
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 7 (2019), pp. 965-976 

© International Research Publication House.  http://www.irphouse.com 

965 

Mass Flow Rate Assessment in Capillary Tubes of Refrigeration Cycle 

Powered by Solar Energy Using Back Propagation Artificial  

Neural Network 

 

Ayman A. Aly1, 2,*, B. Saleh1, 2, Awad M. Aljuaid1, Ageel F. Alogla1, Mosleh M. Alharthi3, and Y.S. Hamed4,5 
1Mechanical Engineering Department, College of Engineering, Taif University, PO Box 888, Taif, Saudi Arabia. 
2Mechanical Engineering Department, Faculty of Engineering, Assiut University, PO Box 71516, Assiut, Egypt. 
3Electrical Engineering Department, College of Engineering, Taif University, PO Box 888, Taif, Saudi Arabia. 
4Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University,  

Menouf PO Box 32952, Egypt. 
5Mathematics and Statistics Department, Faculty of Science, Taif University, P.O. Box 888,Taif, PO Box 888, Saudi Arabia. 

 

Corresponding author E-mail: draymanelnaggar@yahoo.com 

(*Corresponding author) 

 

 

Abstract 

The refrigeration systems driven by solar energy are mainly 

consists of photovoltaic panels, DC motor, electronics of 

regulation and an electrical refrigeration cycle. Capillary tubes 

are usually utilized in air conditioning units and domestic 

refrigerators for refrigerant expansion. The correlation of 

controlling parameters of the refrigerant mass flow rate across 

adiabatic straight capillary tubes is essential. Many 

experimental and theoretical studies have been conducted to 

estimate mass flow rate into adiabatic capillary tubes using 

non-dimensional analyses. However, the accuracy of these 

correlations in estimating mass flow rate is very limited. In the 

present paper, the mass flow rates of R22 and its alternative 

R407C-R600a-R290 mixture across adiabatic straight 

capillary tube is estimated using back propagation artificial 

neural network (BP-ANN). Three BP-ANN models are 

constructed using two methods; the first method is used to 

establish two individual networks for each refrigerant, and the 

other method is used to establish a third general network for 

the two inspected refrigerants together. The training of the 

BP-ANN is achieved using previously published 

measurements. The results of these three BP-ANN models 

exhibited high accuracy in estimating refrigerant mass flow 

rate in comparison with experimental measurements. The two 

models have shown relative differences for R407C-R600a-

R290 mixture and R22 within ±0.016%, and ±0.02%, 

respectively. On the other hand, for the general model, the 

relative differences are within ±0.02%. Furthermore, the three 

models are examined in the predictive mode as well. The 

differences of the two models and the general model in the 

predictive mode are within ±0.5%, +0.38%/+0.41%, and -

1.28%/-1.32% for R22, R407C-R600a-R290 mixture, and for 

the two refrigerants together, respectively. The impacts of 

some selected parameters, i.e. condenser temperature, degree 

of subcooling, and capillary tube length and diameter on the 

mass flow rate across the capillary tube are investigated and 

discussed as well. 

Keywords: Artificial neural network; Capillary tubes; R22; 

Refrigeration cycle; R407C-R600a-R290 mixture. 

 

1. INTRODUCTION 

The refrigeration system driven by solar energy mainly 

consists of photovoltaic panels, DC motor, electronics of 

regulation and an electrical refrigeration cycle as shown in Fig. 

1. Presently, the photovoltaic (PV) cells are in the market in 

various power ranges, efficiencies and prices and are 

increasingly adopted. Solar cells produce direct current 

electricity from sunlight. The traditional vapor compression 

refrigeration (VCR) cycle is the most widely spread 

technology available on the market for both refrigeration 

applications and air conditioning. It can be driven by solar 

energy using PV module. The main advantages of the VCR 

cycle driven by solar energy are its simple design and 

effective. The system can be used in remote areas far from the 

electricity grid if the required cooling capacity is modest. The 

VCR system uses a refrigerant circulating in a closed system 

through its different components. Some household, food and 

vaccine transportation and medical applications are the 

existing applications for such systems. The throttling device is 

a significant element in the VCR cycle. Short tube orifices, 

capillary tubes, electronic expansion valves, and thermostatic 

expansion valves are utilized for throttling refrigerant in the 

VCR cycles. Capillary Tubes are commonly utilized as 

throttling devices in freezers, air conditioners and domestic 

refrigerators [1-3]. The capillary tube is made of copper with a 

length commonly ranged from 1m to 6m, and internal 

diameter ranged from 0.5 mm to 2.0 mm [4]. The freezers and 

household refrigerators use capillary tubes to connect the inlet 

of evaporator and the exit of condenser with internal 

diameters equal to 0.787 mm or 0.711 mm [5]. It separates the 

high- and low-pressure sides in the refrigeration cycle. In the 

off-cycle periods, the capillary tube permits the cycle two 

pressures to equalize. This leads to decrease the required 

compressor starting power [6]. The capillary tube has many 
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advantages like simplicity, low starting compressor power, 

low cost, and highly reliable, with no need for maintenance. 

These advantages of the capillary tube make it more 

widespread than other expansion devices. However, the main 

disadvantage of the capillary tube is its non-suitability with 

large load variations. The flow characteristic inside the 

capillary tube is complicated and under normal working 

conditions contains phase change and non-equilibrium 

phenomenon. Due to those obstacles, it is difficult to guess 

precisely the pressure drop and mass flow across the capillary 

tube. Hydrocarbons (HCs), Hydrofluorocarbons (HFCs) and 

their mixtures are considered as alternate refrigerants instead 

of chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons 

(HCFCs) in VCR cycles due to their zero-ozone depletion 

potential (ODP) [7]. 

 

 

 

Fig. 1. Vapor compression refrigeration system driven by solar energy. 

 

Several mathematical and experimental researches have 

examined the adiabatic capillary tubes performance. The 

impact of capillary tube diameter, length, condenser pressure, 

and degree of subcooling (Tsub) on the refrigerant mass flow 

rate (ṁ) is examined experimentally using R600a, R12, and 

R134a by Melo et al. [8]. They developed an empirical 

correlation to calculate the refrigerant ṁ across the capillary 

tube. The refrigerant ṁ in an adiabatic straight capillary tube 

using R407C, R-507A, R-404A, and R-22 is measured 

experimentally by Melo et al. [9]. Apaydin and Heperkan [10] 

and Schenk and Oellrich [11] investigated experimentally the 

performance of capillary tube using R600a. R134a ṁ into 

adiabatic and non-adiabatic capillary tubes is studied 

experimentally by Dirik et al. [12]. Meyer and Dunn [13] 

measured experimentally the ṁ of R134a, R22, R410A, and 

R407C into an adiabatic capillary tube.  

Numerous semi-empirical and empirical correlations to guess 

the ṁ across the adiabatic capillary tubes have been 

established. Wolf et al. [14] established two empirical 

correlations for estimation the ṁ across the capillary tube for 

vapor-liquid mixture and subcooled entrance conditions 

utilizing the Buckingham 𝜋  theorem. They used the 

measurements of R410A, R22, and R134a to develop the 

model. An empirical correlation utilizing dimensionless 

groups for the capillary tube using R410A, R407C, and R22 is 

developed by Kim et al. [15]. The dimensionless correlation 

depicted the measurements within relative differences ±15%. 

Two correlations using Buckingham 𝜋  theorem to calculate 

the ṁ across adiabatic capillary tube based on their 

measurements and data from literature is established by Choi 

et al. [16, 17]. Zhang [18] combined artificial neural network 

(ANN) method and dimensional analysis to construct a 

correlation to calculate the ṁ across the adiabatic capillary 

tube. A general empirical correlation to guess the refrigerant 

ṁ across adiabatic helically coiled and straight capillary tubes 

is developed by Rasti and Jeong [19, 20]. The average 

absolute deviation of the correlations is within ±15%. 

Javidmand and Hoffmann [21] performed dimensional 

analysis on numerical data to guess the critical ṁ of R134a, 

R12, and R22 flowing across capillary tubes with various 

operation conditions and tube geometry. The average 

deviation of the estimated ṁ utilizing the general correlations 

from the measurements is lower than 0.2% for the three 

refrigerants. Yang and Wang [22] established a general 

correlation to estimate refrigerant ṁ across adiabatic capillary 

tube using approximate analytic solutions utilizing the data of 

R290, R12, R134a, R22, R600a, R404A, R410A, and R407C. 

The correlation results attained a Standard Deviation (SD) of 

9.02% and an average deviation of -0.83% from the data. A 

general local power-law correlation for ṁ across capillary 

tubes or short tube orifices for supercritical and subcritical 

entrance conditions is suggested by Yang and Zhang [23]. 

Approximately 2000 measurement sets of ṁ data for R22, 

R12, R600a, R407C, R134a, R410A, R404A, and R744 are 

used from literature to develop the model. The average and 

SD of the model results in comparison of the data from 

literature are 0.8% and 8.98%, respectively. A generalized 

correlation for refrigerant ṁ across adiabatic capillary tube 

using dimensional analysis and multi-layer perceptron neural 

network is suggested by Zhanga and Zhao [24]. The 
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deviations between the trained results of ANN and the 

experimental results are within ±10%. A model for guessing 

the refrigerant ṁ across coiled capillary tube in a split air 

conditioner utilizing R22 and R290 is presented by Zhou et al. 

[25]. Deviations of the model results from the measurements 

are within 8.63%. An experimental study on the flow 

characteristics of R22 and its alternative R407C-R600a-R290 

mixture in adiabatic capillary tubes is conducted by Jabaraj et 

al. [26]. They studied the impact of capillary tube diameter 

and length, condensing pressure, and Tsub on the refrigerant ṁ 

across the capillaries. They established a non-dimensional 

correlation for estimating the refrigerant ṁ across the 

capillary tubes for various capillary tube geometries, working 

conditions, and refrigerant properties. The correlation guesses 

the ṁ of R407C-R600a-R290 mixture and R22 within average 

deviations of -0.11% and 0.618% and mean deviations of 

4.45% and 5.54%, respectively. 

From the above discussion, utilizing common estimation 

models based on Buckingham 𝜋 theorem or applying neural 

network on dimensionless groups yielded big difference 

between the calculated and measurements of ṁ values across 

capillary tubes. For design and control objectives, a precise 

model for estimating ṁ will be very beneficial. Thus, a new 

method is needed to outdo the shortcomings of the common 

estimation models. Accordingly, in the present research, ANN 

method will be utilized to estimate the ṁ across adiabatic 

straight capillary tubes. It is reported that mixing of R407C 

with 20% HC could enhance the performance of the 

refrigeration system. It is found that the coefficient of 

performance (COP) of R407C-R600a-R290 mixture is greater 

than that obtained using R22 by nearby 11% [26]. The only 

drawback against the R407C-R600a-R290 mixture is its high 

condensing pressure, which is about 15% greater than that of 

R22. The purpose of this paper is to establish two individual 

models and one general model to estimate R22 and its 

alternatives R407C-R600a-R290 mixture ṁ across adiabatic 

straight capillary tubes utilizing ANN method. The 

measurements from Jabaraj et al. [26] will be utilized to 

establish and validate the three models. 

 

2. THE MASS FLOW MATHEMATICAL MODEL 

The first step in the mathematical model is selection of the 

parameters, which have obvious effects on the refrigerant ṁ 

across capillary tube. The selected parameters are (1) the 

capillary tube geometric parameters, which include capillary 

tube length (L) and diameter (D), (2) inlet conditions, which 

include inlet pressure (Pi) and Tsub, and (3) refrigerant 

properties, which include liquid viscosity (f, liquid specific 

heat (CPf), liquid specific volume (vf), heat of vaporization 

(hfg), and surface tension (). Since the choked flow 

conditions are easily come across the capillary tube at steady-

state operations, the outlet pressure is not considered among 

the investigated parameters. These nine independent 

parameters are selected because of their significance in the 

refrigerant ṁ through the capillary tube. Consequently, the 

correlation for refrigerant ṁ across adiabatic straight capillary 

tube can be expressed using the nine parameters as follows;  

 

ṁ = 𝑓 (𝐿, 𝐷, 𝑃𝑖 , 𝑇𝑠𝑢𝑏, 𝑣𝑓 , 𝜇𝑓, 𝐶𝑃𝑓, ℎ𝑓𝑔, 𝜎 )        (1) 

 

The BP-ANN method is utilized to establish the correlation 

between significant nine parameters and the refrigerant ṁ. 

The BP-ANN models are trained to calculate the refrigerant ṁ 

across capillary tube at various working conditions based on 

the experimental measurements of R22 and R407C-R600a-

R290 mixture by Jabaraj et al. [26]. Three BP-ANN models 

are suggested, two of them are used to inspect each refrigerant 

and the third is used for the two inspected refrigerants 

together. The refrigerants properties during the course of 

calculations are extracted from REFPROP 9.1 [27]. 

 

3. THE BP-ANN METHOD 

Popularity of BP-ANN methodology increased these days 

over several constraints of verities strategies in modelling of 

different framework. BP-ANN procedures are utilized 

correctly to simulate complicated physical systems in different 

fields consisting of engineering physics. BP-ANN 

methodologies aid relating system parameters for instances 

wherein the traditional polices can’t describe satisfactorily in 

an actual duration structure [28-30]. 

Orientation of BP-ANN strategies, which are established and 

trained from measurements, usually reveals modifications of 

net weights and biases in order to minimize the deviations of 

the network and the target outputs. The input factors are 

normalized to overcome the effect of its various dimensions 

and ranges. 

Figure 2 presents the structure of the BP-ANN framework. 

The first layer accommodates 9 inputs variables related to 

neurons within the second layer via the assigned weights for 

every connection. In the hidden layer, the neurons (1:50), are 

determined by updating the networks (NW) to eliminate the 

deviation. The last layer is the output layer with one neuron y. 

The ANN method of modelling real systems takes into 

consideration as a shape of complicated regression version of 

unknown system. 

 

 



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 7 (2019), pp. 965-976 

© International Research Publication House.  http://www.irphouse.com 

968 

 

Fig. 2. Structure of the BP-ANN. 

 

 

The ANN functions can be calculated as follow: 

y = gA (∑ ziβj  + 

50

i=1

∅)                                                   (2)  

zj = fA (∑ xiwij  + 

9

i=1

τj)                                                  (3) 

Where 

τj is the neuron zj bias 

∅ is the output y bias. 

wij is the connection weight from neuron xi to neuron zj  

βj is the connection weight from neuron zj to y.  

and gA  and fA  are energizing mappings that generate 

continuous values instead of discrete values.  

 

The tan-sigmoid shape is utilized in the neurons second layer 

for energizing functions.  Also, the piecewise linear shape 

function is utilized for the output neurons layer. The equation 

of this sigmoid shape is:  

f(netj) =
1

1 + e−c(netj)
                                                    (4) 

As displayed in Fig. 3 for faster training, c should be large, 

and the opposite is correct. The BP algorithm can adjust the 

weight levels in a multi - layered neural network due to its 

differentiability. 

The training of BP-ANN structure parameters is meant to 

minimize the output deviation by using the network best 

weight values. The most widely used strategy is the BP 

procedure, which is applied in this study, updates the weights 

in the downward direction (decreasing gradient). In details, 

the training framework of the proposition structure is 

illustrated in Fig. 4. An Epoch is the time scale unit used for 

each trained parameters during the network weights 

modifications. 

x1: diameter of capillary tube 

x2: length of capillary tube 

x3: inlet pressure 

x4: degree of subcooling 

x5: liquid viscosity 

x6: liquid specific heat 

x7: liquid specific volume 

x8: heat of vaporization 

x9: surface tension 
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Fig. 3. The sigmoid activation function changes with different c values. 

 

 

 

Fig. 4. A training process flowchart. 
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It is determined that a 3-layers NNW can converge any 

complex function with defined required accuracy [28]. In the 

current training steps, the NW structure has three layers with 

no need to modify their biases. The training processes are:  

1. Forward-propagation phase: X = [x1, x2,…, x8, x9] 

propagates from the first layer to the last layer Y.  

Zq = f (∑ vqjXj

n

j=1

)

,   n=9

                                                        (5) 

Y = f (∑ wiqZq

𝑘

q=1

)                                                              (6) 

where:  

Zq is the second layer data sets,  

f is the agnation function,  

Vqj is the first-to-second neurons connections weights, 

Y is the output of the ANN, and  

Wiq is the second-to-last neurons connections weights. 

 

2. Back Propagation phase: eq. (7) presents the deviation 

between the last layer Y, and the goal d: 

E =
1

2
∑(di − yi)

2

m

i=1

                                                               (7) 

where m is the training points count. 

The weights in the second-to-last neurons connections are 

optimized by utilizing the gradient-descent procedure as 

follow:  

∆𝑊𝑖𝑞 =  −𝜂 
𝜕𝐸

𝜕𝑊𝑖𝑞
=  −𝜂 [

𝜕𝐸

𝜕𝑌
] [

𝜕𝑌

𝜕𝑛𝑒𝑡𝑖
] [

𝜕𝑛𝑒𝑡𝑖

𝜕𝑊𝑖𝑞
] 

             =  −𝜂 [𝑑𝑖 − 𝑦𝑖] [𝑓′(𝑛𝑒𝑡𝑖)][𝑍𝑞] =  𝜂 𝛿𝑜𝑖 𝑍𝑞              (8) 

where 𝜂 is the training rate. 

For modifying the first-to-second correction weights are as 

follow: 

∆𝑉𝑞𝑖 =  −𝜂 
𝜕𝐸

𝜕𝑉𝑞𝑖
=  − 𝜂 [

𝜕𝐸

𝜕𝑛𝑒𝑡𝑞
] [

𝜕𝑛𝑒𝑡𝑞

𝜕𝑉𝑞𝑗
] =  𝜂𝛿𝑉ℎ𝑞𝑥𝑖            (9) 

𝛿𝑜𝑖 =  −[𝑑𝑖 − 𝑦𝑖][𝑓′(𝑛𝑒𝑡𝑖)]                                   (10) 

𝛿ℎ𝑞 =  [
𝜕𝐸

𝜕𝑍𝑞
] [

𝜕𝑍𝑞

𝜕𝑛𝑒𝑡𝑞
]                                                  (11) 

where 𝛿𝑜𝑖 is the local and 𝛿ℎ𝑞 is the partial deviations. 

The process continues to decrease the performance deviation 

to pre-defined value. The ANN realization is calculated via 

the linear correlation coefficient (r) and the mean squared 

error (MSE). As the NWs train its MSE value will be the 

interactions continue until the power deviation has dropped to 

a pre-defined value. When the NWs are fully trained, the MSE 

value approaches zero. 

The nine independent inputs, to characterize the ṁ across the 

capillary tube, are supplied to the second neuron layer. Every 

neuron connection has modifiable weighting factor connected 

with it. The solving operations decrease the MSE (goal 

function) between the trained and the aimed output. The three 

suggested BP-ANN models are trained and proved with 

verities of capillary tube geometry, operating conditions, and 

refrigerant properties as inputs and the refrigerant ṁ as output.  

The following section presents the results of these models.  

 

4. RESULTS AND DISCUSSION 

In the present study, the measurements reported by Jabaraj et 

al. [26] are utilized in training the three BP-ANN models. 

Two of the BP-ANN models are constructed for R22 and 

R407C-R600a-R290 mixture individually, while the third 

model is general for both refrigerants together. The 

measurements contain 200 data sets for each refrigerant. 150 

data sets from each refrigerant are used to train the two 

individual models while the reaming 50 data sets are utilized 

to test the estimation accuracy of the two models. On the other 

hand, the general model uses 300 data sets (150 data sets for 

R22 and 150 data sets for R407C-R600a-R290 mixture) to 

construct and train the model while the rest 100 data sets are 

utilized to examine the predictive mode of the general model. 

The mass flow rates estimated by the BP-ANN models are 

validated against the experimental measurements of Jabaraj et 

al. [26] as shown in Figs, 5-7. It can be observed from the 

figures that, the three BP-ANN models are in well agreement 

with the experimental measurements. Subsequently, the three 

BP-ANN models are executed to examine their prediction 

performance as displayed in Figs. 8-10. As can be detected 

from these figures, the relations between predicted results and 

measurements are straight lines. This proves the perfect 

estimation of the models. It is worth emphasizing that the 

measurements, not utilized in the establishment of the BP-

ANN models, are utilized to test the estimation performance 

of the proposed models.  
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Fig. 5. The BP-ANN model trained data against  

measured mass flow rates for R22. 

Fig. 6. The BP-ANN model trained data against measured 

mass flow rates for R407C-R600a-R290 mixture. 

 

  

Fig. 7. Trained data of the general BP-ANN model against 

measured mass flow rates for R22, and R407C-R600a-R290 

mixture. 

Fig. 8. Predicted data of R22 BP-ANN model  

against measured mass flow rates. 

 

  

Fig. 9. Predicted data of R407C-R600a-R290 BP-ANN 

model against measured mass flow rates. 

Fig. 10. Predicted data of the general BP-ANN model against 

measured mass flow rates for R22 and R407C-R600a-R290. 
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To assess the precision of the general BP-ANN model for 

estimation the refrigerant ṁ, the relative differences as 

functions of capillary tube geometries and working conditions 

are presented in Fig. 11. As can be noticed from these four 

figures, the estimated ṁ values are in a very good agreement 

with the experimental results. The relative differences in the 

trained model are within ± 0.02% for the two inspected 

refrigerants together. Also, the deviations of the two 

individual models from the measurements in the trained mode 

are calculated. The relative differences of the two individual 

models in the trained mode are within ±0.02% and ±0.016% 

for R22, and R407C-R600a-R290 mixture, respectively. The 

standard and average deviations of the estimation in the 

trained mode for the general model are 0.006% and 0.003%, 

respectively. The standard and average deviations of the 

estimation of the two individual models in the trained mode 

are 0.006%, 0.0003% for R22, and 0.005%, -0.0003% for 

R407C-R600a-R290 mixture, respectively. The relative, 

average, and standard deviations are defined as: 

Relative   difference ERel, percent =  
ṁTran −  ṁexp

ṁexp

 × 100    (12) 

Average deviation EAver, percent =   
1

m
∑ {

ṁTran −  ṁexp

ṁexp

 × 100}

m

1

   (13) 

Standard deviation  ES, percent =   √
1

m
∑(ERel − EAver)2

m

1

                 (14) 

Also, the three models are inspected in the predictive mode 

outside their establishment ranges. The relative differences of 

the two individual models and the general model in the 

predictive mode are within ±0.5%, +0.38%/+0.41%, and -

1.28%/-1.32% for R22, R407C-R600a-R290 mixture, and the 

two refrigerants together, respectively. The standard and 

average deviations of the estimation in the predictive mode 

are 0.11%, 0.23% for R22, 0.006%, 0.4% for R407C-R600a-

R290 mixture and 0.007%, -1.3% for two refrigerants 

together, respectively. 

 

 

 
 

 

 

 

 

Fig. 11. Relative deviation of the general model results against capillarity tube length (a), capillarity tube diameter (b), inlet 

pressure (c), and degree of subcooling (d). 
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Based on these results, the BP-ANN method is a promising 

tool to estimate ṁ across adiabatic straight capillary tubes. 

The impacts of capillary tube geometry and operating 

conditions on the refrigerant ṁ across adiabatic straight 

capillary tubes will be discussed in the subsequent subsections. 

Since the general BP-ANN model is more logical than the two 

individual models; it will be utilized to calculate the 

refrigerant mass flow in the subsequent sections. 

 

4.1 The impact of capillary tube geometry on mass flow rate 

Figure 12 displays the impact of capillary tube geometry on ṁ 

of R22 and R407C-R600a-R290 mixture. Figure 12a shows 

the alteration of ṁ as a function of capillary tube diameter for 

a tube length of 1750 mm, Tsub of 8 °C and condenser 

temperatures of 37, 42, 47, and 52 °C. The increase of 

capillary tube diameter increases ṁ significantly for both 

refrigerants. This is attributed to the reduction of pressure 

drop with increase of capillary tube diameter. For instance, as 

capillary tube diameter increases from 1.1176 to 1.397 mm 

the ṁ growths by about 65% for both refrigerants at 47 °C 

condenser temperature. As can be noticed from Fig. 12a, the 

R407C-R600a-R290 mixture mass flow rates are greater than 

those of R22 and ranged between 1.9 and 5.2% for all 

examined condenser temperatures and different diameters. 

Figure 12b displays the alteration of ṁ against the capillary 

tube length for 42 °C condenser temperature, Tsub of 11 °C 

and capillary tube internal diameter of 1.1176, 1.72, and 1.397 

mm. The mass flow rates decrease with the increase of 

capillary tube length for bot refrigerants. This is because of 

increase frictional resistance with the tube length. For 

instance, ṁ decreases with approximately 48% as tube length 

increases from 750 to 1750 mm with tube diameter of 1.72 

mm for both refrigerants. Also, the R407C-R600a-R290 

mixture mass flow rates are greater than those of R22 and 

ranged from 1.75% to 4.5% for all inspected capillary tube 

lengths and diameters. The lower ṁ of R22 than R407C-

R600a-R290 mixture is logically due to the higher viscosity of 

R22 than R407C-R600a-R290 mixture. Moreover, the higher 

capillary tube inlet pressure in the case of R407C-R600a-

R290 mixture than R22 boosts its ṁ. 

 

  

Fig. 12. Impact of capillary tube geometry on mass flow rate; tube diameter(a) and tube length (b). 

 
4.2 The impact of operating conditions on mass flow rate 

Figure 13 presents the impact of operating conditions on 

refrigerant ṁ. The alteration of ṁ against the condenser 

temperature is presented in Fig. 13a for tubes with different 

diameters, Tsub of 5 °C and tube constant length of 1250 mm. 

The mass flow rates growth with the rise of condenser 

temperature for both refrigerants under all investigated 

capillary tube geometries. The tendencies of the mass flow 

rates are nearly independent of the refrigerants. R22 exhibits 

lower ṁ than R407C-R600a-R290 mixture under all inspected 

conditions, due to its lower saturation pressure than R407C-

R600a-R290 at the same condenser temperatures. The inlet 

pressure to the capillary tube in the measurements is set to the 

saturation pressure conforming to the condenser temperatures 

of 52, 47, 42, and 37 °C. The refrigerant R407C-R600a-R290 

mixture condensing temperature is specified at fixed pressure 

as the average of bubble and dew points temperatures. The 

capillary tube exit pressure is adjusted at the saturation 

pressure conforming to 7 °C evaporator temperature. The 

increase of condenser temperature resulting in rise capillary 

tube inlet pressure, which leads to enhance mass flow rates for 

both refrigerants. For example, the ṁ increases with nearly 

26% as condenser temperature increases from 37 to 52 °C 

with tube diameter of 1.72 mm for both refrigerants. 

The alteration of ṁ against Tsub is presented in Fig. 13b for 

capillary tube diameter of 1.1176 mm, condenser temperature 

of 42 °C, and various capillary tube lengths. The mass flow 

rates boost with the increase of Tsub for both refrigerants under 

all investigated capillary tube lengths. The refrigerant at the 

exit of capillary tube for the flashing of the subcooling inlet 

will be minor and accordingly there is larger liquid fraction in 

the capillary tube. The density of refrigerant at the capillary 

tube entrance increased with the boosting of Tsub, which leads 

to greater refrigerant ṁ at identical volumetric flow. As can be 

detected from Fig. 13b, the R407C-R600a-R290 mixture mass 

flow rates are greater than those of R22 and ranged between 
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1.7% and 4.5% for all inspected Tsub and different capillary 

tube lengths. 

 

 

  

Fig. 13. Impact of operating conditions on mass flow rate; condenser temperature (a) and degree 

of subcooling (b). 

 

5. CONCLUSIONS 

The mass flow rate of R22 and its alternative R407C-R600a-

R290 refrigerant mixture across adiabatic straight capillary 

tube are inspected utilizing back propagation artificial neural 

network method trained by previously published experimental 

measurements from open literature. Capillary tube has mainly 

nine controlling parameters divided into three groups. These 

groups are capillary tube geometry, refrigerant properties, and 

working conditions parameters. The geometric parameters are 

the tube length and diameter. The refrigerant properties 

parameters are liquid viscosity, liquid specific heat, liquid 

specific volume, heat of vaporization, and surface tension. 

The working conditions parameters are the inlet pressure and 

degree of subcooling. These nine parameters are specified as 

independent parameters and utilized to establish the BP-ANN 

models to estimate the mass flow rate across adiabatic straight 

capillary tubes. Three BP-ANN models are constructed, two 

separated models for each inspected refrigerant and the third 

model is a general model for both refrigerants together. The 

two refrigerants BP-ANN models trained for mass flow rates 

match perfectly with experimental measurements. These 

models show relative differences of the trained mass flow 

rates within ± 0.02% and ± 0.016% for R22, and R407C-

R600a-R290 mixture, respectively. Regarding the general 

model, the relative differences in the trained mode are within 

± 0.02% for the two refrigerants. On the same hand, the 

predictive performance of the three proposed BP-ANN 

models is inspected as well. It shows well correlation with 

experimental measurements of the mass flow rates previously 

published by other authors. The relative differences of the 

mass flow rates calculated by the three BP-ANN models in 

the predictive mode from the measurements are within ±0.5%, 

+0.38%/+0.41%, and -1.28%/-1.32% for R22, R407C-R600a-

R290 mixture, and both refrigerants, respectively. The BP-

ANN models are robust tools for estimating the two inspect 

refrigerants mass flow rates through adiabatic straight 

capillary tube. The mass flow rate through the capillary tube is 

affected in various extents by the operating parameters and 

capillary tube geometry. The impacts of capillary tube 

geometry and operating conditions on the refrigerant mass 

flow rate across capillary tube are also investigated and 

discussed. It is found that, the mass flow rate is directly 

proportional to the capillary tube diameter, condenser 

temperature, and degree of subcooling. On the other hand, the 

mass flow rate is found to be inversely proportional to 

capillary tube length. 
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