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Abstract 

Artificial neural networks are bio-inspired mechanisms that try 

to reproduce exactly a set of data given by a user. Normally, the 

data set is used to train the network using a technique that 

modifies the configuration parameters of each neuron. 

However, finding the appropriate parameters for a neural 

network to classify or perform a regression that represents the 

given set is not a simple task, due to the large number of 

possible configurations and topologies that it may have. This 

paper proposes an adaptive neural network model that adjusts 

its configuration and topology automatically, to reduce the 

systematic error that a user induces when creating a network 

manually. This model is based on a multi-objective 

optimization technique (Genetic Algorithm), which minimizes 

computational resources and finds the necessary parameters for 

the neural network to work properly, even without defining the 

data types of the training set. 

Keywords: Deep Learning, Genetic Algorithm, Artificial 

Neural Networks, Optimization. 

1. INTRODUCTION  

Artificial Neural Networks (ANNs) are bio-inspired 

mathematical models that emulate the functioning of the human 

brain by recreating the synapse phenomenon between neurons 

[1]. Normally, these types of models are used to perform 

classification or regression tasks. Classification tasks consist in 

the grouping of data according to a characteristic, for example, 

the identification or correction of characteristics in an image [2-

4]. Regression tasks are performed to find approximate 

functions to groups of numerical data, for example, the 

reconstruction of polynomials or signals [5, 6]. 

ANNs establish many relationships to represent input and 

output information. These relationships are mathematical 

expressions depending on the type of neural networks and its 

components that are estimated using a training algorithm. The 

most common training method is back-propagation, which 

implements a descendant gradient strategy to reduce the mean 

square error and thus estimate the thresholds and weights of 

each neuron in the network. These neurons are grouped to 

fulfill specific functions of the network and are known as 

groups of neurons or layers, whose activation depends on a 

mathematical function that emulates the action potential of a 

real neuron [7, 8]. 

The combination between groups of neurons (topology) and the 

definition of their parameters (configuration) such as the 

activation function, the training method, the number of neurons 

and layers, determine network characteristics like the speed of 

convergence, the accuracy of the output or the margin of error 

[8]. Although, these characteristics allow an ANN to function 

in an adaptive way, they do not guarantee an appropriate 

functioning when the set of samples to be classified has 

redundancy, large dimensions or irrelevant characteristics that 

reduce the accuracy and increase the complexity of the 

classification. [7] 

Some techniques to increase the accuracy of the output of a 

neural network have been previously proposed [9-11]. 

However, it is a subject that is under study, since the margin of 

error of an ANN depends on the training speed and learning 

rate, which vary depending on fixed parameters of the network 

(number of layers or neurons). In other words, when the 

topology of the network decreases the training time it is 

possible that the solution found is not suitable for the problem 

to be solved [7]. 

Considering the subject under study, this paper proposes a 

strategy to automate the process of ANN generation using a 

multi-objective optimization algorithm, which determines the 

appropriate configuration parameters for the ANN to solve a 

problem. The characteristics of the optimization algorithm and 

the ANN are described in detail in the following sections that 

are organized as follows: Section two (2) contains a description 

of the type of ANN and the optimization algorithm. Section 

three (3) describes the experiment used to perform network 

tests. In section four (4) the results obtained are found. In 

section five (5) there are the conclusions apprehended by 

developing this work. 

2. MATERIALS AND METHODS 

In relation to the previous section, machine or automatic 

learning is a compendium of techniques that are responsible for 

making representations of groups of data provided by a user. 

Currently, these techniques have been improved with strategies 

such as deep learning, which allow the user to make 

representations of information more complex than those made 

with traditional learning techniques. However, deep learning is 

an area under study and its algorithms are designed to perform 

cloud computing, due to the large amount of computational 

resources necessary for the implemented technique to work 

properly. In this paper there are presented two learning 

techniques that attempt to improve the limitation of deep 

learning networks, by automating the way to generate a neural 
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network through a multi-objective optimization algorithm. 

These two learning techniques are described below [13,14]. 

2.1 Neural networks. 

Neural networks are approximate models that allow to predict 

data sets and between them there are several classes depending 

on the type of work data. Normally a neural network has an 

input layer, an output layer and in some cases several 

intermediate or hidden layers. The input layer is the one that 

relates the input variables or variations of the magnitude that 

modify the output value. The output layer only shows the 

behavior of the network that is built when modifying the input 

value. The hidden layers are composed of auxiliary neurons 

that allow to increase the accuracy of the network, by 

implementing more coefficients in the approximate model [1-

3]. 

The layers of the network are composed of neurons that store a 

coefficient or weight, which estimates an output value from a 

given input value (except class classifiers, since they do not 

have a defined input). The coefficients of the neurons are 

updated by training algorithms (for example: forward or 

backward propagation algorithms), which are responsible for 

reducing the margin of error between the training data and the 

data provided by the approximate model of the network (to 

estimate the error, functions such as the square error or square 

logarithmic error are implemented) [1]. 

Another characteristic of neural networks is that the output 

value is limited by a function, whose function is to prevent a 

value from exceeding a threshold before spreading to another 

neuron (some of the most common activation functions are: 

sigmoid, hyperbolic tangent or exponential). Considering that 

each initial neuron is assigned an initial weight before starting 

its training (they can be zeros, ones or random numbers) [1]. 

A deep learning neural network (DNN) is based on a 

conventional network model, with the advantage that it allows 

establishing linear relationships or not between the input and 

output variables. In addition, DNNs can have many layers 

which allows you to decompose a group of base data into many 

variables, to identify trends or patterns and thus predict an 

output value. 

However, the output value depends on the processing of the 

input data, since to train a DNN it must be considered that the 

data type of the training set must be the same. That is, if the 

data set is made up of numbers and classes, the numbers must 

be converted to classes or assign a numerical value to each class 

(pre-processing). 

In this paper the proposed model can encode the data in classes 

or numbers, depending on the level of accuracy that is achieved 

in each case. In addition, a DNN was implemented that 

reconfigures its characteristics according to the execution time 

and performance when classifying a given data set. In Fig. 1 a 

basic scheme of the modified DNN is shown and its main 

characteristics are described in the following numeral. 

 

 

Fig. 1. Diagram of the operation of the DNN. 

 

2.2 Algorithm of multi-objective optimization. 

Optimization algorithms are normally used to determine a 

maximum or minimum value of a function (local or global 

optimum). There are many optimization techniques and among 

them there are genetic algorithms, which are bio-inspired 

algorithms based on Darwinian natural selection. This type of 

algorithm is population-based, that is, it optimizes a function 

from sets of solutions. Each component of the set is known as 

an individual and the value assigned to it when trying to solve 

the function is called the aptitude value, which is made up of 

one (mono-objective) or more values (multi-objective) [7]. 

The re-configurable neural network model proposed in this 

paper is based on a multi-objective genetic algorithm that 

adjusts the configuration, topology and parameters of a neural 

network, based on its performance and execution time. Initially, 

the proposed strategy encodes seven (7) main characteristics of 

a neural network in an array to create an individual. These 

characteristics are the number of neurons (β) and hidden layers 

(α), the algorithm for assigning initial values to weights of 

neurons (δ), activation functions (τ), optimization of weights 

(ω) and calculation of the output error (φ) and a metric to 

measure the performance of the network (ε). 

α and β are calculated with a random number generator (0 <α 

<1000,1 <β <1000) with uniform distribution and the other 

components (δ, τ, ω, φ, ε) are assigned randomly from the 

definitions contained in a library (see Table 1). That is, α and β 

are integers and δ, τ, ω, φ, ε are labels that designate a 

characteristic of the network. 
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Table 1. Function library used to create an individual. 

𝜹 𝝉 𝝎 𝝋 𝜺 

Random 

uniform. 

Ones. 

Zeros. 

Lecun 

normal. 

Glorot 

uniform. 

He normal. 

He uniform. 

Tanh. 

Sigmoid. 

Hard 

sigmoid. 

Exponential. 

Lineal. 

Selu. 

Softplus. 

Softsign. 

Relu. 

SGD 

RMSprop 

Adagrad 

Adadelta 

Adam 

Adamax 

Nadam 

Mean squared error. 

Absolute squared 

error. 

Mean absolute 

percentage squared 

error. 

Mean squared 

logarithmic error. 

Squared hinge. 

Hinge. 

Logcosh. 

Poisson. 

Cosine proximity. 

Categorical hinge. 

Binary 

accuracy 

Categorical 

accuracy 

Sparse 

categorical 

accuracy 

 

The aptitude value (f (x)) of everyone is composed of two 

values that are the execution time (t) and the performance of 

the network (r). The main objective of the optimization 

technique is to minimize t and maximize r; to relate these values 

a combination of linear factors was proposed as shown in 

Equation 1. 

𝑖𝑓 𝑥 = [𝛼, 𝛽, 𝛿, 𝜏, 𝜔, 𝜑, 𝜀]: 𝑥 ≠ ∞ → 𝑓(𝑥) = 𝑟 − 𝑡         (1) 

By performing this combination f (x) becomes a mono-

objective function, where r has valuesbetween zero (0 = worst 

value) and one (1 = best value) and t> 0. As it is observed, when 

increasing the value of t, the value of f (x) decreases. Therefore, 

the proposed model attempts to maximize the value of f (x) by 

decreasing the value of t and increasing the value of r. The 

optimization of aptitude value is subject to the evolutionary 

process of the genetic algorithm (see Algorithm 1), which is 

composed of four stages that are selection, recombination, 

mutation and generational replacement. 

Algorithm 1. Re-configuration model of the neural 

network 

AG_DNN Program () 

1.        CDefine number of individuals. 

2.        GDefine number of generations. 

3.        KAssign training data from the network. 

4.        K Unify data type (K). 

5.        For i1 to C 

6.            P0[i] x 

         /*** Start optimization algorithm ***/ 

7.        For i1 to G 

         /*** Evaluation of the aptitude function ***/ 

8.                For j1 to C 

9.                              𝑌Creating DNN(P0[j]) 

10.                              [𝑃, 𝑡]Train (𝑌, 𝑡) 

11.                              𝑟Compare (𝑃, 𝐾) 

12.                              𝑓(𝑥)[𝑗]𝑟 − 𝑡 

    /*** Genetic operators ***/ 

13.                 P1 Tournament (4, 𝑓(𝑥), 𝑃0) 

14.                  FatherP1 

15.                  MotherCopy(A) 

16.       ChildrenRecombination(Father,Mother) 

17.                  ChildrenMutation (Children) 

18.                  P0Children 

End AG_DNN 

 

 

The first stage is a tournament of four (4) individuals that are 

selected at random. Then these four individuals are grouped 

into two (2) groups, from which the individuals with the best 

aptitude value are selected and from the two selected 

individuals the one with the best aptitude value is selected. This 

routine is repeated until a new population (P1) is completed 

with the same number of individuals as the original population 

(P0). 

The second stage consists of a recombination of individuals of 

two (2) lists. This is done by cloning the population, then 

ordered to the original list (Father) from highest to lowest 

aptitude value and the cloned list (Mother) from least to greatest. 

Once ordered you generate a population of Children by 

combining characteristics of the parents. The third stage 

consists in taking an individual from the Children list and 

changing one of its components for another, in both cases the 

selection is carried out randomly. 

Finally, the generational replacement is made by assigning 

Children to the original population. This process repeats several 

iterations (generations) established by the user and can be 

observed in detail in Fig. 2. 
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Fig. 2. Structure of the functioning of the genetic algorithm and DNN. 

 

3. EXPERIMENT 

The proposed DNN re-configuration model was implemented 

using the KERAS and TENSORFLOW libraries of Python 

3.5.8. This model was run on a computer with an Intel® inside 

CORETM i3 processor and 8 GB of RAM using the eclipse 

interpreter. In addition, the validation of the model was made 

through one (1) test available in a repository, whose objective 

is to determine if a person earns more or less than 50,000 US 

per year from fourteen (14) different attributes of each subject 

[15]. 

The characteristics are part of a database that contains the 

records of a census, with attributes such as: age, daily work 

hours, the age of the companion, the position, the type of work, 

gender, nationality, the level of education, marital status, hours 

of work per week, race, capital earned and lost in the year (see    

Fig. 3). There are two databases one (1) with 48842 (Training 

= 32561, Test = 16281) instances to train the classifier (DBA) 

and another with 45522 (Training = 30162, Test = 15060) to 

validate it (DBB). 

DBA has a set of continuous and error-free data in order to 

allow the user to propose a model or train their classifier 

without any problem. However, DBB is not filtered, that is, this 

database has instances with errors or missing information to 

check if the proposed model still works. 
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Fig. 3. Segment of the database used. 

In this work the DNN was trained with each configuration of 

individuals generated by the genetic algorithm. The genetic 

algorithm evaluates a set of 50 individuals per generation, 

during one hundred (100) generations and was executed one 

hundred (100) times in a computer. In each execution of the 

algorithm the individual with the best aptitude value found is 

stored and compared with the validation data, to verify if 

optimizing DNN operating resources are appropriate 

topologies and configurations. 

4. RESULTS 

During the operation of the proposed model, the aptitude value 

of the individuals was measured and represented by two graphs. 

In the first one (Fig. 4), each individual component of the 

aptitude value is presented during one (1) execution of the 

model and its behavior when unifying by the combination of 

linear factors during the evolution of the genetic algorithm. The 

second one shows (Fig. 5) the behavior of the best aptitude 

value found by generation during all the executions of the 

proposed model. 

 

Fig. 4. Behavior and components of the best aptitude value of 

the population found during one (1) execution of the genetic 

algorithm. 

 

Fig. 5. Behavior of the margin of error and the standard 

deviation for one hundred (100) executions of the genetic 

algorithm. 

By taking the characteristics of the best neural network model 

found using the optimization method, the validation was 

performed and estimating the average error of the DNN output. 

This value can be compared with others reported in the state of 

the art, as shown in Table 2. 

Table 2. Average error obtained using other techniques 

compared to the proposed model [15]. 

Algorithm Error 

C4.5 

C4.5-auto 

C4.5 rules 

Voted ID3 (0.6) 

Voted ID3 (0.8) 

T2 

1R 

NBTree 

CN2 

HOODG 

FSS Naive Bayes 

IDTM (Decision Table) 

Naive-Bayes 

Nearest-neighbor (1) 

Nearest-neighbor (3) 

OC1 

AG_DNN (Proposed model) 

15.54 

14.46 

14.94 

15.64 

16.47 

16.84 

19.54 

14.1 

16 

14.82 

14.05 

14.46 

16.12 

21.42 

20.35 

15.04 

15.03 

Columna1 Columna2 Columna3 Columna4 Columna10 Columna11 Columna12 Columna13 Columna14 Columna15

39  State-gov 77516  Bachelors  Male 2174 0 40  United-States  <=50K

50  Self-emp-not-inc 83311  Bachelors  Male 0 0 13  United-States  <=50K

38  Private 215646  HS-grad  Male 0 0 40  United-States  <=50K

53  Private 234721  11th  Male 0 0 40  United-States  <=50K

28  Private 338409  Bachelors  Female 0 0 40  Cuba  <=50K

37  Private 284582  Masters  Female 0 0 40  United-States  <=50K

49  Private 160187  9th  Female 0 0 16  Jamaica  <=50K

52  Self-emp-not-inc 209642  HS-grad  Male 0 0 45  United-States  >50K

31  Private 45781  Masters  Female 14084 0 50  United-States  >50K
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5. CONCLUSION 

In Fig. 4. It is observed that it is possible for the proposed 

strategy to minimize the execution time of the DNN, so that it 

makes the classification of a group of patterns in an adaptive 

way. That is, it is not necessary to know the type of data, since 

the proposed strategy is responsible for finding the best 

configuration to generalize its behavior. 

One of the advantages of the proposed strategy is that it allows 

the user to reduce the margin of error when configuring a DNN, 

which allows this model to be compared with others present in 

the state of the art as shown in Table 2. It can be said that one 

possibility that the margin of error is not close to zero is that 

enough generations were not defined for the genetic algorithm 

to converge to a definitive solution. However, the advantage of 

this strategy is that, compared with these methods, it is possible 

to minimize the computational cost when executing a classifier 

in a computer and still perform the same task of classification 

as one that has a large consumption of resources. 

As shown in Fig. 5. The algorithm has decreased the margin of 

error as it evolves. This feature gives an advantage, since 

having a low margin of error with good individuals it is possible 

to generalize it to perform signal processing in real time. This 

would allow a user to identify partial signal characteristics in 

portable devices and in different operating conditions. 
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