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Abstract 

The decline is used to estimate the losses that suppliers may 

have in different supply chains during the life cycle of a product. 

In the Colombian pharmaceutical industry, predicting the level 

of loss during the life cycle of a drug is a complex task, because 

information during the sales and invoicing process in the 

different supply chains is managed in decentralized databases. 

Therefore, the different actors involved during the life cycle of 

a product cannot properly estimate the profits and losses of 

certain products. This article proposes a partial solution to this 

problem through the development of a tool based on support 

vector machines. 

Keywords: Support vector machines, stochastic methods, 

deterministic, decline, Markov chain. 

 

1. INTRODUCTION  

The health sector in Colombia is regulated by various actors, 

among which are: current regulations, providers, IPS (Institutes 

that Provide Services), intermediaries (e.g., pharmacies or 

health care providers), and clients. Although these actors are 

articulated through a functional structure, this articulated 

structure or supply chain does not allow the available financial 

resources to be executed in an appropriate manner [1-4]. 

Incorrect execution of financial resources does not allow IPS to 

timely provide intermediaries with inputs or financial resources 

for their operation. Because these financial resources are not 

available in certain periods of time, the cash flow of the 

intermediaries is not constant or high enough to pay salaries, 

buy inputs or maintain their infrastructure. Although there have 

been attempts to improve the supply chain process by merging 

IPS, these attempts do not yet show a significant improvement 

over the conventional scheme [1-4]. 

Supply chain problems have been widely studied using 

approximate mathematical models that attempt to reproduce the 

movement of resources and utilities over the life of a product. 

These models are based on flow diagrams, block diagrams or 

graphs, as these diagrams represent the process in general and 

allow an abstraction of its structure quickly. Similarly, non-

deterministic models roughly solve the problem by estimating 

the cost of transactions over the useful life of a product at 

certain time intervals [5, 6].  

Non-deterministic models are based on stochastic methods that 

attempt to optimize the function used to represent the process 

or product. These stochastic methods or processes are used to 

characterize random variables that evolve as a function of a 

mathematical expression or a variable. Normally, these 

methods show the progress of the process over time through 

sets of discrete variables, that is, this type of technique does not 

allow knowing the state of the product in any instant of time, 

but for which the designer has defined the model [6-9].  

An example of stochastic methods are the Markov chains that 

are used to model the evolution of a variable from the 

immediately previous event, in other words, it is a cumulative 

multiplication whose actual result depends on the previous 

value obtained from the operation. In addition, changes in 

outcome depend on the probability assigned to each event that 

makes up the process [10].  

As can be seen, there are several techniques for estimating the 

behavior of the different actors involved in a process and their 

influence during the life cycle of a product [6-10]. However, 

the proposed models depend on information that is sometimes 

unavailable or difficult to access, which increases the margin 

of error between the expected results and those obtained. 

Therefore, this article proposes an automated way to know the 

behavior of the different actors involved in the supply chain of 

a medicine in Colombia. This technique is described in detail 

in the following sections, which are organized as follows; 

sections 2 and 3 present the general definitions and 

methodology used respectively, and section 4 presents the 

results obtained. 

 

2. MATERIALS AND METHODS 

The algorithm developed is based on a support vector machine, 

which was implemented entirely in MATLAB. The training of 

the algorithm was carried out with a group of probabilities 

belonging to an IPS, where the life cycle of the drug 

ADEFOVIR is monitored. This is followed by a detailed 

description of the proposed model and the definitions needed 

to understand how it works. 
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2.1. Markov Chain 

A Markov chain is a discrete, non-deterministic method that 

estimates the state of a process over time, based on the 

probability assigned to each of its component events. This set 

of probabilities in the current state makes it possible to estimate 

the next state, i.e. Markov is an iterative process that by means 

of a cumulative multiplication multiplies to the initial state by 

itself up to the given number of iterations [10]. 

A Markov process depends on a network and a transition matrix. 

On the one hand, the network is used to raise the probability 

that an event will occur or that one of the components of the 

network will pass from one state to another. On the other hand, 

the transition matrix is constructed from the resulting network 

and is used as the time parameter of the model [12, 13].   

In this case, a graph representing the interactions between the 

various actors involved in the supply chain of a drug 

(ADEFOVIR) from an IPS to the client is considered. Each of 

the actors is assigned a probability, which indicates the 

possibility of the drug circulating between one actor and 

another, this circulation is bi-directional in all cases except in 

the case of clients. In other words, there is the possibility that 

one actor may return the medicine to another, but the client is 

the only one who does not return it, since it is the consumer (see 

Fig. 1) [13]. 

 

Fig. 1. Markov chain representing the supply chain of a 

medicine (Based on [1]). 

The letter A represents suppliers (four in total), the letter B 

represents IPS, the letter I represents intermediaries, the letter 

C represents customers and the letter D represents waste. In 

addition, the arrows connected to each state (circle) are the 

probability distribution that indicate the strength of the 

relationship between one actor and another. The sum of 

probabilities in each state should equal one and are presented 

in more detail in Table 1. 

Table 1 shows the "Actor-Actor" scheme, i.e. the name of the 

cell is indicated at the top and refers to the probability assigned 

to the state connection. For example, "P1-IPS" marked in red 

indicates the probability that the product will go from supplier 

one (1) to IPS. These probabilities are arranged in matrix form 

to estimate the temporal result, where the zeros indicate that 

there is no kind of relationship between the actors. As shown in 

the segment in Table 2. 

 

Table 1. Probabilities of the Markov chain (Based on [1]). 

P1-IPS P1-Waste IPS-P1 P2-IPS P2-Waste IPS-P2 P3-IPS P3-Waste IPS-P3 

0.951 0.049 0.0273 0.965 0.035 0.0299 0.955 0.045 0.0295 

P4-IPS P4-Waste IPS-P4 IPS-I1 IPS-I2 I1-IPS I2-IPS I2-CL4 I2-CL5 

0.98 0.02 0.03 0.0999 0.1501 0.015 0.02 0.05 0.05 

I2-CL6 I2-CL7 I2-CL8 I2-CL9 I2-CL10 I2-CL11 I2-CL12 I2-CL13 I2-CL14 

0.04 0.03 0.05 0.05 0.05 0.06 0.03 0.03 0.03 

I2-CL15 IPS-CL21 IPS-CL22 IPS-CL23 IPS-CL24 IPS-CL25 IPS-CL26 IPS-CL27 IPS-CL28 

0.04 0.019 0.0211 0.0189 0.0178 0.0222 0.0212 0.0188 0.0214 

IPS-CL29 IPS-CL30 I1-CL1 I2-CL17 I2-CL18 I2-CL19 I1-Waste I2-CL2 I2-CL3 

0.0199 0.0255 0.935 0.05 0.04 0.08 0.05 0.06 0.15 

IPS-CL38 IPS-CL19 IPS-CL20 I2-CL16 IPS-CL32 IPS-CL33 IPS-CL34 IPS-CL35 IPS-CL36 

0.02 0.1 0.021 0.05 0.0205 0.0195 0.0193 0.0207 0.02 

IPS-CL37 IPS-Waste IPS-CL31 IPS-CL39 IPS-CL40 IPS-CL41 IPS-CL42 IPS-CL43 IPS-CL44 

0.02 0.032 0.0145 0.02 0.02 0.02 0.02 0.02 0.02 
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Table 2. Markov Transition Matrix Segment (Based on [1]). 

  P1 P2 P3 P4 IPS I1 I2 CL1 

P1 0.0000 0.0000 0.0000 0.0000 0.9510 0.0000 0.0000 0.0000 

P2 0.0000 0.0000 0.0000 0.0000 0.9650 0.0000 0.0000 0.0000 

P3 0.0000 0.0000 0.0000 0.0000 0.9550 0.0000 0.0000 0.0000 

P4 0.0000 0.0000 0.0000 0.0000 0.9800 0.0000 0.0000 0.0000 

IPS 0.0273 0.0299 0.0295 0.0300 0.0000 0.0999 0.1501 0.0000 

I1 0.0000 0.0000 0.0000 0.0000 0.0150 0.0000 0.0000 0.9350 

I2 0.0000 0.0000 0.0000 0.0000 0.0200 0.0000 0.0000 0.0000 

CL1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 

 

Finally, in order to know the result in a time interval (months), 

the transition matrix is multiplied in a cumulative way by how 

many months it has been indicated (Eq. 1). 

If A=Translation matrix at time zero and C[0]=A, then 

𝐶[𝑖] = ∑ 𝐴 ∗ 𝐶[𝑖 − 1]

Months

𝑖=1

                               (1) 

2.2. Support Vector Machine 

Support Vector Machines (SVMs) are a group of supervised 

learning algorithms based on regression and classification 

techniques. These techniques assign a label to each class 

present in the group of training samples in order to construct an 

approximate model that allows predicting a new sample [14].  

An SVMs predicts a new sample by modeling the set of 

samples into two different categories and the model created 

indicates whether this sample belongs to one category or 

another. These categories are generated by finding a hyperplane 

that separates points between one class and another, this 

hyperplane is generated by projecting the domain of each point 

in a space of superior dimensionality. The main characteristic 

of this hyperplane is that it must cross as close as possible to 

the projections made by each point of the sample group (see 

Fig. 2) [15]. 

 

Fig. 2. Operation of a two-dimensional SVM. 

Learning models based on SVMs are very similar to neural 

networks, since SVMs can be built with training methods like 

those implemented in polynomial neural networks, radially 

based or perceivers [15]. The features used to implement the 

support vector machine and predict the Markov transaction 

matrices are described in detail in the following section. 

3. IMPLEMENTATION 

 

As mentioned, the technique developed is based on Markov 

transition matrices to predict the loss of a medically during its 

circulation between the different actors in the supply chain (see 

Fig. 1). The matrix of probabilities in the initial time or time 

zero is a set of values proposed by Cardona [1] and by means 

of the Markov chains its temporal evolution is estimated, whose 

structure is a cumulative multiplication as shown in Eq. 1. This 

structure is shown in detail in Algorithm 1 and was used to 

estimate the SVM training matrices. 

Algorithm 1. Calculation of time matrices 

Function Markov Chains () 

Start vector Samples. 

Start Label vector. 

A ← Initial probabilities. 

Month ← Assign number of months.  

For i=1 to length (Months) 

Transition matrix=A* Transition matrix 

Samples[i]= Transition Matrix 

Labels [i]= i 

End for 

Return (Samples, Labels) 

Each of the matrices is assigned a label indicating the month in 

which it was estimated using the Markov chain. These data are 

then normalized so that the matrix values take a range between 

zero (0) and one (1), to become the training data. Training data 

are divided into two groups; the first group are predictors that 

are probability nuances and the second are expected responses 

that correspond to the label assigned to each matrix. Once the 

label is assigned to the training data, the SVM model is 

estimated and its performance evaluated with a cross-

correlation validation with 10% of the training data (see Fig. 3). 
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Fig. 3. SVM training scheme. 

 

At the end of the SVM training, a cluster is exported that stores 

the coefficients and other characteristics of the model found. 

The model is a mathematical abstraction characterized by a 

function of at least 100 dimensions, since, the training 

arrangements are matrices of 51X51X100, where 100 is the 

number of months given to the function that estimates the 

Markov chain. This mathematical function was used to carry 

out an application, which allows to estimate the decrease by 

means of the Markov chain and the SVM, in order to compare 

the results estimated by both strategies. The result in each case 

is shrinkage, which is estimated by multiplying a value of units 

(drug value) by the probability assigned to each provider. Once 

this multiplication has been carried out, the columns associated 

with each actor are extracted from the resulting matrix, since 

the cumulative multiplication propagates the value of the 

decrease through the time matrix and thus the value 

corresponding to each actor is automatically estimated. Finally, 

the results were compared by calculating the margin of error 

between the estimated loss using the Markov chain and the 

SVM. This application is described in detail in Algorithm 2. 

 

Algorithm 2. Application developed 

A ← Initial probabilities. 

Month ← Assign number of months.  

For i=1 to length (Months) 

Transition matrix=A* Transition matrix 

End for 

Transition Matrix SVM=SVM(Months) 

M1= Extract merma (Transition Matrix) 

M2= Extract merma (SVM Transition Matrix) 

C=error (M1, M2) 

Publish (Correlation) 

 

 

4. RESULTS AND DISCUSSION 

 

This technique was implemented in a computer with 250GB of 

hard disk, 8 GB of RAM memory and a Core I3 n Series 

processor. The SVM training took about fifteen (15) minutes, 

using the MATLAB SVM CLASSIFICATION LEARNER 

TOOLBOX and the CUBIC SVM classifier. The input data was 

one hundred (100) 52X52 matrices whose labels are the month 

for which they were estimated. These matrices are arranged as 

shown in Table 2 and the resulting model allows you to enter 

the month as input to predict the decline of each actor.  

SVM performance was initially measured by reviewing the 

level of accuracy achieved (86.5%) when comparing training 

and validation data. Other features related to the performance 

of the SVM became visible at the end of its training, such as the 

scatter plot (Fig. 4a), the ROC curve (Fig. 4b, receiver 

operating characteristic curve) and the parallel coordinate plot 

(Fig. 4c). In this case the scatter plot shows the closeness 

between the categories found and the hyperplane. The ROC 

curve shows the rate of false positives and negatives and the 

parallel coordinate graph presents the expected behavior of 

each actor with a trend graph. 

Finally, the estimated loss for each actor was used as a 

parameter to validate the performance of the SVM, by 

estimating the margin of error between the data provided by the 

Markov chain and the SVM in different months of the year 

(Table 3, considering that an average of the loss was taken from 

clients 2-44). 
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Table 3. Estimated error margin in different input configurations (P1 = 100 Units, P2=200 Units, P3=100 Units, P4=200 Units).  

Months = 2 

 P1 P2 P3 P4 I1 I2 CL1 CL 2-22 CL 23-44 

MARKOV 4.9 7 4.5 4 2.89 3.47 54.13 18.4 11.44 

SVM 5 6.6 4.7 4.2 2.7 3.3 55 20.2 12 

ERROR 0.1 -0.4 0.2 0.2 -0.19 -0.17 0.87 1.8 0.56 

Months = 4 

MARKOV 0.2648 0.26 0.25 0.833 0.29 5.91 104.44 10.74 4.2 

SVM 0.28 0.3 0.2 0.7 0.3 6 105 10 4 

ERROR 0.0152 0.04 -0.05 -0.133 0.01 0.09 0.56 -0.74 -0.2 

Months = 6 

MARKOV 0.137 0.095 0.125 0.0017 0.160 4.08 104.60 3.43 0.83 

SVM 0.14 0.1 0.1 0.002 0.2 4.06 105 3 0.86 

ERROR 0.003 0.005 -0.025 0.0003 0.04 -0.02 0.4 -0.43 0.03 

Months = 8 

MARKOV 7*10^-4 3*10^-4 4*10^-4 3*10^-4 6*10^-4 1.72 83.53 0.87 0.13 

SVM 7*10^-4 2*10^-4 2*10^-4 3*10^-4 6*10^-4 1.7 85 0.5 2 

ERROR 0 1*10^-4 2*10^-4 0 0 0.02 0.53 -0.13 1.87 

Months = 10 

MARKOV 3*10^-5 1*10^-5 2*10^-4 7*10^-5 2*10^-6 0.58 61.96 0.20 0.01 

SVM 2*10^-5 1*10^-5 2*10^-4 7*10^-5 2*10^-6 0.6 62 0.50 0.01 

ERROR 1*10^-5 0 0 0 0 -0.02 -0.04 -0.30 0 

 

 

 

 

 

 

 

 

a)  Scatter plot                                                                b)    ROC 

 

 

 

 

 

 

 

 

 

c) Parallel coordinates 

Fig. 4. Behavior of the SVM. 
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5. CONCLUSIONS 

 

As the graphs in Fig. 4 were presented, it is possible to create a 

prediction strategy for values contained in matrices up to 

52X52 based on SVM. The advantage of using this type of 

strategy is that it has a relatively short training time compared 

to other strategies such as neural networks or conventional 

optimization algorithms, which may require entire hours of 

training when trying to solve this type of problems. Another 

advantage of the model is the reduction of computational 

resources, which is observed when estimating the value of the 

decrease in months. Because, when implementing the Markov 

chain, the application takes about 10 seconds to estimate the 

parameters of the time matrices and when implementing SVM, 

the application takes 5 seconds. 

As can be seen from the values in Table 3, the trained SVM 

finds values close to the estimated depletion values with the 

Markov chain at the same time intervals. This indicates that in 

this case, the Markov transition matrix model is replicable 

using SVM-based strategies with an average error margin of 

0.0045±1.5.  

Finally, the relationship between suppliers and customers 

shown in Table 3 is decreasing, indicating that under ideal 

conditions the value of the decline decreases in suppliers and 

increases in customers. This means that absorbent states 

(clients) over time can access the drug through intermediaries 

more efficiently than in cases where it is supplied by the 

provider or IPS directly to the client. 
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