followed a few constraints to tackle the challenge 

of finding relevant event patterns to discover a process model 

from an event log without case identifiers effectively. The 

requirements and the formal definition to discover non-

overlapping event patterns are given in this section. 

Let   represents a set of events. An ordered list of events can 

be denoted by a sequence  1 2 3, , , , lengthS e e e e    , 

where ie S  is an event. The sequence S  can also be written 

as: 1 2 3, , , , lengthS e e e e  . The 
thi  event ie  in the sequence 

S  as [ ]S i . 

 

Definition 1 Subsequence and Landmark: Sequence 

1 2 3, , , , mS e e e e   is a subsequence of another sequence 

1 2 3, , , , ( )nS e e e e m n  
     denoted by S S  (or S   is 

a supersequence of S ), if there exists a sequence of integers 

(positions) 1 21 m nl l l l     such that [ ] [ ]iS i S l  

(i.e., 
ii le e ) for 1,2, ,i m  . Such a sequence of integers 

1 2, , , ml l l    is called landmark of S  in S  . Note: there may 

be more than one landmark of S  in S  .        ■ 

A pattern  1 2 mP e e e   is also a sequence. 

 

Definition 2 Instances of Pattern: For a pattern  P  in a 

sequence S , if 1 2, , , ml l l    is a landmark of pattern 

1 2 mP e e e   in S , pair 1 2, , , ml l l    is said to be an 

instance of P  in S . ■ 

The set of instances of P in S  can be denoted by ( )S P
. 

The number of occurrences of a pattern repeating in a sequence 

can be defined as “support”. Hence, support of P , ( )sup P , 

the total number of instances of P  in S ; ( ) | ( ) |sup P S P

. However, there is a problem with ( )sup P : multiple instances 

of a long pattern overlap with each other at many positions in a 

sequence which leads to over-counting of support for such a 

long pattern. For example, the pattern P ABC Z   in 

sequence S AABBCC ZZ   has support 
262 , but pattern 

AB   only has support 
22 4 . 

Thus, counting overlapping instances multiple times in the 

support value need to be avoided. So first, we need to give a 

formal definition to overlapping instances as follows. 

Definition 3 Overlapping Instances: Two instances of pattern 

1 2 mP e e e   in sequence 1 2 nS e e e   (1 )m n  , 

1 2, , , ml l l    and 1 2, , , ml l l     , are overlapping if 

1 : j jj m l l    . Equivalently, 1 2, , , ml l l    and 

1 2, , , ml l l     , are non-overlapping if 1 : j jj m l l    . 

    ■ 

Example 1: An event sequence S  is shown in Table 3. There 

are 4 landmarks of pattern AB  in S . Thus, the 4 instances of 

the pattern AB  in S  are: 

( ) { 1,3 , 1,5 , 2,3 , 2,5 }S AB          . Instances 

1 2( , ) ( 1,3 )l l      and 1 2( , ) ( 1,5 )l l       are overlapping 

because 1 1l l , i.e., they overlap at the first event 

( [1] )A S A  . Similarly, the instances 1 2( , ) ( 1,3 )l l      

and 1 2( , ) ( 2,3 )l l       are overlapping as 2 2l l  . But, the 

instances 1 2( , ) ( 1,3 )l l      and 1 2( , ) ( 2,5 )l l       are 

non-overlapping as 1 1l l  and 2 2l l . 
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Table 3. A sample event sequence 

Sequence 1e  2e  3e  4e  5e  6e  

 S  A  A  B  C  B  C  

 

Definition 4 Non-redundant Instance Set: A set of instances 

( )I S P , of pattern P  of sequence S  is non-redundant if 

any two instances in I  are non-overlapping.            ■ 

 A non-redundant instance set ( )I S P  is maximal if there 

is no non-redundant instance set I   of pattern P  such that 

I I  . Thus, the support of pattern P  can be defined as the 

size of a maximal non-redundant instance set ( )I S P . This 

not only avoids over counting of overlapping instances but also 

records as many non-overlapping instances as possible for 

pattern P . 

 

Definition 5 Repetitive Support and Support Count: For a 

non-overlapping pattern P  in S , the repetitive support can be 

defined as sup( ) max{| || ( )P I I S P  is
}non redundant . 

The non-redundant instance set I  is called a support set of P  

in S  where | |I   sup( P ).             ■ 

 

Example 2: From Example 1 it can be verified that | 2|ABI   

is the maximum size of all possible non-redundant set of 
ABI . 

Hence, sup( AB )=2 and 
ABI  is a support set. It is possible to 

have more than one support set for a pattern. Another possible 

support set of pattern AB  is { 1,5 , 2,3 }ABI       . 

A formal method to identify the non-overlapping distinct-event 

patterns and their respective occurrences in an unlabeled event 

log has been given in Algorithm 1. Algorithm 1 utilizes the 

preliminaries given in Definition 1, Definition 2, and Definition 

3 to tackle the above problem. As events are represented by 

activity names in an event log, the terms "event" and "activity" 

are used conversely in this paper. 

In Algorithm 1, the following assumptions are considered: 

 As the case identifiers are not available in the event log, it 

is not possible to know the number of process instances 

completed their execution. By setting the start activity of 

each pattern iP  as fa  we try to count the number of 

process instances that have completed execution and their 

traces recorded in the event sequence S . Hence, in step 2 

of Algorithm 1, 
faI  is calculated which represents the 

number of process instances.  

 Within a pattern iP   

 (i) each activity is unique and  

 (ii) repetition of activities is not allowed. 

 For a process there should be at least 2 activities namely 

"start" and "end" indicating beginning and completion of a 

process execution. Thus, the minimum length of a pattern 

iP  is set to 2. 

Algorithm 1: Non-overlapping Sequential Distinct Event 

Patterns 

Input: Event sequence ( S ) from an event log without case 

identifier 

Output: Set of all non-overlapping sequential distinct-event 

patterns 1 2{ , , , }nP P P    

1. Set the very first activity recorded in the event log (denoted 

by fa ) as the starting activity for all the non-overlapping 

distinct event patterns that would be discovered. Find out 

the set of all distinct activities U  in the event sequence S
. 

2. Calculate 
jaI   The number of occurrence of each 

activity ja U  where 1 | |j U  . Specifically, 

calculate 
faI   The number of occurrence of fa  

3. Calculate | |maxlength U  

4. Let 
iPlength  denotes the number of activities in a pattern 

iP  that would be discovered. Find out the set of all 

distinct-event patterns 1 2{ , , , }mP P P    where, 

(i) an event pattern consists of distinct activities,  

(ii) Start activity of each pattern i fP a , and 

(iii) 2
iPlength maxlength   

5. Using Definition 5 calculate ( )isup P   the non-

overlapping occurrences of iP  in event sequence S , 

1 i m    

6. Remove all the patterns iP  from    where, ( ) 0isup P   

to find the set of all non-overlapping distinct-event patterns 

1 2{ , , , }nP P P    where 1 n m  . 

 

IV.II. Selecting relevant patterns and constructing business 

process model 

The method proposed in Algorithm 1 produces many patterns 

with support value greater than 0. Let us assume each 

individual pattern iP  to be a process instance (or trace) which 

can be represented as iP  . Then, some combinations of 

those individual patterns with their support count can be 

considered as an event log and hence the event log L  can be 

represented as 1 2{ , , , }zL P P P   where 1 z n  . In such 

a case, the following constraints must be obeyed to have a valid 

event log L  and by using which a process model can be 
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generated: 

 

1
i f

z

P a
i

F I


  (1) 

and 

 
( )

1
j P ji

z

a a
i

F I


  (2) 

where, 

( )
iP iF sup P , 

( )j PiaF   The number of occurrences of an activity ja  in the 

pattern iP , 

ja U , 

1 | |j U   and 1 z n  . 

Example 3: Let us revisit the example event log given in 

Table 2 to apply the method proposed in Algorithm 1 along 

with the constraints mentioned in Equation (1) and Equation 

(2). The results generated on applying Algorithm 1 are: 

fa A  

{ , , , , }U A B C D E  

3, 2, 2, 1, 1A B C D EI I I I I      

3
faI   

5maxlength   

1P AB   , 2P AC   , 3P AD   , 4P AE   , 

5P ABC   , 6P ACB   , 7P ABD   , 

8P ADB   , 9P ACD   , 10P ADC   , 

11P ABE   , 12P AEB   , 13P ACE   , 

14P AEC   , 15P ADE   , 16P AED   , 

17P ABCD   , 18P ABCE   , 19P ABDC   , 

20P ABEC   , 21P ABDE   , 22P ABED   , 

23P ACBD   , 24P ACDB   , 25P ACBE   , 

26P ACEB   , 27P ACDE   , 28P ACED   , 

29P ADCB   , 30P ADBC   , 31P ADBE   , 

32P ADEB   , 33P ADCE   , 34P ADEC   , 

35P AEBC   , 36P AECB   , 37P AEBD   , 

38P AEDB   , 39P AECD   , 40P AEDC   , 

41P ABCDE   , 42P ABCED   , 43P ABDCE   , 

44P ABDEC   , 45P ABECD   , 46P ABEDC   , 

47P ACBDE   , 48P ACBED   , 49P ACDBE   , 

50P ACDEB   , 51P ACEBD   , 52P ACEDB   , 

53P ADBCE   , 54P ADBEC   , 55P ADCBE   , 

56P ADCEB   , 57P ADEBC   , 58P ADECB   , 

59P AEBCD   , 60P AEBDC   , 61P AECBD   , 

62P AECDB   , 63P AEDBC   , 64P AEDCB   . 

1 2 64{ , , , }P P P    

The support count of each pattern ( ( )isup P ) has been 

calculated and the patterns for which ( ) 0isup P   have been 

removed. Thus,   consists of 24 patterns and can be given as:

 1 2 24{ , , , }P P P   . These twenty-four patterns 

and their respective support count have been given in Table 4. 

 

Table 4. Support count of different patterns 

Pattern ( iP ) ( )isup P  Pattern ( iP ) ( )isup P  

1P  2 18P  1 

2P  2 19P  1 

3P  1 20P  1 

4P  1 21P  1 

5P  2 30P  1 

7P  1 31P  1 

8P  1 33P  1 

10P  1 34P  1 

11P  1 43P  1 

13P  1 44P  1 

14P  1 53P  1 

15P  1 54P  1 

 

Now applying the constraints given in Equation (1) and (2) we 

have: 

5 15
3P PF F   and  

1( ) 1( )5 15

3
P Pa a AF F F    

2( ) 2( )5 15

2
P Pa a BF F F    

3( ) 3( )5 15

2
P Pa a CF F F    

4( ) 4( )5 15

1
P Pa a DF F F    

5( ) 5( )5 15

1
P Pa a EF F F    
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Thus, 5 15{ , }L P P  

The 5( )sup P  and 15( )sup P  also exactly matches with the 

traces available in Table 1. 

Now, let us assume that the pattern numbers are the case 

identifiers of different traces that belong to a particular event 

log. Thus, an event log L  can be created with the help of 

pattern numbers ( i s ) and the respective patterns ( iP s ). 

Eventually, the same process model can be generated as the 

process model given in Figure 1 by using the event log L  

which contains the patterns (or traces) 5P ABC    and 

15P ADE    with the help of the Disco process mining tool 

[16]. 

 

Example 4: Let us consider another event log given in Table 5. 

The process model that can be generated from this event log by 

using the Disco process mining tool [9] is shown in Figure 2. 

 

Table 5. An example of an event log 

Caseid Activity Timestamp 

1 A 01:22 

2 A 01:24 

1 C 01:26 

2 B 01:29 

2 C 01:33 

 

 

Fig.2. Generated business process model from the event log 

given in Table 5. 

 

The event log given in Table 5 can be represented as Table 6 

without case identifiers. 

 

Table 6. An Event Log without case identifiers of the same 

event log given in Table 5 

Activity Timestamp 

A 01:22 

A 01:24 

C 01:26 

B 01:29 

C 01:33 

 

Let us apply the method proposed in Algorithm 1 on the event 

log given in Table 6. The results generated are: 

fa A  

{ , , }U A B C  

2, 1, 2A B CI I I    

2
faI   

3maxlength   

1P AB   , 2P AC   , 3P ABC   , 4P ACB   . 

1 2 3 4{ , , , }P P P P   

The respective support count of each pattern is: 

1( ) 1sup P  ,  2( ) 2sup P  , 3( ) 1sup P  , and 

4( ) 1sup P  .  

As none of the pattern iP  is having support count 

( ) 0isup P  , 1 2 3 4{ , , , }P P P P   . 

Even though we are available with four patterns with support 

count greater than 0, no combination of these patterns is 

possible which satisfies the constraints mentioned in Equation 

(1) and (2). Hence, it is not possible to have an event log L  

from which a process model can be generated by following the 

constraints mentioned in Equation (1) and (2). But, if we 

multiply a weight 
1

2
w   with 2( )sup P  and combine this 

modified support count of 2P  with the support count of 3P , we 

have: 

2 3

1
2

2
P PF F    and  

1( ) 1( )2 3

1
2

2 P Pa a AF F F     

2( )3

1
Pa BF F   

3( ) 3( )2 3

2
P Pa a CF F F    

Thus, 2 3{ , }L P P  and a process model same as given in 

Figure 2 can be generated from the event log L . 

 

Things to be noted that the modified support count of 2P  

when combined with the support count of 4P  we have the 

following: 

2 4

1
2

2
P PF F    and  

1( ) 1( )2 4

1
2

2 P Pa a AF F F     

2( )4

1
Pa BF F   
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3( ) 3( )2 4

2
P Pa a CF F F    

Thus, 2 4{ , }L P P   can be an alternate event log from which 

another process model as shown in Figure 3 can be generated. 

 

 

 

Fig. 3. An alternate business process model of the event log in 

Table 6. 

 

It can be observed from example 4 that to have a process model 

we have to consider individual weights for respective patterns. 

Also, selection of correct weight values is required to avoid 

generating infinitely many possible process models. 

Keeping the above fact in mind, now we formally redefine the 

constraints mentioned in Equation (1) and (2) as: 

 

1
i f

z

i P a
i

w F I


   (3) 

 
ii Pw F Z    (4) 

 
( )

1
j P ji

z

i a a
i

w F I


   (5) 

 
( )j Pii aw F Z    (6) 

where, 

( )
iP iF sup P , 

( )j PiaF   The number of occurrences of an activity ja  in the 

pattern iP , 

ja U , 

0 1iw  , 1 | |j U  , 1 z n   and Z 
 is the set of 

positive integers. 

Now, the challenge is to find out the correct combination of 

weights ( iw ), so that the constraints mentioned in Equation (3) 

to (6) are satisfied and we have a relevant set of patterns to form 

all feasible process models. However, Equation (5) represents 

a system of linear equations with number of equations as | |U  

and the number of variables as z  with |U| z . Thus, the 

system of equation reduces to an underdetermined system. 

Equation (5) can be formulated in a matrix form as Ax b , 

where A  is a rectangular matrix whose entries are 

( )
,  1 | |

j PiaF j U   . x  is a column vector whose entries are 

,  1iw i z   . b  is a column vector whose entries are 

,  1 | |
jaI j U   . Assuming rank of the matrix A  as | |U , 

we can create a submatrix B  of size | | | |U U , formed by 

| |U   linearly independent columns of A . We then find the 

solution by setting | |z U  variables not associated with 

columns of B  to 0 and solving the resulting system of 

equations BBx b , where Bx  represents vector associated 

with the matrix B . The solution of the system BBx b  is 

1

Bx B b . Noted that, Bx  corresponds to the vector 

representing the columns of the matrix B . Thus, the solution 

is ( ,0)i Bw x , which might contain irrelevant values of iw  

that may not satisfy the constraint mentioned in Equation (4). 

Finally, out of all possible solutions we filtered out the relevant 

values of iw  satisfying the constraint Equation (4). 

Referring to the event log given in Table 6 and applying the 

modified constraints mentioned in Equation (3), (4), (5), and 

(6) we have the following two sets of weights for the respective 

patterns 1P , 2P , 3P , and 4P : 

1 0w  , 2

1

2
w  , 3 1w  , and 4 0w   

and 

1 0w  , 2

1

2
w  , 3 0w  , and 4 1w  . 

Thus, 2 3{ , }L P P  and 2 4{ , }L P P   are the two event logs 

that can be considered for generating process models. While 

using L  the same process model as given in Figure 2 can be 

generated, the process model given in Figure 3 can be generated 

using 'L . 

It can be clearly seen that for a given event log there can be 

more than one process model. Hence, out of the several process 

models, the process model whose precision  and recall  

measures would be the highest that should be considered as the 

best process model for the given event log. The precision  

and recall  can be stated as: 

 precision   = The fraction of cases in the mined model 

that are correct, i.e., are also in the original business 

process model, and 

 recall   = The fraction of correct cases that have been 

found. 

Let TP  be the types of cases that exist in the mined model and 

also in the original; FN be the types of cases that do not exist 

in the mined model but do exist in the original model; and FP
be the types of cases that exist in the mined model but do not 

exist in the original model. Then, 

 
TPprecision

TP FP



 (7) 
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TPrecall

TP FN



 (8) 

Table 7. precison and recall values of L and 'L   

 
2 3{ , }L P P  2 4{ , }L P P   

precision  1 0.5 

recall  1 0.5 

 

As it can be observed from Table 7 that the precision   and 

recall   values of L  is higher than 'L , the model derived 

from L  is the correct model. But, in a real world scenario 

where the case identifiers are unavailable it may not be possible 

to find out the precision   and recall  values as we may not 

have an original process model which can be compared with 

the discovered process models. 

 

V. EVALUATION AND RESULT ANALYSIS 

The proposed Algorithm 1 along with the constraints 

mentioned in Equation (3), (4), (5), and (6) presented in Section 

IV were evaluated using real-world event logs. Two event logs 

from BPI challenge 2013 [47] were considered and the 

corresponding process models were generated by using the 

Disco [9]. As our algorithm is capable of only dealing with 

event logs without any loops and the starting activity for all the 

cases should remain same, we first picked up cases with same 

starting activity and then removed the cases which were having 

loops to make the event log acyclic. Further, to check the 

applicability of our proposed algorithm, all the case identifiers 

were removed from the modified version of the real-world 

event log taken from BPI challenge 2013 [47]. The details of 

the two modified real-world event logs are given in Table 8. 

Table 8. Details of the modified event logs 

Event 

log 

Unique 

activities 
Events Cases 

Variants 

1 5 1380 619 5 

2 5 766 357 11 

 

The proposed Algorithm 1 in Section IV was implemented 

using C++ language and compiled with a GCC compiler 

version 6.2.0. We developed a MATLAB program using the 

MATLAB 15(b) package to calculate the weight values w  

mentioned in the constraints (3) to (6). All the programs were 

executed in an Intel i5 machine clocked at 2.4 GHz having a 

memory of 4 GB in a Windows-10 64-bit operating system. 

Upon applying Algorithm 1 and the constraints mentioned in 

Equation (3) to (6) on the modified version of the real-world 

event logs, we were able to generate several process models. 

The quality of those generated process models was measured 

by determining the precision  and recall   parameters 

mentioned Equation (7) and (8) respectively. The best and the 

worst models in terms of precision  and recall  values 

obtained from event log 1 are shown in Figure 4 and Figure 5 

respectively. Table 9 shows the best and the worst precision  

and recall   measures obtained for the modified real-world 

event log 1. The model which has the best precision   and 

recall  values was found to be the same as that of the original 

model (generated for the modified version of the real-world 

event log 1). But we want to emphasize that in a real-world 

scenario as the original process model may not be available for 

comparison, we cannot say which is the best process model out 

of the generated several process models. In such a case, the 

views of an expert in that process domain can be considered to 

pick the best model. 

Table 9. precison and recall values of the best and the 

worst process models obtained from event log 1 mentioned in 

Table 8.  

 
2 3{ , }L P P  2 4{ , }L P P   

precision  1 1 

recall  1 0.8 

The actual process model generated from the modified version 

of the real-world event log 2 is shown in Figure 6 that contains 

eleven patterns (or cases). As our approach to find the correct 

combinations of weights ( )iw  relies on rank of the matrix 

representing an underdetermined system of linear equations, 

we were able to generate process models comprising of five or 

less patterns for the real-world event log 2 which may not be 

acceptable in the present context. One of such process models 

is shown in Figure 7. Thus, it can be concluded that our 

approach of finding out feasible combination of weights to 

build a process model works well when the number of patterns 

available in the actual process model is same as the rank of the 

matrix representing the underdetermined system of linear 

equations generated from Equation (5). 

 

 

Fig. 4. The best process model obtained from event log 1 

given in Table 8. 

 

 

Fig. 5. The worst process model obtained from event log 1 

given in Table 8. 
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Fig. 6. Actual process model obtained from event log 2 given 

in Table 8. 

 

 

Fig. 7. A process model obtained from event log 2 given in 

Table 8. 

 

VI. DISCUSSION 

We are not the first one to propose a method that deals with the 

challenge of discovering process models from unlabeled event 

logs. The methods presented in [16], [35], and [36] also deal 

with the challenge of discovering process models from 

unlabeled event logs. In [16], the authors presented a 

probabilistic approach based on iterative Expectation-

Maximization to tackle the said challenge. However, the 

accuracy of their method relied on the following two factors: 

the total number of sources in the event log, and on the number 

of overlapping sources. With high number of sources, it is 

easier to discover consistent behavior in the event log. But, with 

increasing number of overlapping sources, it becomes difficult 

to separate the events belonging to different sources. Our 

method does not have any such problem with increasing 

number of overlapping sources. 

In [35] and [36], two matrices namely Precede/Succeed matrix 

and Duration matrix have been constructed and used to create 

a correlation miner to discover process models from unlabeled 

event logs. A high value for an entry in the Precede/Succeed 

matrix indicates that it is more probable to have an edge from 

the first to the second activity for any two given activities. 

Similarly, a low value for an entry in the Duration matrix 

indicates that it is more likely that there is an edge from the first 

to the second activity for any two given activities. At last, all 

possible business process models are found out that meet the 

rule mentioned above and then the best one is selected based on 

the values from the Precede/Succeed matrix and the Duration 

matrix. The method relies on the Duration matrix in which an 

entry indicates the average time difference between events 

referring to the first activity and events referring to the second 

activity for any two given activities. If the average time 

difference between any two activities is too high, then the 

correlation miner would be unable to correlate two activities. 

But our proposed method does not rely on the time difference 

between any two activities. 

 

VII. CONCLUSION AND FUTURE SCOPE 

The present work describes a method to discover process model 

from an event log where the case identifiers are missing. The 

proposed work relies on discovering the non-overlapping 

sequential distinct event patterns and their respective 

frequencies from a given event log without case identifiers 

believing that the discovered patterns would represent different 

cases that have taken place in the said event log and by using 

these cases a process model can be generated. The proposed 

method has been evaluated by taking the modified versions of 

the real-world event logs from BPI challenge 2013. Upon 

applying this method on the modified version of the real-world 

event logs, we were able to generate several process models as 

different combinations of discovered event patterns would 

satisfy the criteria mentioned in Equation (3), (4), (5), and (6). 

Further, for each discovered process model, the precision  

and recall values were calculated. The model having highest 

precison and recall values was considered as the best 

model for the given even log. However, the present work has 

the following limitations: (i) it can be applied on an acyclic 

event log only, (ii) for each and every case available in an event 

log, the starting activity should remain same, (iii) the 

discovered patterns were mapped to different cases without any 

guarantee of whether an activity actually belongs to discovered 

pattern or not. Thus, the future work shall focus on developing 

methods which would overcome these issues. 
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