
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 9 (2019), pp. 1518-1523

© International Research Publication House. http://www.irphouse.com

1518

Mechanism of automatic re-configuration of artificial neural networks for

the identification of patterns

Holman Montiel Ariza1, Fredy H. Martínez S.2 and Edwar Jacinto Gómez3

1, 2,3 Facultad Tecnológica, Universidad Distrital Francisco José de Caldas, Bogotá D.C, Colombia.

1ORCID: 0000-0002-6077-3510 2ORCID: 0000-0002-7258-3909, 3ORCID: 0000-0003-4038-8137

Abstract

Artificial neural networks are bio-inspired mechanisms that try

to reproduce exactly a set of data given by a user. Normally, the

data set is used to train the network using a technique that

modifies the configuration parameters of each neuron.

However, finding the appropriate parameters for a neural

network to classify or perform a regression that represents the

given set is not a simple task, due to the large number of

possible configurations and topologies that it may have. This

paper proposes an adaptive neural network model that adjusts

its configuration and topology automatically, to reduce the

systematic error that a user induces when creating a network

manually. This model is based on a multi-objective

optimization technique (Genetic Algorithm), which minimizes

computational resources and finds the necessary parameters for

the neural network to work properly, even without defining the

data types of the training set.

Keywords: Deep Learning, Genetic Algorithm, Artificial

Neural Networks, Optimization.

1. INTRODUCTION

Artificial Neural Networks (ANNs) are bio-inspired

mathematical models that emulate the functioning of the human

brain by recreating the synapse phenomenon between neurons

[1]. Normally, these types of models are used to perform

classification or regression tasks. Classification tasks consist in

the grouping of data according to a characteristic, for example,

the identification or correction of characteristics in an image [2-

4]. Regression tasks are performed to find approximate

functions to groups of numerical data, for example, the

reconstruction of polynomials or signals [5, 6].

ANNs establish many relationships to represent input and

output information. These relationships are mathematical

expressions depending on the type of neural networks and its

components that are estimated using a training algorithm. The

most common training method is back-propagation, which

implements a descendant gradient strategy to reduce the mean

square error and thus estimate the thresholds and weights of

each neuron in the network. These neurons are grouped to

fulfill specific functions of the network and are known as

groups of neurons or layers, whose activation depends on a

mathematical function that emulates the action potential of a

real neuron [7, 8].

The combination between groups of neurons (topology) and the

definition of their parameters (configuration) such as the

activation function, the training method, the number of neurons

and layers, determine network characteristics like the speed of

convergence, the accuracy of the output or the margin of error

[8]. Although, these characteristics allow an ANN to function

in an adaptive way, they do not guarantee an appropriate

functioning when the set of samples to be classified has

redundancy, large dimensions or irrelevant characteristics that

reduce the accuracy and increase the complexity of the

classification. [7]

Some techniques to increase the accuracy of the output of a

neural network have been previously proposed [9-11].

However, it is a subject that is under study, since the margin of

error of an ANN depends on the training speed and learning

rate, which vary depending on fixed parameters of the network

(number of layers or neurons). In other words, when the

topology of the network decreases the training time it is

possible that the solution found is not suitable for the problem

to be solved [7].

Considering the subject under study, this paper proposes a

strategy to automate the process of ANN generation using a

multi-objective optimization algorithm, which determines the

appropriate configuration parameters for the ANN to solve a

problem. The characteristics of the optimization algorithm and

the ANN are described in detail in the following sections that

are organized as follows: Section two (2) contains a description

of the type of ANN and the optimization algorithm. Section

three (3) describes the experiment used to perform network

tests. In section four (4) the results obtained are found. In

section five (5) there are the conclusions apprehended by

developing this work.

2. MATERIALS AND METHODS

In relation to the previous section, machine or automatic

learning is a compendium of techniques that are responsible for

making representations of groups of data provided by a user.

Currently, these techniques have been improved with strategies

such as deep learning, which allow the user to make

representations of information more complex than those made

with traditional learning techniques. However, deep learning is

an area under study and its algorithms are designed to perform

cloud computing, due to the large amount of computational

resources necessary for the implemented technique to work

properly. In this paper there are presented two learning

techniques that attempt to improve the limitation of deep

learning networks, by automating the way to generate a neural

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 9 (2019), pp. 1518-1523

© International Research Publication House. http://www.irphouse.com

1519

network through a multi-objective optimization algorithm.

These two learning techniques are described below [13,14].

2.1 Neural networks.

Neural networks are approximate models that allow to predict

data sets and between them there are several classes depending

on the type of work data. Normally a neural network has an

input layer, an output layer and in some cases several

intermediate or hidden layers. The input layer is the one that

relates the input variables or variations of the magnitude that

modify the output value. The output layer only shows the

behavior of the network that is built when modifying the input

value. The hidden layers are composed of auxiliary neurons

that allow to increase the accuracy of the network, by

implementing more coefficients in the approximate model [1-

3].

The layers of the network are composed of neurons that store a

coefficient or weight, which estimates an output value from a

given input value (except class classifiers, since they do not

have a defined input). The coefficients of the neurons are

updated by training algorithms (for example: forward or

backward propagation algorithms), which are responsible for

reducing the margin of error between the training data and the

data provided by the approximate model of the network (to

estimate the error, functions such as the square error or square

logarithmic error are implemented) [1].

Another characteristic of neural networks is that the output

value is limited by a function, whose function is to prevent a

value from exceeding a threshold before spreading to another

neuron (some of the most common activation functions are:

sigmoid, hyperbolic tangent or exponential). Considering that

each initial neuron is assigned an initial weight before starting

its training (they can be zeros, ones or random numbers) [1].

A deep learning neural network (DNN) is based on a

conventional network model, with the advantage that it allows

establishing linear relationships or not between the input and

output variables. In addition, DNNs can have many layers

which allows you to decompose a group of base data into many

variables, to identify trends or patterns and thus predict an

output value.

However, the output value depends on the processing of the

input data, since to train a DNN it must be considered that the

data type of the training set must be the same. That is, if the

data set is made up of numbers and classes, the numbers must

be converted to classes or assign a numerical value to each class

(pre-processing).

In this paper the proposed model can encode the data in classes

or numbers, depending on the level of accuracy that is achieved

in each case. In addition, a DNN was implemented that

reconfigures its characteristics according to the execution time

and performance when classifying a given data set. In Fig. 1 a

basic scheme of the modified DNN is shown and its main

characteristics are described in the following numeral.

Fig. 1. Diagram of the operation of the DNN.

2.2 Algorithm of multi-objective optimization.

Optimization algorithms are normally used to determine a

maximum or minimum value of a function (local or global

optimum). There are many optimization techniques and among

them there are genetic algorithms, which are bio-inspired

algorithms based on Darwinian natural selection. This type of

algorithm is population-based, that is, it optimizes a function

from sets of solutions. Each component of the set is known as

an individual and the value assigned to it when trying to solve

the function is called the aptitude value, which is made up of

one (mono-objective) or more values (multi-objective) [7].

The re-configurable neural network model proposed in this

paper is based on a multi-objective genetic algorithm that

adjusts the configuration, topology and parameters of a neural

network, based on its performance and execution time. Initially,

the proposed strategy encodes seven (7) main characteristics of

a neural network in an array to create an individual. These

characteristics are the number of neurons (β) and hidden layers

(α), the algorithm for assigning initial values to weights of

neurons (δ), activation functions (τ), optimization of weights

(ω) and calculation of the output error (φ) and a metric to

measure the performance of the network (ε).

α and β are calculated with a random number generator (0 <α

<1000,1 <β <1000) with uniform distribution and the other

components (δ, τ, ω, φ, ε) are assigned randomly from the

definitions contained in a library (see Table 1). That is, α and β

are integers and δ, τ, ω, φ, ε are labels that designate a

characteristic of the network.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 9 (2019), pp. 1518-1523

© International Research Publication House. http://www.irphouse.com

1520

Table 1. Function library used to create an individual.

𝜹 𝝉 𝝎 𝝋 𝜺

Random

uniform.

Ones.

Zeros.

Lecun

normal.

Glorot

uniform.

He normal.

He uniform.

Tanh.

Sigmoid.

Hard

sigmoid.

Exponential.

Lineal.

Selu.

Softplus.

Softsign.

Relu.

SGD

RMSprop

Adagrad

Adadelta

Adam

Adamax

Nadam

Mean squared error.

Absolute squared

error.

Mean absolute

percentage squared

error.

Mean squared

logarithmic error.

Squared hinge.

Hinge.

Logcosh.

Poisson.

Cosine proximity.

Categorical hinge.

Binary

accuracy

Categorical

accuracy

Sparse

categorical

accuracy

The aptitude value (f (x)) of everyone is composed of two

values that are the execution time (t) and the performance of

the network (r). The main objective of the optimization

technique is to minimize t and maximize r; to relate these values

a combination of linear factors was proposed as shown in

Equation 1.

𝑖𝑓 𝑥 = [𝛼, 𝛽, 𝛿, 𝜏, 𝜔, 𝜑, 𝜀]: 𝑥 ≠ ∞ → 𝑓(𝑥) = 𝑟 − 𝑡 (1)

By performing this combination f (x) becomes a mono-

objective function, where r has valuesbetween zero (0 = worst

value) and one (1 = best value) and t> 0. As it is observed, when

increasing the value of t, the value of f (x) decreases. Therefore,

the proposed model attempts to maximize the value of f (x) by

decreasing the value of t and increasing the value of r. The

optimization of aptitude value is subject to the evolutionary

process of the genetic algorithm (see Algorithm 1), which is

composed of four stages that are selection, recombination,

mutation and generational replacement.

Algorithm 1. Re-configuration model of the neural

network

AG_DNN Program ()

1. CDefine number of individuals.

2. GDefine number of generations.

3. KAssign training data from the network.

4. K Unify data type (K).

5. For i1 to C

6. P0[i] x

 /*** Start optimization algorithm ***/

7. For i1 to G

 /*** Evaluation of the aptitude function ***/

8. For j1 to C

9. 𝑌Creating DNN(P0[j])

10. [𝑃, 𝑡]Train (𝑌, 𝑡)

11. 𝑟Compare (𝑃, 𝐾)

12. 𝑓(𝑥)[𝑗]𝑟 − 𝑡

 /*** Genetic operators ***/

13. P1 Tournament (4, 𝑓(𝑥), 𝑃0)

14. FatherP1

15. MotherCopy(A)

16. ChildrenRecombination(Father,Mother)

17. ChildrenMutation (Children)

18. P0Children

End AG_DNN

The first stage is a tournament of four (4) individuals that are

selected at random. Then these four individuals are grouped

into two (2) groups, from which the individuals with the best

aptitude value are selected and from the two selected

individuals the one with the best aptitude value is selected. This

routine is repeated until a new population (P1) is completed

with the same number of individuals as the original population

(P0).

The second stage consists of a recombination of individuals of

two (2) lists. This is done by cloning the population, then

ordered to the original list (Father) from highest to lowest

aptitude value and the cloned list (Mother) from least to greatest.

Once ordered you generate a population of Children by

combining characteristics of the parents. The third stage

consists in taking an individual from the Children list and

changing one of its components for another, in both cases the

selection is carried out randomly.

Finally, the generational replacement is made by assigning

Children to the original population. This process repeats several

iterations (generations) established by the user and can be

observed in detail in Fig. 2.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 9 (2019), pp. 1518-1523

© International Research Publication House. http://www.irphouse.com

1521

Fig. 2. Structure of the functioning of the genetic algorithm and DNN.

3. EXPERIMENT

The proposed DNN re-configuration model was implemented

using the KERAS and TENSORFLOW libraries of Python

3.5.8. This model was run on a computer with an Intel® inside

CORETM i3 processor and 8 GB of RAM using the eclipse

interpreter. In addition, the validation of the model was made

through one (1) test available in a repository, whose objective

is to determine if a person earns more or less than 50,000 US

per year from fourteen (14) different attributes of each subject

[15].

The characteristics are part of a database that contains the

records of a census, with attributes such as: age, daily work

hours, the age of the companion, the position, the type of work,

gender, nationality, the level of education, marital status, hours

of work per week, race, capital earned and lost in the year (see

Fig. 3). There are two databases one (1) with 48842 (Training

= 32561, Test = 16281) instances to train the classifier (DBA)

and another with 45522 (Training = 30162, Test = 15060) to

validate it (DBB).

DBA has a set of continuous and error-free data in order to

allow the user to propose a model or train their classifier

without any problem. However, DBB is not filtered, that is, this

database has instances with errors or missing information to

check if the proposed model still works.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 9 (2019), pp. 1518-1523

© International Research Publication House. http://www.irphouse.com

1522

Fig. 3. Segment of the database used.

In this work the DNN was trained with each configuration of

individuals generated by the genetic algorithm. The genetic

algorithm evaluates a set of 50 individuals per generation,

during one hundred (100) generations and was executed one

hundred (100) times in a computer. In each execution of the

algorithm the individual with the best aptitude value found is

stored and compared with the validation data, to verify if

optimizing DNN operating resources are appropriate

topologies and configurations.

4. RESULTS

During the operation of the proposed model, the aptitude value

of the individuals was measured and represented by two graphs.

In the first one (Fig. 4), each individual component of the

aptitude value is presented during one (1) execution of the

model and its behavior when unifying by the combination of

linear factors during the evolution of the genetic algorithm. The

second one shows (Fig. 5) the behavior of the best aptitude

value found by generation during all the executions of the

proposed model.

Fig. 4. Behavior and components of the best aptitude value of

the population found during one (1) execution of the genetic

algorithm.

Fig. 5. Behavior of the margin of error and the standard

deviation for one hundred (100) executions of the genetic

algorithm.

By taking the characteristics of the best neural network model

found using the optimization method, the validation was

performed and estimating the average error of the DNN output.

This value can be compared with others reported in the state of

the art, as shown in Table 2.

Table 2. Average error obtained using other techniques

compared to the proposed model [15].

Algorithm Error

C4.5

C4.5-auto

C4.5 rules

Voted ID3 (0.6)

Voted ID3 (0.8)

T2

1R

NBTree

CN2

HOODG

FSS Naive Bayes

IDTM (Decision Table)

Naive-Bayes

Nearest-neighbor (1)

Nearest-neighbor (3)

OC1

AG_DNN (Proposed model)

15.54

14.46

14.94

15.64

16.47

16.84

19.54

14.1

16

14.82

14.05

14.46

16.12

21.42

20.35

15.04

15.03

Columna1 Columna2 Columna3 Columna4 Columna10 Columna11 Columna12 Columna13 Columna14 Columna15

39 State-gov 77516 Bachelors Male 2174 0 40 United-States <=50K

50 Self-emp-not-inc 83311 Bachelors Male 0 0 13 United-States <=50K

38 Private 215646 HS-grad Male 0 0 40 United-States <=50K

53 Private 234721 11th Male 0 0 40 United-States <=50K

28 Private 338409 Bachelors Female 0 0 40 Cuba <=50K

37 Private 284582 Masters Female 0 0 40 United-States <=50K

49 Private 160187 9th Female 0 0 16 Jamaica <=50K

52 Self-emp-not-inc 209642 HS-grad Male 0 0 45 United-States >50K

31 Private 45781 Masters Female 14084 0 50 United-States >50K

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 9 (2019), pp. 1518-1523

© International Research Publication House. http://www.irphouse.com

1523

5. CONCLUSION

In Fig. 4. It is observed that it is possible for the proposed

strategy to minimize the execution time of the DNN, so that it

makes the classification of a group of patterns in an adaptive

way. That is, it is not necessary to know the type of data, since

the proposed strategy is responsible for finding the best

configuration to generalize its behavior.

One of the advantages of the proposed strategy is that it allows

the user to reduce the margin of error when configuring a DNN,

which allows this model to be compared with others present in

the state of the art as shown in Table 2. It can be said that one

possibility that the margin of error is not close to zero is that

enough generations were not defined for the genetic algorithm

to converge to a definitive solution. However, the advantage of

this strategy is that, compared with these methods, it is possible

to minimize the computational cost when executing a classifier

in a computer and still perform the same task of classification

as one that has a large consumption of resources.

As shown in Fig. 5. The algorithm has decreased the margin of

error as it evolves. This feature gives an advantage, since

having a low margin of error with good individuals it is possible

to generalize it to perform signal processing in real time. This

would allow a user to identify partial signal characteristics in

portable devices and in different operating conditions.

REFERENCES

[1] A. E. Karnga, "Neural networks," IJCNN'99.

International Joint Conference on Neural Networks.

Proceedings (Cat. No.99CH36339), Washington, DC,

USA, 1999, pp. 4419-4421 vol.6. doi:

10.1109/IJCNN.1999.830881.

[2] C. Guojin, Z. Miaofen, Y. Honghao and Li Yan,

"Application of Neural Networks in Image Definition

Recognition," 2007 IEEE International Conference on

Signal Processing and Communications, Dubai, 2007, pp.

1207-1210. doi: 10.1109/ICSPC.2007.4728542.

[3] C. Guojin, L. Yongning, Z. Miaofen and W. Wanqiang,

"The image auto-focusing method based on artificial

neural networks," 2010 IEEE International Conference

on Computational Intelligence for Measurement Systems

and Applications, Taranto, 2010, pp. 138-141. doi:

10.1109/CIMSA.2010.5611751.

[4] M. Juayek and R. Sotelo, "An Artificial Neural Network

approach for No-Reference High Definition Video quality

assessment," 2016 IEEE International Symposium on

Broadband Multimedia Systems and Broadcasting

(BMSB), Nara, 2016, pp. 1-3. doi:

10.1109/BMSB.2016.7521900.

[5] Y. Zhiqi, "Gesture learning and recognition based on the

Chebyshev polynomial neural network," 2016 IEEE

Information Technology, Networking, Electronic and

Automation Control Conference, Chongqing, 2016, pp.

931-934. doi: 10.1109/ITNEC.2016.7560498.

[6] W. Wang, J. Liu, F. Yang and C. Cai, "A Method of

Dynamic Spectrum Access in HD Radio Based on BP

Neural Network," 2014 International Conference on

Wireless Communication and Sensor Network, Wuhan,

2014, pp. 180-183. doi: 10.1109/WCSN.2014.43.

[7] X. Pang, H. Ma, P. Su and G. Tang, "TPPMA: New

Adaptive BP Neural Network Based on PSO and PCA

Algorithms," 2018 IEEE 27th International Symposium

on Industrial Electronics (ISIE), Cairns, QLD, 2018, pp.

637-642. doi: 10.1109/ISIE.2018.8433786.

[8] G. P. Zhang, "Neural networks for classification: a

survey", IEEE Transactions on Systems Man &

Cybernetics Part C Applications & Reviews, vol. 30, no.

4, pp. 451-462, 2000.

[9] S. C. Tan, J. Watada, Z. Ibrahim and M. Khalid,

"Evolutionary Fuzzy ARTMAP Neural Networks for

Classification of Semiconductor Defects," in IEEE

Transactions on Neural Networks and Learning Systems,

vol. 26, no. 5, pp. 933-950, May 2015. doi:

10.1109/TNNLS.2014.2329097.

[10] M. A. Shafiq, "Direct adaptive inverse control of

nonlinear plants using neural networks," 2016 Future

Technologies Conference (FTC), San Francisco, CA,

2016, pp. 827-830.

doi: 10.1109/FTC.2016.7821699.

[11] D. Lee, J. Lee, "Equilibrium-based support vector

machine for semisupervised classification", IEEE Trans.

Neural Netw., vol. 18, no. 2, pp. 578-583, Mar. 2007.

[12] Henry Hernández, Rodrigo Moreno, Andres Faina, and

Jonatan Gomez, Design of a bio-inspired controller to

operate a modular robot autonomously, Advances in

Artificial Intelligence - IBERAMIA 2018 (Cham)

(Guillermo R. Simari, Eduardo Fermé, Flabio Gutierrez

Segura, and José Antonio Rodríguez Melquiades, eds.),

Springer International Publishing, 2018, pp. 314–325.

[13] D. Zhang, X. Han and C. Deng, "Review on the research

and practice of deep learning and reinforcement learning

in smart grids," in CSEE Journal of Power and Energy

Systems, vol. 4, no. 3, pp. 362-370, September 2018. doi:

10.17775/CSEEJPES.2018.00520.

[14] Terrence J. Sejnowski, "The Deep Learning Revolution,"

in The Deep Learning Revolution, MITP, 2018, pp.1-10.

[15] Dua, D. and Karra Taniskidou, E. (2017). UCI Machine

Learning Repository [http://archive.ics.uci.edu/ml].

Irvine, CA: University of California, School of

Information and Computer Science.

