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Abstract  

This manuscript studies the behavior of an ASTM A 36 

structural steel specimen with a circular stress concentrator of 

variable diameter and a notch using computational modeling of 

finite elements (Ansys) and fracture mechanics, the test 

specimen has a thickness of 5 mm and a notch of 30 mm with 

opening of 45° was subjected to cyclic axial load and the 

diameter of the concentrator varies from 5mm, 9mm, 13mm, 

17mm and 21 mm. This in order to establish the function that 

describes the behavior of the dimensionless geometrical factor 

(β) in the calculation of the Stress Intensity Factor (SIF). For 

each selected diameter, the characteristic equation is obtained 

using the Support Vector Machine algorithm based on the 

Kernel equations. These results were compared with other 

accepted modes, obtaining a high degree of correlation and an 

error percentage close to 1.7%. As a main contribution, a new 

general mathematical model is obtained for specimens of 

defined geometry and concentrator of circular stress.  

Keywords: Stress Intensity Factor, geometric factor, crack 

growth, ANSYS, structural steel, regression, Kernels. 

 

I. INTRODUCTION  

Fracture toughness is a mechanical property that measures the 

ability to resist stress before fracture, this science originates 

from the fundamental works proposed by Griffith (1921, 1924), 

the researcher Irwin (1957) makes an important advance by 

proposing the analysis of fracture toughness in terms of 

tensions, Stress intensity factor (SIF) of a material is a function 

of the applied stress, and the length of the crack, but given the 

different configurations to perform the tests, these values are 

known as a function of the failure modes called Stress 

Instensity Factor SIF K1(Opening), K2 (in plane shear) y K3 

(out of plane shear). 

The determination of the Stress intensity factor in materials 

with linear elastic behavior (LEFM) is possible using the 

quantification of the stresses around the crack tip as a function 

of the nominal stress and the crack size used. The Finite 

Element Analysis (FEM) method allows testing in virtually any 

of the configurations described above due to the ease of 

imposing the variables, if there a component of analysis for the 

propagation of crack Extended finite element method (XFEM), 

it is possible to perform simulations in order to verify the 

behavior of the geometric factor that accompanies the 

estimation of fracture toughness in the different modes of 

failure, recently author Nairn [1], proposed to analyze the 

geometric factor as a correction factor of the general equation 

of toughness, and that this same one, can be expressed in 

function of the length of crack (a) and in function of the width 

(w), on the other hand, according to the author Mecholsky, the 

geometric factor (Y) for semi-elliptic cracks in materials with 

high hardness and brittleness explains the position and shape of 

the crack since it is a function of an angle (θ) between the 

surface of the crack front and any peripheral point on it [2]. 

However, the authors Taylor, Cornetti and Pugno, catalogued 

this geometric factor, not only as a function of geometry, but 

also as a function of the crack notch [3]. 

On the other hand, when analyzing the propagation of cracks to 

fatigue, the geometrical factor is involved within an expression 

known as the initial propagation value for short cracks (a0), 

which according to the authors Atzori, Lazzarin and 

Meneghetti, appears at the intersection place between the 

change of the stress (∆σ) and the different tenacity values (∆K), 

where the geometrical factor is calculated using a simulation in 

the ANSYS 5.6 software. [4], Similarly, when analyzing 

ceramic materials, the authors Smith and Scattergood define 

toughness as a sum of two different toughnesses, the first 

(Kbend) is a toughness that is a function of the Stress intensity 

factor for a deflection stress curve, and the second a residual 

toughness (Kresidual) that results from the field of residual 

stresses due to stress, then it is stated that the value of tenacity 

(Kbend) is affected by a form factor (H) which is a function of 

(a) which is the depth of the crack and (c) which is the length 

of the crack, this approximation is described by an equation of 

exponential nature, where the base is the relation (a⁄c) [5]. 

However, when materials with a higher degree of ductility are 

analyzed, the empirical approximations made by authors 

Newman and Raju show an exponential behavior for the form 

factor (Q), whose base is the ratio (a⁄c), where (a) is the depth 

of the crack and (c) is the length of the crack, this 

approximation is valid for when the ratio (a⁄c) is less than or 

equal to the unit [6], on the other hand, when testing chromium 

steels, authors Nix and Lindley determined that the behavior of 

the form factor (Cs) was also exponential in nature, where the 

basis was again the relationship (a⁄c), where (a) is the depth of 

the crack, and (c) is the length of the crack, the values of this 

ratio were previously calculated, subjecting specimens of 

chromium steel with small cracks to frictional forces, the 

results showed that for that configuration, the values of the ratio 
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(a⁄c) are less than 1, and that the best corrections to the fracture 

toughness equation were achieved with values less than 0.2, in 

the same way, this form factor would be computed with a 

second factor they defined as (Mf) which is a correction factor 

in the crack front, which is also of an exponential nature and is 

a function of the relationship (a⁄c) [7], these correction factors 

have been the product of a rigorous analytical analysis, where 

the foundation of each of the equations that describe these 

factors, starts from simulations in finite element programs, 

which provide the input values necessary to apply the 

respective analysis algorithms, as proposed by the authors 

Clarke, Griebsch and Simpson, who explain how it is possible 

to glimpse different situations of a mechanical nature by means 

of the Support Vector Regression (SVR) algorithm, this 

algorithm allows from some input values in the Cartesian plane, 

to obtain an equation that fits the distribution of values given, 

considering the dispersion (ξ) of the same, and the margin (ε) 

between the support vectors [8]. This algorithm uses Lagrange 

optimization principles, simultaneously involving Kernel 

functions, which can be polynomial, Gaussian or Sigmoidal, as 

explained by authors Schölkopf and Smola [9], authors Heydari 

and Choupani, describe a correction factor for fracture 

toughness of logarithmic nature based on energy release rate 

[10], authors El-Desouky and El-Wazery, defined fracture 

toughness for materials with high degree of fragility, using a 

polynomial of fifth degree (F1), whose variable is the 

relationship (a⁄w) [11]. 

 

II. MATERIALS AND PROCEDURE  

Algorithm Support Vector Regression. The SVR algorithm 

is an algorithm developed in Russia during the 1960s, by 

Vapnik [12], which consists of generating an interpolation 

equation from vectors directed at points in the plane, taking into 

account variance (σ) and dispersion (ζ), using equations that 

describe different behaviors in space called Kernel equations. 

Several of these equations appear in Table 1. 

Table 1. Common Kernel Equations [13] 

Lineal 𝑘(𝑥) = (𝛾 ∗ 𝑥 + 𝜑) 

Polynomial 𝑘(𝑥) = (𝛾 ∗ 𝑥 + 𝜑)𝑑 

Gaussian 𝑘(𝑥) =  𝑒𝛾∗(𝑥−𝜇)
2
 

Sigmoidal 𝑘(𝑥) = tanh (𝛾 ∗ 𝑥 + 𝜑) 

 

Based on the Kernel equations a unitary matrix is formed in the 

diagonal, from which, by means of a quadratic optimization the 

Lagrange multipliers (∝𝑖
∗−∝𝑖) will be found according to the 

approach (1). 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒

{
 
 

 
 
−
1

2
∑(∝𝑖

∗−∝𝑖)(∝𝑗
∗−∝𝑗)𝑘(𝑥)

ℓ

𝑖=1

−𝜀∑(∝𝑖
∗−∝𝑖) +∑𝑦𝑖(∝𝑖

∗−∝𝑖)

ℓ

𝑖=1

ℓ

𝑖=1

             (1) 

           𝑠𝑢𝑏𝑗𝑒𝑡 𝑡𝑜 {
∑(∝𝑖

∗−∝𝑖) = 0

ℓ

𝑖=1

𝛼𝑖𝛼𝑖
∗ ∈ [0, 𝐶]

                                            (2) 

Then the complete approximation is given by the expression (3) 

          𝑓(𝑥) =∑(∝𝑖
∗−∝𝑖) ∗ 𝑘(𝑥) + 𝑏

ℓ

𝑖=1

                                     (3) 

Simulation Finite Element Method.  The purpose of the 

research article is to determine the behavior of the geometric 

factor, as an element of correction of the general equation of 

stress intensity factor (SIF); for the fundamental conception of 

the work, five test specimen were used, which were modeled 

using the finite element software ANSYS 19.2 and analysis by 

Smart Crack Growth, the values of crack length (a) are obtained 

for each iteration made during the simulation with the value of 

SIF, having previously defined the material as structural steel 

ASTM A-36, the characteristics of the material are indicated in 

Table 2. 

Table 2. Mechanical properties of steel ASTM A36 [14] 

Mechanical Properties Magnitude 

Tensile Strength Yield  250 MPa 

Tensile Strength Ultimate 400-550 MPa 

Modulus of Elasticity 200 GPa 

Poisson's Ratio 0,26 

Shear Modulus  79,3 GPa 

 

The specimen has a thickness of 5 mm and a notch of 30 mm with 

opening of 45°, Figure 1 shows the geometry of the specimen 

and Figure 2 shows the test specimen used in Ansys 19.2. 

 
(a) 
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(b) 

  

Fig. 1.  (a) Dimensions for the specimen used, (b) mesh notch 

doing for the FE analysis  

Computational Model. The optimal computational model for 

the processing of the values of (K1) and their respective values 

of (a) was chosen considering the processing load and the 

affinity of the results, thus, the computational model was 

proposed, proposing a type of bonded contact in the 

connections of the elements, for the refinement of the mesh the 

Edge Sizing method was introduced, together with a Patch 

Conforming method with a tetrahedric definition, in the same 

way, the Pre-Meshed Crack method was involved within the 

Fracture component, the Pre-Meshed Crack method which 

involves the crack front that is used by the Smart Crack Growth 

analysis engine where the failure criterion is SIF with a value 

of 131.6 𝑀𝑃𝑎√𝑚 for structural steel ASTM A36, determined 

by E. Ghafoori and M. Motavalli on an experimental basis [15]. 

Numerical Model. The most suitable numerical model of finite 

elements for computational processing is selected, referring to 

Stress intensity factor mode 1 (KI), three numerical models 

were formulated and the relative error for each of these models 

was determined from the theoretical value of KI estimated 

according to [16,17, 18]. As shown in Table 3. 

Table 3. CPU Performance Vs. Relative Error 

  Nodes  Elements 

CPU 

Time 

(min) 

KI (Pa 

sqrt(m)) 

% 

Error 

Analytical 

Model of 

Anderson 

      4.75e12   

Numerical 

Model 1 
86070 47340 

1h 

52 m 
4.80e12 1.5 

Numerical 

Model 2 
48870 25240 

1h 

2m 
4.38e13 4.2 

 

It can be observed that numerical model 1 presents an adequate 

balance between computational cost and error percentage. 

Calculation of Geometric Factor Values. For the calculation 

of the values of the geometrical factor, the equation of the 

Stress intensity factor (SIF) was considered, where a 

geometrical factor was involved (β), which is cleared from the 

expression (3), since the values for (KI) the crack length (a) are 

obtained for each iteration. 

                𝐾𝐼 = 𝛽𝜎√𝜋𝑎                                                      (4) 

Where (σ) is the nominal applied stress and (a) is the length of 

the crack, clearing (β) of the expression (3), is obtained (4). 

 

 

Ratio Calculation (a/w).    The relation (a /w) (5) is a 

proportion between the length of the crack and the width of the 

face where the nominal stress acts (σ), a third variable (r) was 

involved which is the radius of the stress concentrator present 

in the geometry of the specimen, this concentrator is included 

for the purpose of verifying the behavior of propagation when 

there is a variable radius stress concentrator. 

   
𝑎

𝑤
                                                                            (7) 

III. RESULTS 

  

From the simulation in ANSYS 19.2 KI and (a) values were 

generated for each iteration, using equation (4) and (5), Figure 

3 is constructed for a 5 mm diameter concentrator: 

 

 
Fig. 2. Entry points to the SVR for 5 mm diameter 

concentrator. 

 

Once the entry points are obtained, one of the Kernel equations 

is chosen, whose behavior is similar to that shown in figure 3. 

It was determined that the Gaussian model adapts well, 

equation (8). 

     𝑘(𝑥) =  𝑒𝛾∗(𝑥−𝜇)
2
                                                        (8) 
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Based on this function the Kernel matrix is formed, 9 points 

were used for the input values to the SVR model, the variance 

(σ) has been estimated as 0.181 

𝐾 =

[
 
 
 
 
 
 
 
 
1.00 0.94 0.93
0.94 1.00 0.94
0.93 0.94 1.00

0.94 0.92 0.94
0.93 0.94 0.92
0.94 0.93 0.94

0.94 0.94 0.94
0.94 0.94 0.94
0.92 0.94 0.94

0.94 0.93 0.94
0.92 0.94 0.93
0.94 0.92 0.94

1.00 0.94 0.93
0.94 1.00 0.94
0.93 0.94 1.00

0.94 0.92 0.94
0.93 0.94 0.92
0.94 0.93 0.94

0.94 0.94 0.92
0.94 0.94 0.94
0.94 0.94 0.94

0.94 0.93 0.94
0.92 0.94 0.93
0.94 0.92 0.94

1.00 0.94 0.93
0.94 1.00 0.94
0.93 0.94 1.00]

 
 
 
 
 
 
 
 

 

The Lagrange multipliers are obtained from the Kernel matrix 

by means of optimization under square conditions. With 

Lagrange multipliers, the expression of the SVR algorithm (8) 

is used to obtain the F(x) shown in (9) function that interpolates 

the entry points. 

 

 

 

In this way, we proceed to add the multipliers of Lagrange 

obtained to find the coefficient that accompanies the Kernel 

function selected in (6). 

𝑓(𝑥) = 0.01 ∗ 𝑒
𝑥2

2𝜎2 + 0.3             (9) 

The resulting equations for each modeled specimen are shown in 

Table 4, for parameterization reasons, it is called (𝑥 =
𝑎

𝑤
) 

Table 4. Equations for each specimen 

Specimen ∅𝒄(cm) Equation 

1 0.5 
𝛽 = 7.10x10−15 ∗ 𝑒

(
𝑎
𝑤)

2

7.22  

2 0.9 𝛽 = 0.275 ∗ 𝑒
(
𝑎
𝑤)

2

1.92  

 

3 1.3 𝛽 = 1 ∗ 𝑒
(
𝑎
𝑤)

2

0.76  

 

4 1.7 𝛽 = 7.47𝑥10−16 ∗ 𝑒
(
𝑎
𝑤)

2

0.045 

 

5 2.0 𝛽 = 3.55𝑥10−15 ∗ 𝑒
(
𝑎
𝑤)

2

0.79  

 

 

From these equations, it was possible to obtain a mathematical 

expression that links all the previous expressions, this expression 

was obtained by integrating each of the equations of Table 4. And 

adding the areas under the curve of each of them, obtaining the 

general expression (10). 

𝛽 = 𝟕. 𝟎𝟓𝐱𝟏𝟎−𝟏𝟒 ∗ 𝒆𝟎.𝟏𝟑∗(
𝒂
𝒘)

𝟐

+ 𝟎. 𝟐𝟔 ∗ 𝒆𝟎.𝟓𝟏∗(
𝒂
𝒘)

𝟐

+ 𝟏

∗ 𝒆𝟏.𝟑𝟎∗(
𝒂
𝒘)

𝟐

+ 𝟕. 𝟓𝟏𝐱𝟏𝟎−𝟏𝟔 ∗ 𝒆𝟐𝟐.𝟔𝟓∗(
𝒂
𝒘)

𝟐

+ 𝟑. 𝟓𝟐𝐱𝟏𝟎−𝟏𝟓

∗ 𝒆𝟏.𝟐𝟓∗(
𝒂
𝒘)

𝟐

                                              (10) 

In equation (10), if (a/w) assumes very small values, the 

mathematical expressions calculated for specimens 1, 4 and 5 tend 

to 0, therefore the general expression is as shown in (11): 

   𝛽 = 𝑓(𝑎 𝑤⁄ ) = 𝟎. 𝟐𝟔 ∗ 𝒆𝟎.𝟓𝟏∗(
𝒂
𝒘)

𝟐

+ 𝒆𝟏.𝟑𝟎∗(
𝒂
𝒘)

𝟐

                               (11) 

The researcher Anderson [16], raises five mathematical models for 

the function f(a⁄w) finding the following ones: Single-edge 

notched tension (SENT), Singled-edge notched bend (SE(B)), 

Center cracked tension (CCT), Double-edge notched tension 

(DENT) and Compact Specimen (CP), each of these is preceded 

by a term that adjusts the function, in the proposed model, that term 

will be the second derivative of the function 𝑓(𝑎 𝑤⁄ ), so that the 

corrected model remains as indicated in (12).  

   𝛽 = 𝛀 ∗ 𝑓(𝑎 𝑤⁄ )                                                       (12) 

Where Ω is the second derivate of the function 𝑓(𝑎 𝑤⁄ ), obtaining 

the model of equation (13).  

  𝛽 =
𝒅𝟐𝑓(𝑎 𝑤⁄ )

𝒅𝑓(𝑎 𝑤⁄ )𝟐
∗ 𝑓(𝑎 𝑤⁄ )                                            (13) 

The adjusted model (14) is obtained by operating the functions. 

𝛃 = [𝟐. 𝟔 ∗ 𝐞𝟏.𝟑∗(
𝐚
𝐰)

𝟐

+ 𝟎. 𝟐𝟔 ∗ 𝐞𝟎.𝟓𝟏∗(
𝐚
𝐰)

𝟐

+ 𝟎. 𝟐𝟕 ∗ (
𝐚

𝐰
)
𝟐

∗ 𝐞𝟎.𝟓𝟏∗(
𝐚
𝐰)

𝟐

+ 𝟔. 𝟕𝟔 ∗ (
𝐚

𝐰
)
𝟐

∗ 𝐞𝟏.𝟑𝟎∗(
𝐚
𝐰)

𝟐

]

∗ [𝐞𝟏.𝟑∗(
𝐚
𝐰)

𝟐

+ 𝟎. 𝟐𝟔

∗ 𝐞𝟎.𝟓𝟏∗(
𝐚
𝐰)

𝟐

]                     (14) 

Fig. 3 shows the Proposed Model graph for  0 <  𝑎 𝑤⁄ < 1. From 

(12) the maximum absolute error (MAE), the average absolute 

error (AAE) and the root mean square error (RMSE) are calculated 

using the coordinates  𝑦 of each point used in the SVR algorithm. 

The equations used to calculate each of these parameters between 

the values obtained for the proposed model (PM) and the compact 

model (CP) enunciated by [16] are shown in Table 5. 

 

 

 

 

∑ (∝𝑖
∗−∝𝑖) ∗ 𝐾(𝑥)

ℓ
𝑖=1 + 𝑏          
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Fig. 3. Graph of the proposed model (PM) 

Table 5. Error measures for accuracy assessment between the 

PM and CP [17] 

Name equation Error (%) 

Max. Absolute Error (MAE) 
 𝑀𝑎𝑥. |𝑦𝑖 − 𝑦𝑖

∗| … 𝑖
= 1, . . , 𝑛𝑒𝑟𝑟𝑜𝑟 

6.3 

Average Absolute Error 

(AAE) 

1

𝑛𝑒𝑟𝑟𝑜𝑟

∗∑ |𝑦𝑖 − 𝑦𝑖
∗|

𝑛𝑒𝑟𝑟𝑜𝑟

𝑖=1
 

0.63 

Root Mean Square Error   ( 

RMSE) 
√
∑ |𝑦𝑖 − 𝑦𝑖

∗|
𝑛𝑒𝑟𝑟𝑜𝑟
𝑖=1

2

𝑛𝑒𝑟𝑟𝑜𝑟
 1.7 

Implementing better valuation methods can reduce the costs 

associated with repairs for damage associated with material 

failures [19]. 

IV. CONCLUSION 

The Support Vector Machine SVM algorithm is used for the 

purpose of establishing the characteristic equation of the 

dimensionless geometric factor used for the determination of 

Stress intensity factor in a test specimen subjected to axial load. 

This algorithm is based on the application of the Kernel equations, 

applying the Lagrange square optimization principle.  

The modeling of a structural steel ASTM A 36 specimen with 

thickness of 5 mm and a notch of 30 mm with opening of 45° was 

carried out. A circular stress concentrator with variable diameter 

of 5mm, 9mm, 13mm, 17mm and 21 mm is applied to this 

specimen, obtaining the function that describes the behaviour of 

the dimensionless factor for each one of the selected diameters. 

From the equations obtained by the SVR model, these are 

compared with the computational model, obtaining a Max. 

Absolute Error (MAE) of 6.3%, the Average Absolute Error (AAE) 

of 0.63% and Root Mean Square Error (RMSE) de 1.7%, which is 

a good indication of the approximation obtained, with reference to 

a similar model. 

With the data compiled for the simulated specimens, it was 

possible to obtain a generalized equation for the dimensionless 

geometrical factor (β), which involves the relationship between the 

size of the crack (a) and the width of the transversal section of the 

analyzed specimen (W). This equation defines the generalized 

dimensionless variable for specimens subjected to axial load with 

a circular geometry concentrator. 
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