
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 6 (2019), pp. 873-878
c©International Research Publication House. http://www.irphouse.com

A Comparative Analysis of Isotropic and Anisotropic Features on Natural
Convection in a Permeable Cavity

Pallath Chandran1, Nirmal C. Sacheti1, Ashok K. Singh2, B. S. Bhadauria3

1Department of Mathematics, College of Science, Sultan Qaboos University, PC 123, Al Khod, Muscat, Sultanate of Oman.
2Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
3Department of Mathematics, School of Physical Sciences, Babasaheb Bhimrao Ambedkar University,

Lucknow 226025, (U.P.), India.
E-mail IDs: chandran@squ.edu.om ; nirmal@squ.edu.om ; ashok@bhu.ac.in; mathsbsb@yahoo.com

ORCIDs: 0000-0003-0105-0870 (Pallath Chandran), 0000-0003-0124-0586 (Nirmal C. Sacheti)

Abstract:
The natural convection process occurring in finite cavities
is a subject of great research interest in many technological
applications. When the cavity has 4-sided walls, the thermal
conditions prevailing on these boundaries play significant roles
on the flow and thermal characteristics. There are a number
of applications where the thermal wall conditions are typically
adiabatic on the side vertical walls while the lower and upper
walls are isothermal with different temperatures. Moreover,
depending upon the nature of applications, one has to consider
the isotropic or anisotropic features of the hydrodynamical
and thermal characteristics of the porous material. This
paper deals with steady laminar natural convective Darcian
flow of a viscous incompressible fluid in a finite trapezoidal
cavity whose side walls are vertical and the upper wall is
slanted. The vertical side walls of the cavity are assumed to
be subject to no heat flux condition while the remaining walls
are kept at uniform temperatures. We have solved numerically
the governing non-dimensional partial differential equations
together with the appropriate sets of boundary conditions
for velocity and temperature. In order to bring out the
salient features of non-isotropy versus isotropy, the effects of
a number of important non-dimensional quantities, namely,
Rayleigh-Darcy number, aspect ratio, inclination parameter,
permeability ratio and thermal diffusivity ratio parameters have
been discussed in relation to the streamlines and isotherms.

AMS subject classification: 76S05, 76R10, 80A20.
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1. INTRODUCTION

Natural convective flows of viscous fluids in finitee
enclosures are encountered in several engineering and
industrial applications such as heating and cooling of buildings,
electronic devices used for cooling purposes, production of
geothermal energy from reservoirs, and filtration, among
others. In applications involving porous media flows, it
is common practice in literature to consider and distinguish
between isotropic and anisotropic features of the underlying
porous bed with a view to bring out the added influence
of anisotropy vis-à-vis isotropy in its physical and thermal

descriptions. It is known that the permeability and thermal
diffusivity of a permeable medium can be considered to
be isotropic or anisotropic depending on the geometrical,
physical and thermal conditions relevant to an application.
The importance of the orientations of the principal axes with
regard to permeability and thermal diffusivity thus cannot be
overlooked. In view of the inherent difficulties of theoretically
analyzing porous media flows, it is common practice in the
literature to assume the porous bed to be isotropic. However,
there are a number of applications wherein the anisotropic
nature of the permeability and thermal diffusivity of the porous
matrix becomes important. Anisotropy of the permeability in a
porous medium is a consequence of the orientation and shape
of the pores constituting the porous bed. This in turn renders
the heat transfer features also direction dependent.

In the literature, a large number of mathematical models have
been employed and analyzed to investigate the influence of
anisotropic properties of porous media in natural convective
flows [1–5]. In such investigations, one has to take into
consideration the orientation of the principal axes. However,
the orientation of the principal axes varies from one application
to another. For instance, in several studies, one of the principal
axes of the anisotropic porous matrix has been assumed to
be oriented in the vertical direction while in some other
applications, this orientation could even be variable [6, 7].

Another important factor one has to consider in the flow
and heat transfer of natural convection studies of viscous
fluids in vertical enclosures, is concerned with the applied
thermal conditions on the bounding walls in addition to the
anisotropic features of the porous bed, see, e.g., [8–19]. These
thermal conditions depend very much on the specific type of
engineering or industrial problem being investigated. Some of
the well-known thermal conditions on the boundaries of the
enclosures considered in the literature correspond to the walls
being adiabatic or isothermal. The walls of the enclosure could
also be subject to ramped temperature, Newtonian heating,
Robin condition, etc. It is also pertinent to analyze the effect of
a specific thermal condition on a particular bounding wall since
the influence of buoyancy forces arising out of the heating or
cooling or heat flux at different walls usually lead to different
flow and heat transfer features in the cavity. Keeping these
in view, we have investigated the coupled effects of thermal
forces and anisotropy of the porous bed on the flow and heat
transfer of a viscous incompressible fluid inside a trapezoidal
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porous cavity in which the upper bounding wall is sloping at an
angle θ to the horizontal. The present study is a sequel to the
work reported in [18, 19]. Our main focus in this study is to
directly compare some salient features of the isotropic versus
anisotropic features of the permeable medium on the flow and
heat transfer characteristics.

A brief physical description of the problem and its
mathematical formulations for the isotropic and anisotropic
cases are given in Sections 2–4. In Section 5, the numerical
solution procedure of the governing equations has been
presented. In the last Section 6, we have exhibited the
streamlines and isotherms of the convective flow for some
representative values of the governing parameters. The
influence of anisotropy in the porous medium has been
discussed in comparison to the corresponding isotropic case.

2. PHYSICAL DESCRIPTION

It is well-known that the flow and heat transfer features of
a fluid passing through a porous medium are complex, and
are considerably modified from the conventional flows. The
complexity of the flows arise due primarily to the nonlinear
nature of the governing partial differential equations and the
associated boundary conditions. When the underlying medium
is subject to anisotropic features, the analysis of the ensuing
flow becomes much more complicated. However, as indicated
in the previous section, flows through anisotropic media are
widely encountered in a number of practical applications. In
the following, we have thus analyzed the steady free convective
flow in a non-rectangular trapezoidal cavity of width L and
height H , which is filled with a porous material whose
permeability and thermal conductivity are both assumed to
be anisotropic. With respect to the 2-D Cartesian coordinate
system Oxy, we assume that the y−axis is along the left
vertical wall of the cavity while the x−axis is along the
horizontal lower side. The sloping upper surface of the cavity
is inclined at an angle θ to the horizontal. As regards the
thermal conditions on the walls of the enclosure, the vertical
surfaces of the enclosure are taken as adiabatic while the lower
and upper surfaces are maintained at constant temperatures Th
and Tc, respectively. It is further assumed that Th > Tc ,
which induces natural convection within the enclosure. As
stated above, our main aim in this work is to compare the
effects of isotropic versus anisotropic features of the porous
medium properties of permeability and thermal diffusivity on
the flow and heat transfer. To this end, we shall first present
the equations governing the isotropic flow and thereafter the
corresponding equations of anisotropic case will be presented.
We then compare the differences in flow and heat transfer
features induced by anisotropy in an otherwise isotropic flow.

3. GOVERNING EQUATIONS FOR ISOTROPIC CASE

The usual equations of continuity, momentum and energy for
the flow in the isotropic porous medium are given by

∇ ·V = 0 (1)

µV + κ (∇p+ ρg ~ ) = 0 (2)

(V · ∇)T − λ
(
∇2T

)
= 0 (3)

where V is the flow velocity, µ the viscosity, κ the permeability
of the porous medium, p the pressure, g the gravitational
acceleration, λ the thermal diffusivity, and T is the temperature.

In order to transform the governing equations to
non-dimensional forms, we write

(x̃, ỹ) = (x/L, y/L) , (ũ, ṽ) = (Lu/λ, Lv/λ)

T̃ =
T − Tc
Th − Tc

R1 = ρ0gβκL(Th − Tc)/(µλ)

(4)

In the above, R1 is called the Rayleigh-Darcy number. The
quantity β, appearing in the expression forR1, is the coefficient
of thermal expansion, which arises from the Boussinesq
approximation whereby one expresses the variation of fluid
density ρ in the form

ρ = ρ0 [1− β(T − Tc)] (5)

Obviously, the important parameter quantity R1 exhibits
the combined effects of buoyancy and permeability. We
now introduce the stream function Ψ defined by u =
∂Ψ/∂y, v = −∂Ψ/∂x. It can be verified that the continuity
equation (1) is satisfied by Ψ. Using Eq (4) and the
stream function, Eqs (1)–(3) can be re-expressed in the
following non-dimensional forms (neglecting the “tilde” on the
quantities, for convenience):

∂2Ψ

∂x2
+
∂2Ψ

∂y2
= −R1

∂T

∂x
(6)

u
∂T

∂x
+ v

∂T

∂y
=
∂2T

∂x2
+
∂2T

∂y2
(7)

The boundary conditions relevant to the problem, in
non-dimensional form, become

Ψ = 0 on all boundaries

T = 1 at f3(x, y) = 0 and T = 0 at f4(x, y) = 0

∂T

∂n
= 0 at f1(x, y) = 0 and f2(x, y) = 0 (8)

where the functions f1 , f2 , f3 and f4 represent boundaries
of the physical trapezoidal domain, and n is the normal to the
corresponding boundaries [19].

4. GOVERNING EQUATIONS FOR ANISOTROPIC
CASE

When the porous material is anisotropic in both permeability
and thermal diffusivity, these quantities are denoted by the
tensors Kxy and αxy , respectively, and are given by

Kxy =

[
Kx 0
0 Ky

]
, αxy =

[
αx 0

0 αy

]
(9)
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where the quantities with the subscripts have their usual
meanings. The counterparts of the governing equations (1)–(3)
of the isotropic case, modified for the anisotropic porous
medium, now become

∇ ·V = 0 (10)

µV +Kxy (∇p+ ρg ~ ) = 0 (11)

(V · ∇)T −∇ · (αxy∇T ) = 0 (12)

where the symbols have the same meaning as in Section 3.

The non-dimensionalization process of Eqs (10)–(12) follows
the same procedure as in Eq (4) except that we now have to
introduce new non-dimensional quantities to account for the
anisotropic features of the porous medium. We thus define two
new quantities K and α — ratios of the tensor components
of permeabilities and thermal diffusivities, respectively — and
re-define the non-dimensional velocity components and the
Rayleigh-Darcy number also. These are given by

K = Kx/Ky , α = αx/αy

(ũ, ṽ) = (Lu/αy, Lv/αy) , (13)
R2 = ρ0gβLKx(Th − Tc)/(µαy)

In terms of the stream function Ψ, the counterpart of Eq (6)
now becomes

K
∂2Ψ

∂x2
+
∂2Ψ

∂y2
= −R2

∂T

∂x
(14)

while the energy equation assumes the form

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂x2
+
∂2T

∂y2
(15)

The boundary conditions remain the same as Eq (8) in
Section 3.

5. SOLUTION PROCEDURE

In this section, we shall describe briefly the main steps in the
solution procedure. We shall do this first for the anisotropic
case. The boundary value problem described by Eqs (14), (15)
and (8) are solved using an algebraic grid generation method
combined with a finite difference method. To this end, the
trapezoidal physical domain is transformed to a regular unit
square domain [18, 19]. This is accomplished by introducing a
set of new independent variables ξ and η:

ξ = ξ(x, y), η = η(x, y) (16)

where 0 ≤ ξ, η ≤ 1. Following [18–20], ξ and η can be
written as

ξ =
x− f1(x, y)

f2(x, y)− f1(x, y)
(17)

η =
y − f3(x, y)

f4(x, y)− f3(x, y)
(18)

where fi(x, y) = 0, (i = 1 . . . 4) represent the boundaries
of the physical domain. A detailed description of the

algebraic grid generation method is available in [21]. Using
the transformations (17) and (18), one can obtain the
relation between the physical and computational domains
[18]. We shall first perform the numerical computation in
the transformed unit square domain. For this, we transform
Eqs (14), (15) and (8) from the physical xy−domain to the
computational ξη−domain using the transformation

∂ϕ

∂x

∂ϕ

∂y

 =


∂ξ

∂x

∂η

∂x

∂ξ

∂y

∂η

∂y



∂ϕ

∂ξ

∂ϕ

∂η

 (19)

Using Eq (19), Eqs (14) and (15) can be transformed in the
forms

b1(K)
∂2Ψ

∂ξ2
+ b2(K)

∂2Ψ

∂η2
+ b3(K)

∂2Ψ

∂ξ∂η
+ b4(K)

∂Ψ

∂ξ
(20)

+b5(K)
∂Ψ

∂η
= −R2

(
a1
∂T

∂ξ
+ a2

∂T

∂η

)

{a1u+ a3v − b4(α)} ∂T
∂ξ

+ {a2u+ a4v − b5(α)} ∂T
∂η

(21)

= b1(α)
∂2T

∂ξ2
+ b2(α)

∂2T

∂η2
+ b3(α)

∂2T

∂ξ∂η

where the functionals a1, . . . , a4, b1, . . . , b4 are defined as

a1 =
∂ξ

∂x
, a2 =

∂η

∂x
, a3 =

∂ξ

∂y
, a4 =

∂η

∂y
,

b1(s) = sa21 + a23 , b2(s) = sa22 + a24 , b3(s) = 2(sa1a2 + a3a4) ,

b4(s) = 2

(
s
∂2ξ

∂x2
+
∂2ξ

∂y2

)
, b5(s) = 2

(
s
∂2η

∂x2
+
∂2η

∂y2

)
,

(22)

s being either of K or α. The components of velocity, u and v,
can be obtained using

u = a3
∂Ψ

∂ξ
+ a4

∂Ψ

∂η
, v = −

(
a1
∂Ψ

∂ξ
+ a2

∂Ψ

∂η

)
(23)

The physical boundary conditions, when transformed into the
unit square domain, become

Ψ = 0 on all boundaries ,

T = 1 at η = 0 and T = 0 at η = 1 ,

(a1ηx + a3ηy)
∂T

∂ξ
+ (a2ηx + a4ηy)

∂T

∂η
= 0 at ξ = 0 and ξ = 1

(24)

For the flow and heat transfer in the isotropic porous medium,
a similar procedure as stated above is employed. In this
case Eqs (6) and (7), in conjunction with Eq (19), transform,
respectively, to

β1
∂2Ψ

∂ξ2
+ β2

∂2Ψ

∂η2
+ β3

∂2Ψ

∂ξ∂η
+ β4

∂Ψ

∂ξ
+ β5

∂Ψ

∂η
(25)

= −R1

(
a1
∂T

∂ξ
+ a2

∂T

∂η

)
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{a1u+ a3v − β4}
∂T

∂ξ
+ {a2u+ a4v − β5}

∂T

∂η
(26)

= β1
∂2T

∂ξ2
+ β2

∂2T

∂η2
+ β3

∂2T

∂ξ∂η

where

a1 =
∂ξ

∂x
, a2 =

∂η

∂x
, a3 =

∂ξ

∂y
, a4 =

∂η

∂y
,

β1 = a21 + a23 , β2 = a22 + a24 , β3 = 2(a1a2 + a3a4) ,

β4 = 2

(
∂2ξ

∂x2
+
∂2ξ

∂y2

)
, β5 = 2

(
∂2η

∂x2
+
∂2η

∂y2

)
(27)

As before, the velocity components u and v can be obtained
using Eq (23). Also, the boundary conditions for solving
Eqs (25) and (26) are as given in Eq (24).

 

 

 

Fig 1. Streamlines (top) and Isotherms (bottom) for
Ar = 2, R1 = R2 = 100, θ = 0◦ :
Left: Isotropic, Right: Anisotropic

 

 

Fig 2. Streamlines (top) and Isotherms (bottom) for
Ar = 2, R1 = R2 = 100, θ = 10◦ :
Left: Isotropic, Right: Anisotropic

It may be noted that the solutions obtained in the unit square
domain described by the above boundary value problems have
to be transformed back to the physical trapezoidal domain. The
details of the numerical solution procedure using a suitable
finite difference method are available in our earlier works [18,
19], and are not given here, for brevity.

 

 

 

 Fig 3. Streamlines (top) and Isotherms (bottom) for
Ar = 2, R1 = R2 = 500, θ = 10◦ :
Left: Isotropic, Right: Anisotropic

 

 

 

 

 

 

 

 

    

Fig 4. Streamlines (top) and Isotherms (bottom) for
Ar = 2, R1 = R2 = 100, θ = 20◦ :
Left: Isotropic, Right: Anisotropic

 

 

 

 

    

Fig 5. Streamlines (top) and Isotherms (bottom) for
Ar = 4, R1 = R2 = 100, θ = 10◦ :
Left: Isotropic, Right: Anisotropic
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6. DISCUSSION

In natural convection studies involving finite enclosures, it is
instructive to plot contours of streamlines and isotherms, and
analyze their variations with the key flow parameters in order
to assess the influence of geometrical and physical phenomena
represented by these parameters. We have thus presented in this
section some representative figures illustrating the variations
of streamlines and isotherms for a host of parameters, namely,
Rayleigh-Darcy number Ri, (i = 1, 2), inclination angle θ,
and aspect ratio Ar. Since our emphasis in this study is to
compare the hydrodynamical and thermal characteristics of the
flow for isotropic vis-à-vis anisotropic porous media, we have
assumed fixed values for the anisotropic parametersK (= 1.2)
and α (= 1.2) in all illustrations.

Figures 1–5 exhibit the variations in streamlines and isotherms
in the confines of the trapezoidal cavity for different values of
Ar,Ri and θ. For ease of comparison, we have assumed that the
Rayleigh-Darcy numbers R1 (isotropic) and R2 (anisotropic)
are equal. In all figures, the top pair represent the streamlines
while the bottom ones are the isotherms. Furthermore the left
contours in each pair correspond to isotropic medium and the
right ones relate to anisotropy.

In Fig 1, we have shown the plots for a rectangular cavity
for fixed values of Ar (= 2), and R1 = R2 (= 100). It is
apparent that isotropic and non-isotropic features significantly
affect the ensuing fluid motion and convection currents. For
instance, the streamline contours consist of four distinct loops
for isotropic media while the anisotropic effect clearly changes
the corresponding circulation pattern to two loops in the
cavity. In other words, the fluid circulation pattern in an
isotropic medium is profoundly checked by the anisotropy
of the medium. A similar observation is prevalent for the
isotherms as well. It is worth mentioning that the thermal
convection currents dominate the whole cavity space for both
types of porous media. However, the nature of the convection
for an isotropic medium is a bit oscillatory as compared to the
anisotropic counterpart.

The contours in Fig 2 correspond to a trapezoidal enclosure
with the upper surface inclined at an angle of 10o to the
horizontal, other parameters being the same as in Fig 1. Here
also, the curves show qualitatively similar behavior as in Fig 1.
However, the fluid circulation inside the non-rectangular cavity
is altered, particularly for the isotropic medium. As regards
the thermal convection, it is worth noting the formation of thin
thermal boundary layers near the sloping surface.

In Fig 3, we have shown the streamlines and isotherms
corresponding to θ = 10o, Ar = 2, and R1 = R2 (= 500). For
higher values of Rayleigh-Darcy number, the circulations are
broadly similar — nonetheless, intense — for both isotropic
and anisotropic media. As regards isotherms, we observe that
the patterns are strikingly similar. However, the convection
currents are more confined to the upper and lower surfaces, in
line with the thermal physics of the problem. It may also be
noted in passing that the conduction effects are starting to be
visible as the Rayleigh-Darcy number jumps to higher values.

In order to assess the effect of inclination angle of the upper

sloping surface on the circulation and convection currents, we
have plotted in Fig 4 the level curves of stream function and
temperature for θ = 20o. This figure has to be contrasted
with Figs 1 and 2 in order to ascertain the effect of changing
the upper surface slopes. In this comparison, it is quite
apparent that the inclination of the upper surface indeed affects
significantly both streamlines and isotherms. As regards the
effect of isotropy versus anisotropy (cf. Fig 4), it is obvious that
the nature of both fluid circulation as well as thermal currents
of isotropic medium are grossly suppressed by anisotropic
features. This again re-iterates our earlier observations.

The influence of changing the aspect ratio of the enclosure
is depicted in the final figure 5. In this figure, we have
shown the contours for Ar = 4 which corresponds to
a doubling of the horizontal extent of the cavity vis-à-vis
earlier illustrations. Once again, the fluid circulation (with
5 loops) for isotropic case dominates over the corresponding
anisotropic circulation (3 loops). Similar behavior is apparent
for isotherms. Moreover, the longer horizontal extent of
the cavity results in more oscillations in the isotherms. In
summary, we conclude that the anisotropy of the porous
medium clearly suppresses the intensity of circulation as well
as convection currents.
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