
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 10 (2020), pp. 3055-3066

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.10.2020.3055-3066

3055

Process Model Discovery from Unlabeled Event Logs by Using

Non-Overlapping Sequential Distinct Event Patterns

Muktikanta Sahu1*, Gopal Krishna Nayak2 and Rupaj Kumar Nayak3

1Research Scholar, Department of Computer Science, IIIT Bhubaneswar (Odisha), India.
2Professor, Department of Computer Science, IIIT Bhubaneswar (Odisha), India.

3Assistant Professor, Department of Mathematics, IIIT Bhubaneswar (Odisha), India.
 (*Corresponding author’s ORCID: 0000-0003-1405-3712)

Abstract

Most of the present-day process discovery methods group

events with the help of case identifiers available in the event

logs and use the ordering relations that exist among those

events to generate process models. However, this may not be

possible in many circumstances when the real-world event logs

are unstructured in nature and they do not have case identifiers.

In such cases, process discovery becomes challenging as it

would be difficult to correlate events belonging to the same

process instance. The present paper proposes a two-phase

approach where the first phase involves discovering the non-

overlapping sequential distinct event patterns from an

unlabeled event log and the second phase deals with building a

process model by establishing correct combinations of those

discovered patterns. The applicability of the proposed approach

has been tested by carrying out experiments on available real-

world event log data.

Keywords: Process Mining, Process Discovery, Non-

overlapping patterns, Business Process Intelligence, Business

Process Management.

I. INTRODUCTION

Process mining [1], [2], [3], [4], [5], [6], [7], [8], and [9] is a

novel discipline which roots its foundations from data mining

and business process intelligence. In the recent decade process

mining has attracted many researchers to focus their research

in this area. Process mining provides a range of tools which can

be used for process improvement as well as extracting data

driven insights about business processes. The execution

histories of a business process (or process instances) are

captured in an event log. Hence, an event log serves as a basic

source of information for process mining techniques. Further,

the information gathered from an event log is primarily used

for process discovery [1], which generates a process model for

a particular business process.

Majority of the process discovery techniques require at least the

following three features in an event log: (i) an identifier that

indicates the name of the executed activity, (ii) an identifier of

the case to which that particular activity belongs, and (iii) the

recorded time (or time-stamp) at which the execution has been

over for that activity [2]. An event log might also contain other

information, e.g., resource (i.e., the one who executes the

activity). Thus, an event log is a collection of all the above

features for each recorded event. An example of event log is

given in Table 1 which consists of 9 events in 3 cases. Process

discovery algorithms try to trace a process model by correlating

different events based on their case identifiers and then,

forming correlated event clusters. As an example, , ,A B C  ,

and , ,A D E  are the two different traces of execution which

can be captured from event logs from Table 1. It can be clearly

seen that , ,A B C  can be derived from cases 1 and 3 whereas

, ,A D E  can be derived from case 2. The corresponding

business process model is shown in Figure 1 which has been

mined by the Disco process mining tool [9].

Table 1. An example of an event log

Caseid Activity Timestamp

1 A 01:22

2 A 01:24

1 B 01:26

2 D 01:29

3 A 01:33

3 B 01:37

1 C 01:43

2 E 01:48

3 C 01:52

Fig. 1. Generated business process model from the event log

given in Table 1.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 10 (2020), pp. 3055-3066

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.10.2020.3055-3066

3056

The task of assigning an event to a case for process model

discovery is termed as correlation challenge [5]. This task is

challenging in applications where there is limited support

available from process-aware systems which cannot record

case identifiers. Thus, there are circumstances when it is

possible to record a large event log without correlating the

available events to specific process instances. Typically, in

these scenarios the case identifier attribute is missing, and the

resulting event log would be a stream of unlabeled events. As

consecutive events may be recorded from different instances of

processes, it would be difficult to determine whether two events

are related or not. In addition to this, also it is unknown that

how many process instances are available. This scenario is

illustrated in Table 2, which displays the same events from

Table 1, but this time the case identifier attribute is not available

in the log. Identification of different cases in this event log is

not possible and, as a result, it is also not possible to form

clusters of related events to form a business process model.

Moreover, it is difficult to know which event belongs to which

case. Referring to the example event log given in Table 2, both

event A that is recorded at 01:22 and event A that is recorded at

01:24 could be related to B that is recorded at 01:37. Certainly,

discovering process models in these instances is under-defined.

Therefore, the objective of this paper is to develop a method to

discover process model from unlabeled event logs or the event

logs where the case identifier attribute is missing.

Table 2. An event log example without caseid

Activity Timestamp

A 01:22

A 01:24

B 01:26

D 01:29

A 01:33

B 01:37

C 01:43

E 01:48

C 01:52

The remaining sections of this paper are organized as follows:

Section II gives a glimpse of process mining and covers the

literature review relating to the progress made in the field of

process discovery. We then present a brief description about

event logs and business process models. In the following

section, we propose a novel approach to discover process

model from an unlabeled event log by using non-overlapping

distinct event patterns. Evaluation of the proposed approach

and analysis of the same is presented in the following section.

The final section contains the conclusion along with future

scope of improvement.

II. LITERATURE REVIEW

The fundamental aspects of process discovery are inherited

from data mining and business process intelligence. Several

process discovery algorithms and the insights about those

algorithms can be found in the works described [10], [11], [12],

[13], [14], [15], and [16].

The two broad divisions of process discovery algorithms are:

“local” or “global” [39]. Algorithms like Alpha [17], Alpha++

[12], and Heuristic Miner [11] belong to local approaches

which rely on the activities present in an event log and the

ordering relations that exist among the activities to generate

process models using those ordering relations. On the other

hand, Genetic [18], [19] and region mining [14], [15] are

“global” approaches where a full model is built first, and then

successive improvements are done on that model later.

A method to discover process models where caseids are

unavailable in the event logs has been proposed by Ferreira and

Gillblad [16]. The authors have used a probabilistic approach

based on an iterative expectation-maximization approach to

discover process models.

Greco [20], Song [21] and [22] in their works proposed trace

clustering abstractions to mine complex processes with noise.

Very similar to their work, activity level clustering along with

appropriate abstractions are proposed by Dongen [2] and

Gunther [23], [3] to mine noisy complex processes.

A robust process discovery method has been proposed in [24].

The authors of this work developed a process discovery method

where negative examples were infused in an event log to

enhance the learning of the process discovery method.

To mine event logs of large size, a divide-and-conquer strategy

has been proposed in [25], [26], [27], and [28] by van der Aalst.

In this work very large event logs have been first decomposed

by adopting a divide and conquer method and then mined.

A heuristic based method to discover process model in case of

streaming event data has been presented in [29]. This approach

does not include periodic updating of the discovered model.

Rather, it is based on rediscovering the model periodically. In

this work, the authors have developed a method where a finite

queue of events is updated periodically with new events.

Van Eck proposed a state-based process model discovery in

[30]. Unlike other process discovery methods which relied on

the ordering relations between events in an event log, this

method involved identifying different facets, or perspectives

for process discovery.

In [31], the authors have tried to localize events by assigning a

non-empty set of regions to each event to develop a generic

process discovery method. To make a communication or

interaction between these regions, shared events have been

used.

The challenges in service mining has been reported by van der

Aalst in [32] which include the correlation challenge, that we

have tried to overcome in this paper.

The authors in their work in [33] proposed a novel technique

for process discovery using Maximal Pattern Mining (MPM) to

construct patterns based on the whole sequence of events seen

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 10 (2020), pp. 3055-3066

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.10.2020.3055-3066

3057

on the traces from an event log having case identifiers. The

method ensures soundness of the mined models and can handle

loops, duplicate tasks, non-free choice constructs, and long-

distance dependencies.

In [34], the authors have proposed a frequent item set mining-

based method to extract interesting patterns for knowledge

discovery from event logs. But this method considered event

logs with case identifiers.

Pourmirza et al in their work in [35] and [36] have presented

correlation miner to discover process models from event logs

where the case identifiers are missing.

If infrequent behaviors are recorded and considered for process

discovery, then we may end up with a complex process model.

In [37] and [38] the authors developed filtering methods to

remove infrequent behavior from event logs.

The quality of a discovered model is evaluated through several

parameters. One such parameter is generalization. In [39] a k-

fold cross validation method based on generalization was

proposed to evaluate the modeled behavior against the

observed behavior of an event log.

The authors in their work in [40] proposed an enhancement

over the Heuristic Miner [41]. It was a two-step approach which

included discovering accurate but, unstructured and unsound

process model in the first step, and filtering out a sound

structured model from that unstructured model in the next step.

In [42] the authors presented a method based on autoencoders

to improve the quality of process event logs by considering

anomalous and missing values of attributes in event logs.

Author of the paper [43] presented a process discovery and how

that can be used for effective management of process life cycles

to attain ever-growing organizational performance.

At present, a vast literature on process discovery techniques is

available which can be tracked from the work presented [44].

Majority of the works listed in [44] either solve the problems

like noise present in the event logs, loops in process models, or

based on clustering techniques, divide-and-conquer strategies

to discover process models. However, the strategy of

discovering process models from event logs without case

identifiers has been least explored. Except [16], [35], and [36]

the process model discovery methods proposed by other

researchers either rely on case identifier or any other attribute

like case identifier in an event log. However, in many

circumstances an event log may be unstructured in nature and

it may not have a case identifier field. For example, a firewall

log or a web-server log where an event log is a collection of

events generated through web page clicks may not have a case

identifier field. Thus, extracting a process model from these

unstructured logs with the help of present-day process

discovery methods may not be suitable. The present paper

proposes a novel approach to discover process models from an

unlabeled event log by extracting non-overlapping sequential

event patterns.

III. EVENT LOGS AND BUSINESS PROCESS MODEL

Several instances of a process may be running simultaneously

in a business process management system. Each such instance

has an instance number (i.e. caseid), the name of the event or

activity being performed, and the timestamp of that activity.

These run time execution instances of that process are recorded

in an event log and hence, an event log can be treated as a

collection of several such process instances or cases [5]. The

execution of an activity within a process is synonymous to

completion of an event type in a typical business process

management system. The event log example shown in Table 1

consists of 9 events over 3 cases. A chronologically ordered

sequence of events or activities present in a process instance or

case can be called as a trace and that can be symbolically

represented as  . Hence, trace () = (1)it for i n 

where it is an activity at time point i . The event log which is

taken as an example in Table 1 contains the following three

traces:

1 3 ABC   , 2 ADE 

However, the above description may not be appropriate for the

scenario mentioned in Table 2 as it contains an event log

without case identifier. Hence, the redefinition of an event log

can be given as follows.

Let  and  denote the set of activities and timestamps

respectively. Thus, an event log L can be defined as

L    . a denotes the set of events for activity a  ,

such that {(,) | (,) }a a t a t L   Similarly, timestamp at

which event ae  has completed can be represented by et .

A process discovery algorithm aims at building a process model

and in literature there are several notations available to

represent a discovered business process model (e.g. Petri-Nets,

BPMN, Workflow net, YAWL) [5]. We have adopted the

business process model definition available in Disco [9]

process mining tool for our paper.

We denote a business process model as a directed weighted

graph (, ,)G    such that:

 {(,) | | }|aa n a n      , where  represents

the set of activities and n denotes the frequency of that

activity in the event log for each node;

 The set of edges  can be represented as ()    ;

 : N   is a mapping function which assigns natural

numbers to the edges, where (,)x y n  if and only if it

is found that the activity y directly follows the activity x

in an event log n times. Hence, e  if and only if

() 0e  .

IV. NON-OVERLAPPING DISTINCT EVENT

PATTERNS FOR PROCESS DISCOVERY

One of the fundamental problems in bioinformatics is pattern

discovery which has applications in multiple sequence

alignment, protein structure and function prediction, drug target

discovery, characterization of protein families, and promoter

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 10 (2020), pp. 3055-3066

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.10.2020.3055-3066

3058

signal detection [45]. The primary objective of any pattern

discovery approach is to identify an unknown pattern in each

set of sequences. Similarly, in process discovery which is one

of the fundamental disciplines in business process mining, the

primary objective is to build a business process model by

extracting event sequence behavior from an event log. But, in

most of the cases the challenge is simplified as the case

identifiers are available to let us know which events belong to

which process instances. Considering the event log given in

Table 2, the challenge of discovering a process model can be

drafted as a problem of discovering event patterns and building

process model from the discovered event patterns.

The challenge of pattern discovery is computationally hard in

many cases which means that it cannot be guaranteed that there

exists a fast algorithm that would generate the best possible

solution to the problem. Thus, many approaches are based on

the exhaustive search mechanism. In the worst case these

approaches may run in exponential time, but sophisticated

pruning techniques can be adopted to make feasible searches

for typical input data.

In the simplest form, the working of exhaustive search can be

described as follows. In the first step, all possible patterns

which satisfy the constraints imposed by the user are

enumerated. In the second step, the number of instances of each

such pattern in input sequences are calculated. In the third step,

a statistically significant score is assigned to each pattern based

on the number of instances counted for each pattern. At last,

based on a threshold score the patterns which qualify that

threshold are generated as output patterns and the rest are

discarded.

IV.I. Discovering non-overlapping distinct-event patterns

and their frequencies

Discovering non-overlapping event patterns from a given

sequence was first proposed by Ding et al. [46]. We have

adopted the same method to discover non-overlapping event

patterns and followed a few constraints to tackle the challenge

of finding relevant event patterns to discover a process model

from an event log without case identifiers effectively. The

requirements and the formal definition to discover non-

overlapping event patterns are given in this section.

Let  represents a set of events. An ordered list of events can

be denoted by a sequence 1 2 3, , , , lengthS e e e e    ,

where ie S is an event. The sequence S can also be written

as: 1 2 3, , , , lengthS e e e e  . The
thi event ie in the sequence

S as []S i .

Definition 1 Subsequence and Landmark: Sequence

1 2 3, , , , mS e e e e  is a subsequence of another sequence

1 2 3, , , , ()nS e e e e m n  
    denoted by S S (or S  is

a supersequence of S), if there exists a sequence of integers

(positions) 1 21 m nl l l l    such that [] []iS i S l

(i.e.,
ii le e) for 1,2, ,i m  . Such a sequence of integers

1 2, , , ml l l   is called landmark of S in S  . Note: there may

be more than one landmark of S in S  . ■

A pattern 1 2 mP e e e  is also a sequence.

Definition 2 Instances of Pattern: For a pattern P in a

sequence S , if 1 2, , , ml l l   is a landmark of pattern

1 2 mP e e e  in S , pair 1 2, , , ml l l   is said to be an

instance of P in S . ■

The set of instances of P in S can be denoted by ()S P
.

The number of occurrences of a pattern repeating in a sequence

can be defined as “support”. Hence, support of P , ()sup P ,

the total number of instances of P in S ; () | () |sup P S P

. However, there is a problem with ()sup P : multiple instances

of a long pattern overlap with each other at many positions in a

sequence which leads to over-counting of support for such a

long pattern. For example, the pattern P ABC Z  in

sequence S AABBCC ZZ  has support
262 , but pattern

AB only has support
22 4 .

Thus, counting overlapping instances multiple times in the

support value need to be avoided. So first, we need to give a

formal definition to overlapping instances as follows.

Definition 3 Overlapping Instances: Two instances of pattern

1 2 mP e e e  in sequence 1 2 nS e e e  (1)m n  ,

1 2, , , ml l l   and 1 2, , , ml l l     , are overlapping if

1 : j jj m l l    . Equivalently, 1 2, , , ml l l   and

1 2, , , ml l l     , are non-overlapping if 1 : j jj m l l    .

 ■

Example 1: An event sequence S is shown in Table 3. There

are 4 landmarks of pattern AB in S . Thus, the 4 instances of

the pattern AB in S are:

() { 1,3 , 1,5 , 2,3 , 2,5 }S AB          . Instances

1 2(,) (1,3)l l     and 1 2(,) (1,5)l l      are overlapping

because 1 1l l , i.e., they overlap at the first event

([1])A S A  . Similarly, the instances 1 2(,) (1,3)l l    

and 1 2(,) (2,3)l l      are overlapping as 2 2l l . But, the

instances 1 2(,) (1,3)l l     and 1 2(,) (2,5)l l      are

non-overlapping as 1 1l l and 2 2l l .

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 10 (2020), pp. 3055-3066

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.10.2020.3055-3066

3059

Table 3. A sample event sequence

Sequence 1e 2e 3e 4e 5e 6e

 S A A B C B C

Definition 4 Non-redundant Instance Set: A set of instances

()I S P , of pattern P of sequence S is non-redundant if

any two instances in I are non-overlapping. ■

 A non-redundant instance set ()I S P is maximal if there

is no non-redundant instance set I  of pattern P such that

I I  . Thus, the support of pattern P can be defined as the

size of a maximal non-redundant instance set ()I S P . This

not only avoids over counting of overlapping instances but also

records as many non-overlapping instances as possible for

pattern P .

Definition 5 Repetitive Support and Support Count: For a

non-overlapping pattern P in S , the repetitive support can be

defined as sup() max{| || ()P I I S P  is
}non redundant .

The non-redundant instance set I is called a support set of P

in S where | |I  sup(P). ■

Example 2: From Example 1 it can be verified that | 2|ABI 

is the maximum size of all possible non-redundant set of
ABI .

Hence, sup(AB)=2 and
ABI is a support set. It is possible to

have more than one support set for a pattern. Another possible

support set of pattern AB is { 1,5 , 2,3 }ABI       .

A formal method to identify the non-overlapping distinct-event

patterns and their respective occurrences in an unlabeled event

log has been given in Algorithm 1. Algorithm 1 utilizes the

preliminaries given in Definition 1, Definition 2, and Definition

3 to tackle the above problem. As events are represented by

activity names in an event log, the terms "event" and "activity"

are used conversely in this paper.

In Algorithm 1, the following assumptions are considered:

 As the case identifiers are not available in the event log, it

is not possible to know the number of process instances

completed their execution. By setting the start activity of

each pattern iP as fa we try to count the number of

process instances that have completed execution and their

traces recorded in the event sequence S . Hence, in step 2

of Algorithm 1,
faI is calculated which represents the

number of process instances.

 Within a pattern iP

 (i) each activity is unique and

 (ii) repetition of activities is not allowed.

 For a process there should be at least 2 activities namely

"start" and "end" indicating beginning and completion of a

process execution. Thus, the minimum length of a pattern

iP is set to 2.

Algorithm 1: Non-overlapping Sequential Distinct Event

Patterns

Input: Event sequence (S) from an event log without case

identifier

Output: Set of all non-overlapping sequential distinct-event

patterns 1 2{ , , , }nP P P  

1. Set the very first activity recorded in the event log (denoted

by fa) as the starting activity for all the non-overlapping

distinct event patterns that would be discovered. Find out

the set of all distinct activities U in the event sequence S
.

2. Calculate
jaI  The number of occurrence of each

activity ja U where 1 | |j U  . Specifically,

calculate
faI  The number of occurrence of fa

3. Calculate | |maxlength U

4. Let
iPlength denotes the number of activities in a pattern

iP that would be discovered. Find out the set of all

distinct-event patterns 1 2{ , , , }mP P P   where,

(i) an event pattern consists of distinct activities,

(ii) Start activity of each pattern i fP a , and

(iii) 2
iPlength maxlength 

5. Using Definition 5 calculate ()isup P  the non-

overlapping occurrences of iP in event sequence S ,

1 i m  

6. Remove all the patterns iP from   where, () 0isup P 

to find the set of all non-overlapping distinct-event patterns

1 2{ , , , }nP P P   where 1 n m  .

IV.II. Selecting relevant patterns and constructing business

process model

The method proposed in Algorithm 1 produces many patterns

with support value greater than 0. Let us assume each

individual pattern iP to be a process instance (or trace) which

can be represented as iP  . Then, some combinations of

those individual patterns with their support count can be

considered as an event log and hence the event log L can be

represented as 1 2{ , , , }zL P P P  where 1 z n  . In such

a case, the following constraints must be obeyed to have a valid

event log L and by using which a process model can be

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 10 (2020), pp. 3055-3066

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.10.2020.3055-3066

3060

generated:

1
i f

z

P a
i

F I


 (1)

and

()

1
j P ji

z

a a
i

F I


 (2)

where,

()
iP iF sup P ,

()j PiaF  The number of occurrences of an activity ja in the

pattern iP ,

ja U ,

1 | |j U  and 1 z n  .

Example 3: Let us revisit the example event log given in

Table 2 to apply the method proposed in Algorithm 1 along

with the constraints mentioned in Equation (1) and Equation

(2). The results generated on applying Algorithm 1 are:

fa A

{ , , , , }U A B C D E

3, 2, 2, 1, 1A B C D EI I I I I    

3
faI 

5maxlength 

1P AB   , 2P AC   , 3P AD   , 4P AE   ,

5P ABC   , 6P ACB   , 7P ABD   ,

8P ADB   , 9P ACD   , 10P ADC   ,

11P ABE   , 12P AEB   , 13P ACE   ,

14P AEC   , 15P ADE   , 16P AED   ,

17P ABCD   , 18P ABCE   , 19P ABDC   ,

20P ABEC   , 21P ABDE   , 22P ABED   ,

23P ACBD   , 24P ACDB   , 25P ACBE   ,

26P ACEB   , 27P ACDE   , 28P ACED   ,

29P ADCB   , 30P ADBC   , 31P ADBE   ,

32P ADEB   , 33P ADCE   , 34P ADEC   ,

35P AEBC   , 36P AECB   , 37P AEBD   ,

38P AEDB   , 39P AECD   , 40P AEDC   ,

41P ABCDE   , 42P ABCED   , 43P ABDCE   ,

44P ABDEC   , 45P ABECD   , 46P ABEDC   ,

47P ACBDE   , 48P ACBED   , 49P ACDBE   ,

50P ACDEB   , 51P ACEBD   , 52P ACEDB   ,

53P ADBCE   , 54P ADBEC   , 55P ADCBE   ,

56P ADCEB   , 57P ADEBC   , 58P ADECB   ,

59P AEBCD   , 60P AEBDC   , 61P AECBD   ,

62P AECDB   , 63P AEDBC   , 64P AEDCB   .

1 2 64{ , , , }P P P  

The support count of each pattern (()isup P) has been

calculated and the patterns for which () 0isup P  have been

removed. Thus,  consists of 24 patterns and can be given as:

 1 2 24{ , , , }P P P   . These twenty-four patterns

and their respective support count have been given in Table 4.

Table 4. Support count of different patterns

Pattern (iP) ()isup P Pattern (iP) ()isup P

1P 2 18P 1

2P 2 19P 1

3P 1 20P 1

4P 1 21P 1

5P 2 30P 1

7P 1 31P 1

8P 1 33P 1

10P 1 34P 1

11P 1 43P 1

13P 1 44P 1

14P 1 53P 1

15P 1 54P 1

Now applying the constraints given in Equation (1) and (2) we

have:

5 15
3P PF F  and

1() 1()5 15

3
P Pa a AF F F  

2() 2()5 15

2
P Pa a BF F F  

3() 3()5 15

2
P Pa a CF F F  

4() 4()5 15

1
P Pa a DF F F  

5() 5()5 15

1
P Pa a EF F F  

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 10 (2020), pp. 3055-3066

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.10.2020.3055-3066

3061

Thus, 5 15{ , }L P P

The 5()sup P and 15()sup P also exactly matches with the

traces available in Table 1.

Now, let us assume that the pattern numbers are the case

identifiers of different traces that belong to a particular event

log. Thus, an event log L can be created with the help of

pattern numbers (i s) and the respective patterns (iP s).

Eventually, the same process model can be generated as the

process model given in Figure 1 by using the event log L

which contains the patterns (or traces) 5P ABC   and

15P ADE   with the help of the Disco process mining tool

[16].

Example 4: Let us consider another event log given in Table 5.

The process model that can be generated from this event log by

using the Disco process mining tool [9] is shown in Figure 2.

Table 5. An example of an event log

Caseid Activity Timestamp

1 A 01:22

2 A 01:24

1 C 01:26

2 B 01:29

2 C 01:33

Fig.2. Generated business process model from the event log

given in Table 5.

The event log given in Table 5 can be represented as Table 6

without case identifiers.

Table 6. An Event Log without case identifiers of the same

event log given in Table 5

Activity Timestamp

A 01:22

A 01:24

C 01:26

B 01:29

C 01:33

Let us apply the method proposed in Algorithm 1 on the event

log given in Table 6. The results generated are:

fa A

{ , , }U A B C

2, 1, 2A B CI I I  

2
faI 

3maxlength 

1P AB   , 2P AC   , 3P ABC   , 4P ACB   .

1 2 3 4{ , , , }P P P P 

The respective support count of each pattern is:

1() 1sup P  , 2() 2sup P  , 3() 1sup P  , and

4() 1sup P  .

As none of the pattern iP is having support count

() 0isup P  , 1 2 3 4{ , , , }P P P P   .

Even though we are available with four patterns with support

count greater than 0, no combination of these patterns is

possible which satisfies the constraints mentioned in Equation

(1) and (2). Hence, it is not possible to have an event log L

from which a process model can be generated by following the

constraints mentioned in Equation (1) and (2). But, if we

multiply a weight
1

2
w  with 2()sup P and combine this

modified support count of 2P with the support count of 3P , we

have:

2 3

1
2

2
P PF F   and

1() 1()2 3

1
2

2 P Pa a AF F F   

2()3

1
Pa BF F 

3() 3()2 3

2
P Pa a CF F F  

Thus, 2 3{ , }L P P and a process model same as given in

Figure 2 can be generated from the event log L .

Things to be noted that the modified support count of 2P

when combined with the support count of 4P we have the

following:

2 4

1
2

2
P PF F   and

1() 1()2 4

1
2

2 P Pa a AF F F   

2()4

1
Pa BF F 

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 10 (2020), pp. 3055-3066

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.10.2020.3055-3066

3062

3() 3()2 4

2
P Pa a CF F F  

Thus, 2 4{ , }L P P  can be an alternate event log from which

another process model as shown in Figure 3 can be generated.

Fig. 3. An alternate business process model of the event log in

Table 6.

It can be observed from example 4 that to have a process model

we have to consider individual weights for respective patterns.

Also, selection of correct weight values is required to avoid

generating infinitely many possible process models.

Keeping the above fact in mind, now we formally redefine the

constraints mentioned in Equation (1) and (2) as:

1
i f

z

i P a
i

w F I


  (3)

ii Pw F Z   (4)

()

1
j P ji

z

i a a
i

w F I


  (5)

()j Pii aw F Z   (6)

where,

()
iP iF sup P ,

()j PiaF  The number of occurrences of an activity ja in the

pattern iP ,

ja U ,

0 1iw  , 1 | |j U  , 1 z n  and Z 
 is the set of

positive integers.

Now, the challenge is to find out the correct combination of

weights (iw), so that the constraints mentioned in Equation (3)

to (6) are satisfied and we have a relevant set of patterns to form

all feasible process models. However, Equation (5) represents

a system of linear equations with number of equations as | |U

and the number of variables as z with |U| z . Thus, the

system of equation reduces to an underdetermined system.

Equation (5) can be formulated in a matrix form as Ax b ,

where A is a rectangular matrix whose entries are

()
, 1 | |

j PiaF j U   . x is a column vector whose entries are

, 1iw i z   . b is a column vector whose entries are

, 1 | |
jaI j U   . Assuming rank of the matrix A as | |U ,

we can create a submatrix B of size | | | |U U , formed by

| |U linearly independent columns of A . We then find the

solution by setting | |z U variables not associated with

columns of B to 0 and solving the resulting system of

equations BBx b , where Bx represents vector associated

with the matrix B . The solution of the system BBx b is

1

Bx B b . Noted that, Bx corresponds to the vector

representing the columns of the matrix B . Thus, the solution

is (,0)i Bw x , which might contain irrelevant values of iw

that may not satisfy the constraint mentioned in Equation (4).

Finally, out of all possible solutions we filtered out the relevant

values of iw satisfying the constraint Equation (4).

Referring to the event log given in Table 6 and applying the

modified constraints mentioned in Equation (3), (4), (5), and

(6) we have the following two sets of weights for the respective

patterns 1P , 2P , 3P , and 4P :

1 0w  , 2

1

2
w  , 3 1w  , and 4 0w 

and

1 0w  , 2

1

2
w  , 3 0w  , and 4 1w  .

Thus, 2 3{ , }L P P and 2 4{ , }L P P  are the two event logs

that can be considered for generating process models. While

using L the same process model as given in Figure 2 can be

generated, the process model given in Figure 3 can be generated

using 'L .

It can be clearly seen that for a given event log there can be

more than one process model. Hence, out of the several process

models, the process model whose precision and recall

measures would be the highest that should be considered as the

best process model for the given event log. The precision

and recall can be stated as:

 precision = The fraction of cases in the mined model

that are correct, i.e., are also in the original business

process model, and

 recall = The fraction of correct cases that have been

found.

Let TP be the types of cases that exist in the mined model and

also in the original; FN be the types of cases that do not exist

in the mined model but do exist in the original model; and FP
be the types of cases that exist in the mined model but do not

exist in the original model. Then,

TPprecision

TP FP



 (7)

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 10 (2020), pp. 3055-3066

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.10.2020.3055-3066

3063

TPrecall

TP FN



 (8)

Table 7. precison and recall values of L and 'L

2 3{ , }L P P 2 4{ , }L P P 

precision 1 0.5

recall 1 0.5

As it can be observed from Table 7 that the precision and

recall values of L is higher than 'L , the model derived

from L is the correct model. But, in a real world scenario

where the case identifiers are unavailable it may not be possible

to find out the precision and recall values as we may not

have an original process model which can be compared with

the discovered process models.

V. EVALUATION AND RESULT ANALYSIS

The proposed Algorithm 1 along with the constraints

mentioned in Equation (3), (4), (5), and (6) presented in Section

IV were evaluated using real-world event logs. Two event logs

from BPI challenge 2013 [47] were considered and the

corresponding process models were generated by using the

Disco [9]. As our algorithm is capable of only dealing with

event logs without any loops and the starting activity for all the

cases should remain same, we first picked up cases with same

starting activity and then removed the cases which were having

loops to make the event log acyclic. Further, to check the

applicability of our proposed algorithm, all the case identifiers

were removed from the modified version of the real-world

event log taken from BPI challenge 2013 [47]. The details of

the two modified real-world event logs are given in Table 8.

Table 8. Details of the modified event logs

Event

log

Unique

activities
Events Cases

Variants

1 5 1380 619 5

2 5 766 357 11

The proposed Algorithm 1 in Section IV was implemented

using C++ language and compiled with a GCC compiler

version 6.2.0. We developed a MATLAB program using the

MATLAB 15(b) package to calculate the weight values w

mentioned in the constraints (3) to (6). All the programs were

executed in an Intel i5 machine clocked at 2.4 GHz having a

memory of 4 GB in a Windows-10 64-bit operating system.

Upon applying Algorithm 1 and the constraints mentioned in

Equation (3) to (6) on the modified version of the real-world

event logs, we were able to generate several process models.

The quality of those generated process models was measured

by determining the precision and recall parameters

mentioned Equation (7) and (8) respectively. The best and the

worst models in terms of precision and recall values

obtained from event log 1 are shown in Figure 4 and Figure 5

respectively. Table 9 shows the best and the worst precision

and recall measures obtained for the modified real-world

event log 1. The model which has the best precision and

recall values was found to be the same as that of the original

model (generated for the modified version of the real-world

event log 1). But we want to emphasize that in a real-world

scenario as the original process model may not be available for

comparison, we cannot say which is the best process model out

of the generated several process models. In such a case, the

views of an expert in that process domain can be considered to

pick the best model.

Table 9. precison and recall values of the best and the

worst process models obtained from event log 1 mentioned in

Table 8.

2 3{ , }L P P 2 4{ , }L P P 

precision 1 1

recall 1 0.8

The actual process model generated from the modified version

of the real-world event log 2 is shown in Figure 6 that contains

eleven patterns (or cases). As our approach to find the correct

combinations of weights ()iw relies on rank of the matrix

representing an underdetermined system of linear equations,

we were able to generate process models comprising of five or

less patterns for the real-world event log 2 which may not be

acceptable in the present context. One of such process models

is shown in Figure 7. Thus, it can be concluded that our

approach of finding out feasible combination of weights to

build a process model works well when the number of patterns

available in the actual process model is same as the rank of the

matrix representing the underdetermined system of linear

equations generated from Equation (5).

Fig. 4. The best process model obtained from event log 1

given in Table 8.

Fig. 5. The worst process model obtained from event log 1

given in Table 8.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 10 (2020), pp. 3055-3066

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.10.2020.3055-3066

3064

Fig. 6. Actual process model obtained from event log 2 given

in Table 8.

Fig. 7. A process model obtained from event log 2 given in

Table 8.

VI. DISCUSSION

We are not the first one to propose a method that deals with the

challenge of discovering process models from unlabeled event

logs. The methods presented in [16], [35], and [36] also deal

with the challenge of discovering process models from

unlabeled event logs. In [16], the authors presented a

probabilistic approach based on iterative Expectation-

Maximization to tackle the said challenge. However, the

accuracy of their method relied on the following two factors:

the total number of sources in the event log, and on the number

of overlapping sources. With high number of sources, it is

easier to discover consistent behavior in the event log. But, with

increasing number of overlapping sources, it becomes difficult

to separate the events belonging to different sources. Our

method does not have any such problem with increasing

number of overlapping sources.

In [35] and [36], two matrices namely Precede/Succeed matrix

and Duration matrix have been constructed and used to create

a correlation miner to discover process models from unlabeled

event logs. A high value for an entry in the Precede/Succeed

matrix indicates that it is more probable to have an edge from

the first to the second activity for any two given activities.

Similarly, a low value for an entry in the Duration matrix

indicates that it is more likely that there is an edge from the first

to the second activity for any two given activities. At last, all

possible business process models are found out that meet the

rule mentioned above and then the best one is selected based on

the values from the Precede/Succeed matrix and the Duration

matrix. The method relies on the Duration matrix in which an

entry indicates the average time difference between events

referring to the first activity and events referring to the second

activity for any two given activities. If the average time

difference between any two activities is too high, then the

correlation miner would be unable to correlate two activities.

But our proposed method does not rely on the time difference

between any two activities.

VII. CONCLUSION AND FUTURE SCOPE

The present work describes a method to discover process model

from an event log where the case identifiers are missing. The

proposed work relies on discovering the non-overlapping

sequential distinct event patterns and their respective

frequencies from a given event log without case identifiers

believing that the discovered patterns would represent different

cases that have taken place in the said event log and by using

these cases a process model can be generated. The proposed

method has been evaluated by taking the modified versions of

the real-world event logs from BPI challenge 2013. Upon

applying this method on the modified version of the real-world

event logs, we were able to generate several process models as

different combinations of discovered event patterns would

satisfy the criteria mentioned in Equation (3), (4), (5), and (6).

Further, for each discovered process model, the precision

and recall values were calculated. The model having highest

precison and recall values was considered as the best

model for the given even log. However, the present work has

the following limitations: (i) it can be applied on an acyclic

event log only, (ii) for each and every case available in an event

log, the starting activity should remain same, (iii) the

discovered patterns were mapped to different cases without any

guarantee of whether an activity actually belongs to discovered

pattern or not. Thus, the future work shall focus on developing

methods which would overcome these issues.

REFERENCES

[1] Aalst, W., Adriansyah, A., Medeiros, A. K. A., Arcieri, F.,

Baier, T., Blickle, T., Bose, J. C., Brand, P., Brandtjen, R.,

Buĳs, J., et al. (2012). Process mining manifesto. In

Business process management workshops, pages 169–

194. Springer.

[2] Van Dongen, B., Alves de Medeiros, A., and Wen, L.

(2009). Process mining: Overview and outlook of petri net

discovery algorithms. Transactions on Petri Nets and
Other Models of Concurrency II, pages 225–242.

[3] Günther, C. and van der Aalst, W. (2007). Fuzzy mining–

adaptive process simplification based on multi-perspective

metrics. Business Process Management, pages 328–343.

[4] Rozinat, A. and Van der Aalst, W. M. (2008).

Conformance checking of processes based on monitoring

real behavior. Information Systems, 33(1):64–95.

[5] Van der Aalst, W. M. (2011). In Process Mining. Springer.

[6] van der Aalst, W. M. and Verbeek, H. E. (2008). Process

mining in web services: The websphere case. IEEE Data
Eng. Bull., 31(3):45–48.

[7] Tiwari, A., Turner, C. J., and Majeed, B. (2008). A review

of business process mining: state-of-the- art and future

trends. Business Process Management Journal, 14(1):5–

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 10 (2020), pp. 3055-3066

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.10.2020.3055-3066

3065

22.

[8] Verbeek, H. and van der Aalst, W. M. (2014).

Decomposed process mining: The ilp case. In

International Conference on Business Process
Management, pages 264–276. Springer.

[9] Günther, C. W. and Rozinat, A. (2012). Disco: Discover

your processes. BPM (Demos), 940:40–44.

[10] Van der Aalst, W., Weĳters, T., and Maruster, L. (2004).

Workflow mining: Discovering process models from event

logs. IEEE Transactions on Knowledge and Data
Engineering, 16(9):1128–1142.

[11] Weĳters, A., van Der Aalst, W. M., and De Medeiros, A.

A. (2006). Process mining with the heuristics miner-

algorithm. Technische Universiteit Eindhoven, Tech. Rep.
WP, 166:1–34.

[12] Wen, L., van der Aalst, W. M., Wang, J., and Sun, J.

(2007). Mining process models with non-free- choice

constructs. Data Mining and Knowledge Discovery,

15(2):145–180.

[13] Schimm, G. (2004). Mining exact models of concurrent

workflows. Computers in Industry, 53(3):265–281.

[14] Van Der Aalst, W. M., Rubin, V., Verbeek, H. M., van

Dongen, B. F., Kindler, E., and Günther, C. W. (2010).

Process mining: a two-step approach to balance between

underfitting and overfitting. Software and Systems
Modeling, 9(1):87–111.

[15] Bergenthum, R., Desel, J., Lorenz, R., and Mauser, S.

(2007). Process mining based on regions of languages. In

International Conference on Business Process
Management, pages 375–383. Springer.

[16] Ferreira, D. R. and Gillblad, D. (2009). Discovering

process models from unlabelled event logs. In

International Conference on Business Process
Management, pages 143–158. Springer.

[17] Van der Aalst, W. M. and Weĳters, A. (2004). Process

mining: a research agenda. Computers in industry,

53(3):231–244.

[18] de MEDEIROS, A. K., Weĳters, A. J., and van der Aalst,

W. M. (2007). Genetic process mining: an experimental

evaluation. Data Mining and Knowledge Discovery,

14(2):245–304.

[19] Turner, C. J., Tiwari, A., and Mehnen, J. (2008). A genetic

programming approach to business pro- cess mining. In

Proceedings of the 10th annual conference on Genetic and
evolutionary computation, pages 1307–1314. ACM.

[20] Greco, G., Guzzo, A., Pontieri, L., and Sacca, D. (2006).

Discovering expressive process models by clustering log

traces. IEEE Transactions on Knowledge and Data
Engineering, 18(8):1010–1027.

[21] Song, M., Günther, C. W., and Aalst, W. M. (2009). Trace

clustering in process mining. In Business Process
Management Workshops, pages 109–120. Springer.

[22] Bose, R. J. C. and van der Aalst, W. M. (2009). Context

aware trace clustering: Towards improving process mining

results. In Proceedings of the 2009 SIAM International
Conference on Data Mining, pages 401–412. SIAM.

[23] Günther, C. W., Rozinat, A., and Van Der Aalst, W. M.

(2009). Activity mining by global trace seg- mentation. In

International Conference on Business Process
Management, pages 128–139. Springer.

[24] Goedertier, S., Martens, D., Vanthienen, J., and Baesens,

B. (2009). Robust process discovery with artificial negative

events. Journal of Machine Learning Research,

10(Jun):1305–1340.

[25] Van Der Aalst, W. M. (2012). Decomposing process

mining problems using passages. In Interna- tional
Conference on Application and Theory of Petri Nets and
Concurrency, pages 72–91. Springer.

[26] Van der Aalst, W. M. (2013). Decomposing petri nets for

process mining: A generic approach. Distributed and
Parallel Databases, 31(4):471–507.

[27] Van der Aalst, W. M. (2014). Process mining in the large:

a tutorial. In Business Intelligence, pages 33–76. Springer.

[28] Van Der Aalst, W. M. (2013). A general divide and

conquer approach for process mining. In Computer Science
and Information Systems (FedCSIS), 2013 Federated
Conference on, pages 1–10. IEEE.

[29] Burattin, A., Sperduti, A., and van der Aalst, W. M. (2012).

Heuristics miners for streaming event data. arXiv preprint
arXiv:1212.6383.

[30] van Eck, M. L., Sidorova, N., and van der Aalst, W. M.

(2016). Discovering and exploring state-based models for

multi-perspective processes. In International Conference
on Business Process Management, pages 142–157.

Springer.

[31] van der Aalst, W. M., Kalenkova, A., Rubin, V., and

Verbeek, E. (2015). Process discovery using localized

events. In International Conference on Applications and
Theory of Petri Nets and Concurrency, pages 287–308.

Springer.

[32] van der Aalst, W. M. (2013). Challenges in service mining:

record, check, discover. In International Conference on
Web Engineering, pages 1–4. Springer.

[33] Liesaputra, V., Yongchareon, S., and Chaisiri, S. (2016).

Efficient process model discovery using maximal pattern

mining. In International Conference on Business Process
Management, pages 441– 456. Springer.

[34] Djenouri, Y., Belhadi, A., and Fournier-Viger, P. (2018).

Extracting useful knowledge from event logs: a frequent

itemset mining approach. Knowledge-Based Systems,

139:132–148.

[35] Pourmirza, S., Dĳkman, R., and Grefen, P. (2015).

Correlation mining: mining process orches- trations

without case identifiers. In International Conference on
Service-Oriented Computing, pages 237–252. Springer.

[36] Pourmirza, S., Dĳkman, R., and Grefen, P. (2017).

Correlation miner: Mining business pro- cess models and

event correlations without case identifiers. International
Journal of Cooperative Information Systems, page

1742002.

[37] Conforti, R., La Rosa, M., and ter Hofstede, A. H. (2017).

Filtering out infrequent behavior from business process

event logs. IEEE Transactions on Knowledge and Data

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 10 (2020), pp. 3055-3066

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.10.2020.3055-3066

3066

Engineering, 29(2):300–314.

[38] Mannhardt, F., de Leoni, M., Reĳers, H. A., and van der

Aalst, W. M. (2017). Data-driven process discovery-

revealing conditional infrequent behavior from event logs.

In International Conference on Advanced Information
Systems Engineering, pages 545–560. Springer.

[39] Van Dongen, B., Carmona, J., Chatain, T., and Taymouri,

F. (2017). Aligning modeled and observed behavior: a

compromise between computation complexity and quality.

In International Conference on Advanced Information
Systems Engineering, pages 94–109. Springer.

[40] Augusto, A., Conforti, R., Dumas, M., La Rosa, M., and

Bruno, G. (2018). Automated discovery of structured

process models from event logs: The discover-and-

structure approach. Data & Knowledge Engineering,

117:373–392.

[41] Weĳters, A. J. and Van der Aalst, W. M. (2003).

Rediscovering workflow models from event-based data

using little thumb. Integrated Computer-Aided
Engineering, 10(2):151–162.

[42] Nguyen, H. T. C., Lee, S., Kim, J., Ko, J., and Comuzzi,

M. (2019). Autoencoders for improving quality of process

event logs. Expert Systems with Applications, 131:132–

147.

[43] Dymora, P., Koryl, M., and Mazurek, M. (2019). Process

discovery in business process management optimization.

Information, 10(9):270.

[44] Sahu, M. and Nayak, G. K. (2020). Increasing efficiency of

process discovery algorithms and process model discovery

from unlabeled event logs: A review. International Journal
on Emerging Technologies, 11(3):383–394.

[45] Brejová, B., Vinar, T., and Li, M. (2003). Pattern

discovery. In Introduction to bioinformatics, pages 491–

521. Springer.

[46] Ding, B., Lo, D., Han, J., and Khoo, S.-C. (2009). Efficient

mining of closed repetitive gapped sub- sequences from a

sequence database. In Data Engineering, 2009. ICDE’09.
IEEE 25th International Conference on, pages 1024–1035.

IEEE.

[47] Steeman, W. (2013). Bpi challenge 2013, incidents.

