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Abstract  

The integration of microgrids into utility networks is often 

accompanied by several challenges among which is 

unintentional islanding. Islanding occurs in a microgrid when 

the utility grid is disconnected from the microgrid by the 

opening of the utility circuit breaker at the point of common 

coupling (PCC). An islanding detection method based on 

monitoring the voltage and current at the utility circuit breaker 

during the transient period prior to islanding is presented in this 

paper. In the proposed method, the negative sequence 

components of the voltage and current are acquired at the utility 

circuit breaker. The features used to distinguish islanding from 

non-islanding conditions are extracted from these negative 

sequence components using the discrete wavelet transform 

(DWT). These features which are the energy and standard 

deviation of the detail coefficients together with the load on the 

microgrid constitute a feature vector which is used to train an 

artificial neural network (ANN) to detect islanding. Simulation 

has been carried out using a hybrid renewable energy system 

microgrid which consists of a solar PV array, wind power 

system, diesel generator, and battery storage. The results 

illustrate that the method is reliable and fast. 

Keywords: artificial neural network, discrete wavelet 

transform, islanding, microgrid, non-detection zone 

 

I. INTRODUCTION  

There has been an increase in the use of distributed generation 

(DG) nowadays due to emerging energy problems, 

environmental issues, the development of semiconductor-based 

power converters [1] as well as privatisation and deregulation 

of the electricity market [2] amongst others. DG has several 

advantages such as reduction of transmission/distribution line 

losses, voltage profile improvement as well as overall 

improvement of power quality and reliability. However, DG 

also introduces some problems in the electricity network such 

as unintentional islanding, reverse power flows, and protection 

concerns. In order to maximise the benefits of DG and for better 

control, the DG units are usually integrated into a microgrid [2]. 

A microgrid is a local electrical network that consists of power 

generation sources, loads, a means of delivering power from 

the generation units to the loads, and may be connected to a 

larger utility power system that operates to balance the power 

supply and demand within the microgrid [3]. Therefore, a 

microgrid can support local loads in islanding mode, unlike 

grid-connected DG units which are shut down during islanding. 

Islanding occurs when a DG device or microgrid continues to 

supply local loads after it has been disconnected from the utility 

grid.  

The utility usually dictates the voltage and frequency of the 

microgrid in the grid-connected mode, and the DG units can 

share the active and reactive powers [4]. However, in islanding 

mode, the DG units should regulate the voltage and frequency 

of the microgrid and supply the load demands. Islanding is, 

therefore, one of the most critical problems in microgrids and 

can occur intentionally or unintentionally. The occurrence of 

faults in the utility network is the main cause of unintentional 

islanding. The effects of islanding on the microgrid include 

voltage and frequency instability, power quality problems, 

synchronization difficulties during reconnection to the utility 

grid as well as operator safety hazards. It is therefore imperative 

that islanding events be accurately detected and within 2 s of 

their occurrence according to IEEE 1547-2003 standards [5]. 
This paper presents an islanding detection approach based on 

monitoring the transient signals at the utility side prior to 

islanding in order to ensure safe operation of the microgrid and 

utility grid. 

Section II of this paper presents a summary of the various 

islanding detection schemes. In section III, the theoretical 

background of the proposed technique is presented. Section IV 

is a description of the system under study. The proposed 

islanding detection method is presented in section V. Section 

VI is the simulation results and discussion, and section VII is 

the conclusion. 

 

II. ISLANDING DETECTION METHODS (IDMs) 

The most important performance indices of IDMs are the 

detection time and non-detection zones (NDZs) [1]. A good 

islanding detection method should have a short detection time 

that satisfies the IEEE 1547-2003 standards and is free of NDZs. 

NDZs refer to the operating range of active power (∆P) and 

reactive power (∆Q) mismatch between the utility grid and 

microgrid where the given technique is not able to detect 

islanding [6]. Most IDMs work reliably during conditions of 

sufficient power exchange between the microgrid and utility 

grid but might fail to detect islanding during conditions of 

minimal exchange [7]. In the grid-connected mode, if there are 

no power mismatches (∆P=∆Q=0) there will be no changes in 

the voltage amplitude or frequency of the microgrid after the 

outage of power in the utility grid and over/under voltage and 

over/under frequency relays will not be able to detect islanding. 
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IDMs are broadly classified into two categories; remote and 

local techniques. The remote techniques depend on a 

communication channel between the utility grid and the 

microgrid and are implemented at the utility side of the network. 

These techniques are the most reliable but their implementation 

is expensive due to the extra costs required in terms of 

communication equipment [6]. They are therefore reserved for 

large scale units and are not compatible for use in microgrids 

[3]. Local IDMs are often implemented at the microgrid side 

and monitor system variables such as current, voltage, 

frequency, harmonics, and active power at the DG units’ buses 

to detect islanding. Islanding is detected when these parameters 

reach a pre-set threshold. These methods can be further divided 

into passive and active methods. 

 

II.I. Passive Islanding Detection Methods 

Passive IDMs monitor the system parameters and act on a pre-

set threshold. These methods include: the use of voltage 

unbalance and total harmonic distortion of current [8], [9], 

unusual change in active power and frequency [10], change in 

reactive power [11], phase jump and vector shift detection [12], 

total harmonic distortion and voltage unbalance [12]. Other 

passive IDMs include over/under voltage and over/under 

frequency (OUV/OUF) [9], and the rate of change of frequency 

(ROCOF) [13]. Furthermore, new research on passive islanding 

detection methods using advanced tools like the wavelet 

transform [14] has also been carried out. In other methods, the 

wavelet transform is used together with a decision tree 

classifier [15], or neural network [11], [12] to determine the 

occurrence of islanding. These passive IDMs are easy to 

implement but most of them have significant NDZs or high 

error detection ratios. 

 

II.II. Active Islanding Detection Methods 

The active techniques inject disturbances in the distribution 

network so as to distort the current/voltage waveform, causing 

a change in its amplitude, phase or frequency. In the grid-

connected condition, the distortions get absorbed by the grid. 

However, when the DG is islanded, these distortions are 

designed to drive the operating point of the island to a level that 

triggers the system protection devices. Some of the active 

islanding detection techniques use impedance measurement. 

Here, a new frequency component is injected into the inverter 

output current and the voltage at the corresponding frequency 

is measured and used to determine the impedance [16]. Other 

active techniques involve the injection of a negative sequence 

current signal at the PCC [17]. Some other methods introduce 

positive feedback to cause perceptible changes in phase or in 

voltage [13]. In other methods, phase-locked loop circuits 

(PLLs) are used to introduce a disturbance in the inverter 

reference or inverter output. When islanding occurs, the phase 

in voltage or in current moves out of a pre-set threshold value, 

thereby causing the inverter to trip [18], [19]. These active 

IDMs are more effective than the local methods and are 

generally free from NDZs. However, they are not as fast as 

some of the passive methods because of the system’s inherent 

reaction time, and the cost of implementation is higher [3]. 

Moreover, the disturbances injected into the network can 

degrade the power quality [9]. 

There are also hybrid islanding detection methods that combine 

active and passive methods to make use of their advantages. In 

these methods, a disturbance is only injected into the microgrid 

when islanding is probable. Hence, they pose less power quality 

problems compared to active methods. Some of these methods 

include: positive feedback versus voltage unbalance [20], 

voltage versus reactive power shift [21], and adaptive reactive 

power disturbance and passive criteria [22]. These methods 

have lower islanding detection time and smaller NDZs. 

 

III. THEORETICAL BACKGROUND OF THE 
PROPOSED TECHNIQUE 

Islanding detection methods such as the ones mentioned above 
have generally been motivated by efforts to integrate distributed 
generation units into electrical grids especially inverter based 
units like solar PV systems. Hence, these methods are usually 
implemented within the source. However, advances in 
technology have led to the creation of microgrids with multiple 
sources; some of which are non-inverter-based. There is, 
therefore, a need to modify these methods to suit the multiple 
sources in microgrids. So rather than implementing the IDMs on 
each inverter or source, the IDMs should be implemented at the 
PCC. It is, therefore, the intent of this paper to propose an IDM 
which can be applied to microgrids. The method is focused on 
detecting the loss of power at the utility interconnection point 
(PCC), where the IEEE 1547–2003 interconnection standards 
are applied. 

 

III.I. Signal Processing and the Wavelet Transform 

The signals encountered in real-world applications are non-
stationary signals (their frequency content varies with time). 
Therefore, conventional signal processing techniques like the 
Fourier transform are not suitable for their analysis. This is 
because the time domain representation of a signal does not 
provide quantitative information on the frequency content of the 
signal. The Fourier transformed frequency representation, on 
the other hand, provides frequency content but doesn’t indicate 
the time localization of the frequency components. 
Consequently, analysing a non-stationary signal requires a 
transformation technique that can simultaneously provide a two-
dimensional time and frequency representation. Of the various 
time-frequency representation techniques, the wavelet 
transform provides information about a signal in the time-
frequency domain simultaneously [23].  

Wavelet analysis is a mathematical tool that uses short duration 
oscillating waveforms called wavelets with zero mean and sharp 
decay to zero at both ends, in place of stationary sinusoidal 
waveforms like in Fourier analysis. The wavelets are dilated and 
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shifted to vary their time-frequency resolution. In wavelet 
analysis, the wavelet function is compared with the input signal 
to get a set of coefficients that show how the two signals match. 
The coefficients are calculated using the continuous wavelet 
transform (CWT). The CWT of a function x(t) at a scale (a >
0), a ∈ R+∗  and translational value b ∈ R  is given by the 
integral 

Xω(a, b) =
1

|a|
1

2⁄
∫ x(t)ψ̅

∞

−∞

(
t − b

a
) dt                                     (1) 

where ψ(t) is a continuous function in both time and frequency 
domain called the mother wavelet, and the overline represents 
the complex conjugate operation  [24]. The mother wavelet 
serves as a source function for the generation of daughter 
wavelets which are simply the scaled and translated versions of 
the mother wavelet. The scale parameter determines the 
oscillator frequency and length of the wavelet, and the 
translation parameter dictates its shifting position.  

The discretisation of the CWT gives rise to the discrete wavelet 
transform (DWT). The DWT is therefore defined by using the 
discrete values of the scaling and translation parameters. To 
achieve this, set 𝑎 = 𝑎0

𝑚 and  𝑏 = 𝑛𝑏0𝑎0
𝑚 

This gives: 

ψm,n(t) = a0

−m
2 ψ(a0

−mt − nb0)                                              (2) 

where (m, n ∈ ℤ) , and m and n are the frequency and time 
localization respectively. 
The DWT of a discrete function x(k) can, therefore, be defined 
as 

DWT(m, k) =
1

a0
m1

2⁄ ∑ x(n)ψ (
(k − nb0a0

m)
a0

m ) n

                    (3) 

To implement the DWT, Mallat in [25] developed an approach 
called the Mallat algorithm (Mallat's Multi-Resolution Analysis, 
MRA). Here, the signal to be processed is passed through finite 
impulse response (FIR) high-pass filters (HPF) and low-pass 
filters (LPF) having different cut-off frequencies at different 
levels. The low-frequency content is known as the 
approximation (a) while the high-frequency content is known as 
the detail (d) in wavelet analysis. This approach can be repeated 
to further decompose the approximation gotten at each level 
until the desired level is attained.  

 

III.II. Artificial Neural Network (ANN) as Classifier 

Artificial neural networks (ANNs) are computational networks 

that attempt to simulate, in a comprehensive manner, the 

decision-making process in networks of neurons (nerve cells) of 

the organic central nervous system [26]. Neurons are usually 

ordered into layers, appropriately interconnected by means of 

unidirectional (in some cases bi-directional) weighted signal 

channels, known as connections (synaptic weights) [27]. 

The neurons work in parallel to solve specific problems. Fig.1 

[28] shows the architecture of a typical ANN with input signals: 

x1, x2, …, xn, weights: w1, w2, …, wn and an output signal: Y. 

Weights are the fundamental means of long-term memory in 

ANNs. A neural network (NN) ‘learns’ by repeated adjustments 

of the weights in order to adapt the system to a particular input-

output transformation task. The neuron calculates the weighted 

sum of the input signals and compares the outcome with a 

threshold value θ  [28]. Therefore, the output of a neuron with a 

sign activation function can be evaluated as 

Y = sign [∑ xiwi − θ

n

i=1

]                                                             (4) 

Other activation functions such as the softmax, step, linear and 

sigmoid functions [27] can also be used.  

Machine learning algorithms are classified into two main 

categories: supervised, and unsupervised learning. ANNs are 

classified under supervised learning. In supervised learning, 

each learning example consists of an input vector and a 

corresponding output value. i.e. during training, the training data 

set and corresponding targets are presented to the model. This 

starts with the initialisation of the network weights and biases. 

The weights and biases are then updated in order to minimize 

the mean square error MSE. The MSE is a measure of the 

average squared difference between the estimated values and 

what is estimated. This can be achieved using the gradient of the 

MSE otherwise known as the gradient descent algorithm. The 

gradient descent algorithm is a first-order iterative optimization 

algorithm used to find the minimum of a function, usually 

implemented using a technique known as backpropagation [27].  

Most of the neural networks used in practical applications are 

multi-layer neural networks consisting of one or more hidden 

layers. Typically, the network consists of an input layer of 

source neurons, at least one hidden layer of computational 

neurons, and an output layer of computational neurons [28]. The 

training process of a multi-layer NN is accompanied by 

additional challenges such as selecting the number of hidden 

layers, and deciding the number of neurons in the hidden layers. 

ANNs have been used in a wide range of applications including 

pattern classification, pattern recognition, optimization, 

prediction, and automatic control. Their applications in power 

systems include load forecasting, fault diagnosis/fault location, 

economic dispatch, and transient stability among others [29]. 

ANNs are often used as classifiers since they have the capability 

of learning complex mappings, linear or nonlinear from the 

input space to the output space [29]. 

 

Fig. 1: Architecture of a typical ANN 

 

IV. SYSTEM DESCRIPTION AND DISCUSSION 

The single line diagram of the system used in this work is 

shown in Fig. 2.The system consists of the following: 
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Utility: 25 kV source at 100 MVA short circuit level 

Line: 20 km line represented by its π model 

PV solar system: 350 kW 

Li-ion battery: 500 Ah  

Diesel generator: 50 kVA, 400V   

Doubly-fed induction generator (DFIG) wind power system: 

1.5 MW 

T1: 100 MVA, 25 kV/400 V 

T2: 200 kVA, 600 kV/400 V 

T3: 400 kVA, 600V/400 V 

T4: 2 MVA, 575 kV/400 V 

L1: 0.8 MW, L2: 150 kW, L3: 35 kW, L4: 1 MW 

 
Fig. 2: Grid-connected microgrid 

 
V. PROPOSED ISLANDING DETECTION METHOD 

Considering that islanding detection time and NDZ are the most 
important indices for evaluating the effectiveness of IDMs, this 
paper proposes a method for islanding detection which has no 
NDZ. The NDZ is eliminated because islanding conditions are 
identified by means of the discrete wavelet transform of the 
transient signals before the opening of the utility circuit breaker. 
An NDZ is created in other local methods due to a difference in 
active and reactive power between the load and generation in 
the microgrid when islanding occurs. Also, as the proposed 
method detects islanding prior to the opening of the utility 
circuit breaker, the islanding detection time is shorter since the 
circuit breaker operation time is eliminated. The method is also 
independent of the DG type because it is the utility side signals 
that are considered for islanding detection. It can, therefore, be 
used in inverter-based, synchronous machine-based or hybrid 
microgrids and does not introduce power quality problems in the 
network.  

In the proposed method, the negative sequence components of 
voltage Vn and current In at the utility circuit breaker are 
acquired. Negative sequence components are usually considered 
for disturbance analysis because they reflect the information 
contained in disturbance conditions. Also, this will reduce 
computational burden as it will be required that only two signals 
be analysed. The negative sequence components of voltage and 
current are expressed in symmetrical component analysis as: 

Vn =
1

3
(Va + α2Vb + αVc)                                                           (5) 

In =
1

3
(Ia + α2Ib + αIc)                                                              (6) 

where Va, Vb, and Vc are three-phase voltages, and Ia, Ib, and Ic 

are three-phase currents, and 𝛼 = 𝑒𝑗120° is the complex 
operator. The negative sequence components of the voltage and 
current are then processed using the DWT to extract useful 
information (features) that will be used to distinguish between 
islanding and other conditions. In this paper, the Daubechies 
mother wavelet (db4) has been used to extract the energy 
content and standard deviation of the detail coefficients of the 
negative sequence voltage and current waveforms. This is 
because the Daubechies wavelets are very suitable for power 
system transient analysis as studied in [30]. The negative 
sequence components of the voltage and current signals have 
been decomposed for 5 wavelet levels in this paper. This is 
because it was at level 5 that the difference in amplitude in the 
signals before and after islanding was most conspicuous. The 
five details extracted from the wavelet decomposition of each 
signal contain information that can help in islanding detection. 
However, the information is required in a numerical fashion, to 
form what is called a feature vector. The energy content and 
standard deviation in the details of each decomposition level are 
calculated using the detail coefficients in the corresponding 
level. The energy content (represented by the L2 norm) and 
standard deviation of detail 5 coefficients have been included in 
the feature vector in this paper.  
For a scalar-valued signal v(t) defined for t≥0, the L2-norm is 

defined as the square root of the integral of  𝑣(𝑡) 2, 

∥ v ∥2= (∫ v(t)2∞

0
dt)

1
2⁄

                                                             (7)  

A physical interpretation of the L2 norm is that if v(t) represents 

a voltage or a current, then ∥ v ∥2
2 is proportional to the total 

energy associated with the signal. 

The standard deviation SD, on the other hand, can be considered 
as a measure of the energy for a distorted signal with zero mean 
given as  

SD =
1

N − 1
∑(vi − μ)2

N

i=1

                                                            (8) 

where vi is the amplitude of the ith sample of the DWT of the 
signal at d5, N is the number of samples and µ is the mean of 
the DWT of the signal at d5. 

Loading has also been considered as a feature since the effect of 
islanding on the microgrid greatly depends on its load. The 
feature vector thus consists of the energy content and SD of 
detail 5 coefficients for both voltage and current, and the loading 
of the microgrid. The proposed feature vector has been 
evaluated for two different sets of data corresponding to 
islanding and non-islanding conditions. The non-islanding 
conditions include normal operation i.e. grid-connected 
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microgrid without any disturbances, and temporal faults in the 
utility grid (L-G, LL, LL-G, LLL and LLL-G faults) while the 
islanding condition is the outage of power in the utility grid. 

An ANN is used to classify the events into islanding and non-
islanding events. This is because the determination of a 
threshold for features extracted by the DWT is difficult, 
complex and different from network to network and it may even 
be unreliable [31]. The input to the ANN is the feature vector 
and the output is either a high (1) to indicate an islanding event 
or a low (0) to indicate a non-islanding event. The ANN used in 
this paper is a two-layer feedforward network with 7 sigmoid 
hidden neurons and one softmax output neuron. The ANN was 
trained using the scaled conjugate gradient backpropagation 
algorithm. 175 random events were generated at different 
loading conditions of the microgrid for both the islanding and 
non-islanding events. For each of these events, the feature vector 
was computed. 123 feature vectors were used to train the 
network, 26 feature vectors were used to validate the training 
strategy, and the last 26 feature vectors were used to test the 
performance of the training strategy. 

 

 

 

 

VI. SIMULATION RESULTS AND DISCUSSION 

The test system was modelled using Simulink/Matlab. The 

sample time used to solve the electric circuit was 5 µs. The 

sampling frequency was chosen to be 5 KHz, so as to resemble 

that of a typical digital relay [32]. The maximum frequency that 

can be captured using this arrangement is 2.5 KHz according to 

the Nyquist-Shannon theorem. Five decomposition levels were 

chosen. This is because it was in detail 5 (d5) that the difference 

between islanding and non-islanding conditions was most 

conspicuous. The two classes of data (islanding and non-

islanding) were simulated at different loading conditions of the 

microgrid (from 1.032 to 1.8 MW).  

For each event, the negative sequence voltage and current 

signals were extracted using a three-phase sequence analyser, 

loaded in the wavelet analyser toolbox, and the energy and SD 

for detail 5 coefficients calculated. The following waveforms; 

Fig.3-4, and Fig.5-6 are simulated results for both normal 

operation and islanding respectively. The test loading used in 

the waveforms was 1.8 MW and the islanding instant was 0.3 s 

(in Fig.5 and 6). The total simulation time was 0.5 s. Tables 1 

and 2 show sample values of the feature vectors used in training, 

testing and validating the ANN for islanding and non-islanding 

conditions respectively. SD5 and E5 are the standard deviation 

and energy of detail 5 coefficients. The performance of the ANN 

is shown by the graph in Fig.7 and the confusion matrix in Fig.8.

 

Table 1. Sample feature vector during normal operation 

 

 

 

 

 

 

 

Table 2. Sample feature vector during islanding 

Feature Vector  

Label Loading  

(MW) 

Voltage (detail 5) Current (detail 5) 

SD5 E5 SD5 E5 

1.032 0.048367640 0.399695699 0.035141357 0.289785974 1 

1.064 0.043468939 0.359158557 0.034905225 0.287836659 1 

1.096 0.040782325 0.336936572 0.034683876 0.286010714 1 

1.032 0.039179174 0.324106217 0.034477928 0.284312522 1 

Feature Vector  

Label Loading  

(MW) 

Voltage (detail 5) Current (detail 5) 

SD5 E5 SD5 E5 

1.032 0.001196777 0.009910682 0.017379617 0.143557438 0 

1.064 0.001193284 0.009882275 0.017360063 0.143393126 0 

1.096 0.001189770 0.009853641 0.017340497 0.143229342 0 

1.032 0.001186252 0.009824856 0.017321021 0.143067315 0 
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(a) 

 
(b) 

Fig. 3. (a) Negative sequence component of voltage during normal operation, (b) DWT at level 5

 
(a) 

 
(b) 

Fig. 4. (a) Negative sequence component of current during normal operation, (b) DWT at level 5 

 

(a) 

 

(b) 

Fig. 5. (a) Negative sequence component of voltage during islanding condition, (b) DWT at level 5

 

 

(a) 

 

 

(b) 

Fig. 6. (a) Negative sequence component of current during islanding condition, (b) DWT at level 5
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Fig. 7. ANN performance 

 

 

Fig. 8. Confusion matrix of ANN performance 

By comparing Fig.3-4 with Fig.5-6, it is evident that there are 

differences in the negative sequence components during 

islanding and non-islanding conditions. These difference are 

reflected in the DWT indices and an ANN will therefore be able 

to classify the events with high prediction accuracy. Fig.8 

validates the characteristic signature as the classification 

accuracy is 100%. Hence, the algorithm is reliable and fast. 

 

VII. CONCLUSION 

This paper has presented a new method for islanding detection 

in a microgrid based on the measurement of the negative 

sequence components of the utility voltage and current flowing 

through the utility circuit breaker. Islanding can be detected 

before its occurrence by selecting this point of measurement. 

The negative sequence component of the utility voltage and 

current have been processed by the DWT to extract the features 

used to detect islanding, in this case, the energy content and 

standard deviation of detail 5 coefficients. These features 

together with the load of the microgrid constitute a feature 

vector. Finally, an ANN has then been used as a classifier to 

differentiate islanding from other disturbances in the network. 

The results of the simulation show that the proposed method 

distinguishes between islanding and other disturbances with 

100% accuracy. This, therefore, makes it suitable to be 

implemented in practical systems.  
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