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Abstract 

Pollen analysis and identification is widely used in 

palaeoenvironmental reconstruction, palynonlgy research, and 

medical studies. The process of classifying pollen grains is a 

time consuming task even for experienced experts. Therefore, 

computerizing this routine using computer vision techniques is 

highly needed. Despite recent advances in computing and 

texture analysis, automatic pollen classification still remain 

unsolved. In this paper, we present a method for classifying 

pollen grain obtained from an optical-microscopy. Each pollen 

grain is represented by sequence of images taken from different 

depth using multifocal microscopy. First, we segment the 

background and pollen by the means of the in-focus areas from 

each slice. Secondly, the surface textures of pollens are 

extracted from the in-focus areas. Finally,  when approaching 

this problems, we use sequence alignment to match between the 

learned model and a new data. Even though our method 

developed for pollen identification, it is applicable for other 

microscopy objects classification. Experiments performed on 

tropical fossil pollen dataset acquired using optical microscopy. 

Keywords: Pollen recognition; Visual Texture; Sequence 

Alignment; Longest Common Subsequence; RPCA 

 

1. INTRODUCTION 

The classification required analyzing the pollen’s surface 

texture by identifying its geometrical features (e.g., ridges and 

spikes) and the presence of prose. Here, we present a novel 

method for pollen classification. The method uses multifocal 

image sequences obtained using optical microscopy. In Fig. 1., 

a graphical overview of our method is shown. It consists of four 

steps. At first, we use the Robust Principal Component 

Analysis (RPCA) [1] to extract a pollen contour regions from 

each image in the sequence. This step discard unwanted 

neighboring information such as debris and background. Once 

the pollen has been extracted, we use exposure fusion [2] to 

extracted in-focus areas. These areas are the best exposed 

and/or the best focused regions of the pollen surface. Then, we 

describe the texture appearance of these regions using 

Segmentation based Fractal Texture Analysis (SFTA) [3]. The 

computed features encode information for each slice about the 

orientation and scale of pollen surface features. The 

identification of a given pollen is done by performing matching 

sequence of feature vectors using powerful sequence alignment 

methods (i.e., Longest Common Subsequence (LCSS)[4]). 

Finally, recognition of a pollen is done using k-nearest 

neighbors algorithm (KNN) [5] based on matching scores 

obtained from LCSS. As shown in the experiments section, the 

method performs well for tropical fossil pollen identification. 

 

2. RELATED LITERATURE 

The research of pollen grain identification is quite limited. 

However, recent research shows that it is possible to classify 

pollen grains based on visual texture [6, 7, 8, 9, 10], contour 

[11, 12, 13], and 3D shape [14]. Carrión et al. [7] classified 

honeybee pollens based on texture image classification 

generated using a multiscale filtering scheme. Whereas, Guru 

et al. [6] used Local Binary Pattern features to describe surface 

textures. Ticay-Rivas et al. [10] and by Rodriguez-Damian et 

al. [15] encoded brightness descriptors derived from pollen 

intensity images. However, these descriptors cannot capture the 

small details of a pollen grain surface. Also, many pollen grain 

cannot be solely distinguished by their color measurement. 

Some recent methods classify the pollen using the shape of the 

outer contour [11, 12, 13]. Ranzato et al. [11] developed a 

method to classify pollen that can deal with variability within 

each class based on the interest points on the outer contour. 

These features are invariant with respect to rotation, shift, and 

scale. Similar approach by Travieso et al. [12] proposed the use 

of morphological details of the contour by combining statistical 

reasoning, feature learning. Also, Rodriguez-Damian et al., 

[13] classifies pollen based on their morphology (outer-

contour) and their sculpture (texture of the inner grain) based 

on 2D images. However, to identify pollen correctly more than 

one image at different focus may be needed. 

Finally, Ronneberger et al. [14] obtained 3D volume data for 

each pollen grain with a fluorescence microscope. They used a 

support vector machine to classify the extracted features that 

are 3D invariant. In contrast to their approach, our method 

works on a dataset obtained from an optical-microscopy 

without using expansive tools such as the fluorescence 

microscope, even though we were able to achieve a good 

accuracy result. 
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Fig. 1.  Overview of our method. First, a multifocal image sequence is given as input. Second, background removed and Pollen 

region extracted using RPCA. Then, in-focus areas are extracted from the whole sequence using exposure fusion. For each slice, the 

appearance features is computed using SFTA. Finally, LCSS algorithm were used to compare the final features vector to the training 

database. 

 

Shafaey et. al. [19] [20] used conventional image processing 

techniques to segment and classify biological particles in 

microscopic images. The method is based on maximizing the 

contrast between the particles and liquid environment then the 

particles are segmented using Otsu thresholding or Watershed 

transform. The particles are then classified using size, shape 

and texture features. The proposed method allows for algae 

particles to be correctly identified with accuracies up to 99%. 

Different segmentation and processing techniques for medical 

and bioimages are presented in [17][18]. The segmentation 

techniques are categorized as Statistical, Template, Edge, and 

Region-based techniques. 

 

3. PROPOSED METHOD 

3.1 Data Pre-processing 

The First step is detecting the pollen grain on each multifocal 

image sequence (see Fig. 2., top row is the raw images). 

Extracting the pollen from its sequence is challenging task due 

to undefined and blurred pollen’s boundaries. Also, the 

foreground and background image regions could have very 

similar intensity and color. Moreover, debris might be present 

in the sequence. 

We overcome these challenges by accumulating and using 

information from all images in the sequence and then use it to 

improve the detection of the pollen grains. To achieve this goal, 

we begin by using the Robust Principal Component Analysis 

(RPCA) [1] to remove the static background. This is 

accomplished by assuming that the change in-focus between 

each level in the multifocal sequence occurs only on pollen’s 

contour. 

 

3.2 Background Modeling 

We begin by describing the Robust Principal Component 

Analysis [1] for the segmentation of pollen from multifocal 

image sequence. Let assume that S = (S1,...,Sn) be a sequence 

of multifocal images of a specific pollen grain using 

measurements of the optical-microscopy at n consecutive 

depths, where S1 is acquired at the highest depth and Sn is at 

the lowest depth. If slice frames for each multifocal sequence 

are stacked as columns of a matrix D, then matrix can be written 

as the sum of a sparse error matrix and a low-rank background 

matrix representing the change in the scene (i.e., change in 

pollen surface). If there is no significant change in illumination 

on the frame background, but most of changes occurs on the 

pollen surface, then RPCA is very effective in separating the 
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background from the image. The main idea is decompose the 

observed data matrix D ∈ Rm×n into low-rank matrix A and 

sparse error matrix E. So, the Lagrangian reformulation of this 

optimization problem is shown in Eq. 1. Where D is the 

observed data matrix D ∈ Rm×n and n is the number of slice and 

the m is individual frames are stacked as columns, and λ is a 

parameter that controls the trade-off between sparsity and the 

rank of L. 

 min
𝐴,𝐸

  rank(𝐴) +  λ||𝐸||
0
   subj. to  A + E = D,   (1) 

However, Eq. 1. is a non-convex optimization problem. 

Therefore, it can be relaxed to obtain tractable optimization 

problem, by replacing the λ0−norm with λ1−norm and the rank 

with the nuclear norm, resulting the following convex 

surrogate: 

 𝑚𝑖𝑛
𝐴,𝐸

   ||𝐴||
∗
+ 𝜆||𝐸||

1
 𝑠𝑢𝑏𝑗. 𝑡𝑜  𝐴 + 𝐸 = 𝐷,     (2) 

Prior to performing the texture analysis, we prepossess all 

sequences using this technique. This pre-processing step helps 

reduce noise and remove the background, while preserving the 

geometrical details of pollen’s surface. However, in our 

algorithm all multifocal sequences were converted to gray-level 

to perform RPCA. 

 

Fig. 2. Segmentation examples for multifocal sequence on 

different pollen grain. Noise and background in the examples 

are largely reduced while boundary of pollen is preserved. With 

the segmented multifocal slices of pollen at hand, we can 

extract the in-focus surface from each slice. 

 

3.3 Multifocal exposure fusion 

The basic idea is that pixels in the input multifocal sequence 

images are weighted according to qualities. There are three 

diffident weight were used, namely, proper exposure, good 

contrast, and high saturation. However, these criteria used to 

determine how much each pixel from a slice can contribute to 

the final slice. The proper exposure criteria favors pixels with 

luminance, whereas saturation and contrast favors highly-

saturated and high contrast pixels, respectively. We use 

exposure fusion [2, 16] approach often applied in merging 

overlapping images. The exposure fusion framework presented 

in [2] is more applicable to the extraction of in-focus pixels on 

each slice as it accounts for saturation and contrast. Fig. 3. 

shows an example of infused multifocal sequence imaging [2]. 

However, we used this technique not to merge the entire 

sequence into one image, but to detect the in-focus pixels on 

each slice.

 

Fig. 3. Samples of segmentation of pollen grain. A single image 

at depth 12 of the segmented multifocal sequence is shown. The 

segmentation is performed on the whole sequence. The first 

row shows the original image and the second row show the 

segmented pollen using RPCA. 

We start by defining the (quality weight measures) by 

describing the exposure fusion proposed by Mertens et al. [2] 

for the extraction if an in-focus surface pixels from each slice. 

For each pixel, we combine the information from the 

measurements of contrast, saturation, and well-exposedness 

into a scalar weight map from all the slices. The influence of all 

measurement is given by: 

𝑊𝑖𝑗,𝑘 = (𝑊𝑖𝑗,𝑘)
ωC
× (𝑊𝑖𝑗,𝑘)

ωS
× (𝑊𝑖𝑗,𝑘)

ωE
            (3) 

where C, S, and E represent contrast, saturation, and well-

exposedness, respectively. Whereas, ωC, ωS, and ωE their 

corresponding weight. The measurement of contrast done by 

applying Laplacian filter (e.g., [0 1 0; 1 -4 1; 0 1 0]) to the gray-

scale version of each slice and then take the absolute value of 

the result. The measurement of saturation is calculated as the 

standard deviation of the color channels, whereas well-

exposedness is computed by the mean of how well a pixel is 

exposed by keeping the small intensity (close to zero) and big 

intensity (close to 1). Each intensity i is weighted based on how 

close it is to 0.5 using a Gaussian curve on each slice separately: 

exp(−
(𝑖 − 0.5)2

2σ2
) , 𝑤ℎ𝑒𝑟𝑒        𝜎 = 0.2 

To obtain a consistent result, each values of N weight maps at 

each pixel (i,j) is normalized such as they sum to one as 

follows: 

𝑊𝑖𝑗,𝑘̂ = [∑ 𝑊𝑖𝑗,𝐾́

𝑁

𝐾́=1
]
−1

𝑊𝑖𝑗,𝑘                              (4) 

Finally, the resulting fused image and the in-focus masks can 

be then obtained by blending of the multifocal sequence 

images: 

𝐿{𝑅}𝑖𝑗
𝑙 =∑ 𝐺{𝑊̂}𝑖𝑗,𝑘

𝑙 𝐿{𝐼}𝑖𝑗,𝑘
𝑙

𝑁

𝐾=1
                       (5) 

where ℓ is the level of resulting Laplacian pyramid and L{R}ℓ 

contains the mask that used to extract the in-focus surface form 
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each slice. However, the final fused image can be obtained by 

collapsing L{R}ℓ. 

 

3.4 Modeling the texture 

The pollen surface provides very descriptive features (e.g., 

granularity and repetitive patterns) of what is the type of pollen. 

These features include symmetric placement of blob-shaped 

regions and elongated shapes which appear at variance scale 

and orientations. However, the shape and surface features of 

pollen multifocal sequence are chaining on each slice (e.g., 

different depth), which our method takes advantage of it by 

matching and comparing individual slices. Here, we represent 

each image as a vector F extracted from the input gray-scale 

image using Segmentation-based Fractal Texture Analysis 

(SFTA) algorithm [3]. 

The SFTA extraction algorithm starts by decomposing the 

input slice into a set of binary images using Two-Threshold 

Binary Decomposition (TTBD) algorithm. Then, a fractal 

dimensions of each regions are calculated in order to describe 

segmented texture patterns. 

Each image from the multifocal sequence obtained from the 

previous section which contains only the areas in-focus is 

converted to gray-scale image. Then, TTBD were applied to 

decompose the slice into a set of binary images nt as follows: 

I(𝑥, 𝑦) = {
1       𝑖𝑓 𝑡ω ≤ 𝐼(𝑥, 𝑦) ≤ 𝑡𝜇
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.               

                        (6) 

where 𝑡𝜔  denote lower threshold and 𝑡𝜇  denote upper 

threshold (i.e., 𝑡𝜔  and  𝑡𝜇  ⊂ T ). Fig. 4. illustrates the 

decomposition of a region taken from a pollen multifocal 

sequence at depth 12. 

Finally, the SFTA feature vector is constructed for each slice as 

follows: 

Δ(x, y) = {

1      𝑖𝑓 ∃(𝑥´, 𝑦´) ∈ 𝑁8[(𝑥, 𝑦)]:

𝐼𝑏(𝑥´, 𝑦´) = 0 ∧

𝐼𝑏(𝑥, 𝑦) = 1
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.   

                     (7) 

where 𝑁8[(𝑥, 𝑦)] is the set of pixels that are 8-connected to 

(𝑥, 𝑦). Fig. 4. shows an overview of SFTA algorithm used to 

extract feature on each slice (For more details on SFTA 

implementation please refer to [3]). However, the time 

complexity to extract the features for each multifocal sequence 

is 𝑂(𝑆 × 𝑁 × 𝑇), where S is the number of slices, N number of 

pixel on each slice, and T is the number of thresholds obtained 

by multi-level Otsu algorithm [21]. 

 

3.5 Identification using sequence matching 

In this section, we perform classification by means of the 

similarity measurement between multifocal sequence by giving 

more weight to the similar portions of the sequence using 

LCSS[4]. However, the identification was done by means of 

the nearest-neighbor classification scheme based LCSS. 

The matching process of multifocal sequence and calculating 

the similarity between two sequence done as follow. Given a 

sequence S1 and S2 of lengths s1 and s2, respectively, then the 

sequence alignment function is given by: 

LCSS(i, j)  =

{
 

 
0                                                                                             𝑖 = 0,
0                                                                                             𝑗 = 0,

𝐿𝐶𝐶𝑆(𝑖 − 1, 𝑗 − 1) + 1                                    𝑖𝑓 𝐷(𝑖, 𝑗) ≤ 𝜖,

𝑀𝑎𝑥[𝐿𝐶𝑆𝑆(𝑖, 𝑗 − 1), 𝐿𝐶𝑆𝑆(𝑖 − 1, 𝑗)]                𝐷(𝑖, 𝑗) > 𝜖,

 ,    (8) 

 

where 1 ≤ 𝑗 ≤ 𝑠2 𝑎𝑛𝑑 1 ≤ 𝑖 ≤ 𝑠1  and D(i, j) contains the 

distance between slices (i.e., a feature vector using SFTA) i and 

j as calculated using Eq. 9. 

 

 

Fig. 4. Steps for features extraction using SFTA. 

Demonstration of the TTBD decomposition step performed on 

original slice of Alnus pollen at depth 12 and nt =8. Then, 

fractal measurements is computed for each region (i.e., A,V,D 

denote area, mean, and fractal dimension, respectively.). Actual 

SFTA algorithm is performed on the entire sequence obtained. 

D(𝐹𝑖 , 𝐹𝑗) = χ
2 ((𝐹𝑖 , 𝐹𝑗))                                       (9) 

where Fi, Fj is the feature vector calculated by SFTA for i and 

j slice, respectively. The 𝜒2  is the chi-square histogram 

distance [22]. However, extracting the cost of matching 

sequence S1 to S2 is accomplished as follows: 

Cost(ϵ, δ, S1, S2) = 1 −
max (LCSSϵ,δ(S1, S2))

min(s1, s2)
        (10) 

Algorithm 1.  summarizes the main steps of our method. 

Finally, recognition of a pollen is accomplished by means of a 

nearest-neighbor classification scheme based on LCSS. 

 

4. EXPERIMENT RESULTS 

We evaluate the effectiveness of proposed method. We use a 

set of multifocal sequences of pollen grain acquired at 

Paleoecology Laboratory [23] using Zeiss Axioscop equipped 

with a motorized Ludl stage. This dataset contains multifocal 

sequence for the Waltheria, Alternanthera, Scalesia, 

Darwiniothamnus, and Alnus pollen. Each sequence were 

obtained using 25 consecutive focal length. In our experiments, 
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sub-regions containing the pollen were manual selected. Fig. 5. 

shows samples of multifocal sequence images for each type of 

pollen from the used dataset. 

 

Algorithm 1.  Features extraction and alignment 

Input: A and B are two multifocal sequences 

Output: similarity measurement between them 

 

1. a← number of slice in the sequence A 

2. b← number of slice in the sequence B 

                     //in our experiments a ≡ b=25 

3. 𝐴𝑎, 𝐵𝑏  ← remove background using RPCA (Eq. 2) 

4. 𝑊𝑎, 𝑉𝑏 ← obtain in-focus surfaces using Exposure-Fusion for  

                     both sequences A and B, respectively. (Eq. 5) 

5. for i←1 to a do 

        𝐹𝑎𝑖  = Feature vector using SFTA (𝑊𝑎,𝑖) 

                                                                                   ← (Eq. 7)  

        𝐹𝑎𝑖= Feature vector using SFTA (𝐹𝑏,𝑖) 

6. Obtain matching cost between 𝐹𝑎 and 𝐹𝑏 using LCSS 

    (Eq. 8) 

7. compute the similarity using (Eq. 10) 

8. return the similarity between A and B  

    //range from 0 to 1, smaller value means more similarity 

 

We extracted the in-focus areas extracted from the multifocal 

sequences using other methods such as Frequency-tuned (FT) 

salient region detection [24] and Spatiotemporal Saliency Map 

(SSM) [24]. The Fig. 6. shows that FT and SSM work well 

when the slice contains height contrast, but fails when the slice 

mostly out-offocus. The hard mask avoids averaging of fine 

details at the expense of increasing the noise (i.e., improves the 

sharpness), whereas the normal mask that used in our method 

created using the original exposure fusion [2] without 

constrains. 

In Fig. 7., we presented the classification result using confusion 

matrix (82.8% recognition rate). Also, we can see that the most 

confusion occurred between Alnus, Darwiniothamnus, and 

Alternanthera grains due to the similarity in outer boundary of 

the pollen. Also, this confusion occurred due to the absent of 

the internal geometer on most of the slices (mostly visible on 

the 5 middle slices). This can be solve by increasing the weight 

of the matching middle slices an less white for the margins. 

However, overall our method was able to achieve a comparable 

result to the visual inspection. 

 

Fig. 5. Samples of multifocal sequence images for different 

types of pollen grains. These are tropical fossil pollen (Alnus, 

Alternanthera, Darwiniothamnus, Scalesia, and Waltheria) 

acquired at Paleoecology Laboratory [23] using optical 

microscopy. The demonstrated slices acquired from depth 4 to 

22, using every other slice. 

 

5. CONCLUSIONS 

We proposed a working prototype of a system to classify pollen 

obtained from multifocal image sequence. We used RPCA to 

extract the pollen grain regions. Then, we used exposure fusion 

to identify in-focus areas. These areas are the best exposed 

and/or the best focused regions of the pollen surface. Then, we 

described the texture appearance of these regions using SFTA. 

Finally, the identification was performed by matching sequence 

of feature vectors using LCSS. Recognition was done using k-

nearest neighbors algorithm based on LCSS. The main novelty 

of our approach lies in addressing the in-focus areas and then 

use sequence alignment to classify pollen. 
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Fig. 6. Given input images (right), (2nd column) Frequency-

tuned (FT) salient region, (3rd column) Spatiotemporal 

Saliency Map (SSM). 

 

 

Fig. 7. The confusion matrix of our approach on the tropical 

fossil pollen dataset. Our method accomplished 82.8% 

recognition rate. 
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