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Abstract 

A mathematical model and a method of numerical modeling of a 

developing low-amplitude pulsating laminar flow in a flat channel 

based on the boundary layer theory was developed. Hydrodynamic 

characteristics of laminar flows pulsating with low amplitudes at the 

entrance hydrodynamic length are presented and analyzed. 
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I.  INTRODUCTION 

Recently, there has been a significant amount of interest in the 
application of microchannel reaction apparatus [1]. Due to 
their high compactness, a high intensity of heat and mass 
transfer and a high rate of diffusion and chemical processes 
can be achieved. As a result, there is a high degree of 
completion of a chemical reaction. Therefore, there is an 
opportunity to use for its realization energy resources 
(including secondary resources) with a lower temperature 
level. Due to the small size of the microchannels of such 
devices, the Reynolds number Re does not exceed 2000. That 
is a reason why the flow regime in such channels is laminar. 
Heat exchangers with rectangular channels are more frequently 
used for cooling electronic equipment. 

In the field of biology, it is important to know the mechanism 
of the laminar pulsating flow while modeling the human 
breathing, the movement of blood in arteries and capillaries. In 
some cases, such flow is also carried out in biological 
microchip systems, which have a high development level last 
years (see, for example, [2]). These systems are designed to 
diagnose the activity of various human’s organs as well as for 
targeted and precisely dosed delivery of medicaments to them. 
Pneumatic micropumps with periodic displacement of fluid 
from free volumes are used for biomedical researches. Thus, a 
realization of calculating researches in this scientific field is 
important from practical and theoretical points of view. 

The entrance hydrodynamic length, defined as the distance 
from the channel entrance, where the velocity on the axis is 
99% of the velocity on the axis for a fully developed flow 
(UY=0 = 0,99UY=0, X→∞), for a laminar pulsating flow in 
accordance with the information [3] with the flow rate 
pulsating having relatively small frequency remains the same 
as with a steady flow. 

At present, there is insufficient information about the effect of 
pulsations of the laminar flow on the entrance hydrodynamic 
length and on the changing of hydrodynamic values along a 
channel length, which are necessary for a hydraulic calculation 
of microchannel biochips and heat exchangers. 

II. PROBLEM DEFINITION AND VALIDATION 

The distribution of the velocity components for a developing 
low-amplitude pulsating laminar flow in a flat channel is 
described by the following motion equation: 
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and the following continuity equation: 
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where p is the pressure, t is the time, u and υ are the velocities 
correspondingly along the x and y axis, ν is the kinematic 
viscosity, ρ is the density. 

This form of equations (1) and (2) corresponds to the boundary 
layer theory, and it is obtained by neglecting the terms in the 
full system of Navier–Stokes equations with a small order of 
value [4]. Since υ << u, there is no necessity in solving the 
equation of the momentum conservation law for the transverse 
velocity component. This kind of simplification was applied to 
solve the issue of a developing steady flow analytically in [5] 
and later numerically in [6]. The transverse velocity 
component has some influence both on solving the heat or 
mass transfer equation and on solving the motion equation (1). 
When Re < 100, it is impossible to neglect the solution of the 
motion equation for the transverse velocity component, since 
the entrance length becomes comparable or smaller than the 
height of the channel, and the transverse velocity component 
becomes comparable or larger than the longitudinal velocity 
component. The research area is limited by the Reynolds 
number in the range of 100 < Re < 2000. 

There are equations (1) and (2) for velocity, which have to be 
supplemented with an equation for finding the pressure 
gradient. This equation is obtained based on the integral 
continuity equation and is presented in the method of 
numerical solution. 

In a dimensionless form for a pulsating flow equations (1), (2) 
have the following form: 
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 is the dimensionless pressure gradient, 
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are the dimensionless longitudinal and transverse coordinates, 
ω is the rotational frequency, the signs < > and ‾ mean 
averaging over the cross section and over the time. 

In practice, there is a pre-included space before entering of the 
channel. Since A > 1, the flow moves in the opposite direction 
during the part of the period and enters in this pre-included 
space, what is actually a problem for modeling a pulsating 
flow associated with a large number of its geometrical 
parameters. Since A > 1 ˄  A ≈ 1, at some moments the 
transverse velocity component becomes comparable or larger 
than the longitudinal velocity component. In addition, for 
A ≈ 1 secondary pulsations can occur, as two countercurrent 
flows occur in the pre-included space, what can lead to 
instability about the axis of symmetry and the formation of 
vortices. For these cases, the model has to be supplemented by 
the motion equation for the transverse velocity component. 
The considered model leaves out of account the pre-included 
space and the possible asymmetry of the flow, therefore, the 
amplitude of average velocity pulsations over the cross section 
is limited by the range 0 1A . 

A computational domain scheme with boundary conditions is 
presented on the fig. 1. At the entrance to the channel 
(when 0X  ) a uniform velocity profile is defined. This 

simplification is valid for the Reynolds number Re > 100, 
when the thickness of the dynamic boundary layer is small in 
comparison with the height of the channel. When Y = Y0, the 
no-slip boundary condition is defined (the transverse and 
longitudinal velocities are equal to zero). When Y = 0, the 
symmetry condition is defined (the first derivative with respect 
to the transverse coordinate of the longitudinal velocity is zero 
and, accordingly, the transverse velocity is zero). At the output 
boundary (when X = X0) the condition of flow stabilization is 
defined (the first derivative with respect to the longitudinal 
coordinate of the longitudinal velocity is zero and, 
accordingly, the transverse velocity is zero). The condition of 
flow stabilization is defined on distance X0 which does not 
affect at the results of the calculations. 

 

Fig. 1. Computational domain scheme. 

The area of dimensionless pulsating frequencies is limited 
by 0S  . 

III. METHODS OF NUMERICAL SOLUTION 

The solution of the equation (4) was found by applying the 
finite difference method using an implicit stable time two-layer 
difference scheme. For approximation of the first derivative of 
the longitudinal coordinate, a “counter flow” scheme was used, 
since even for A < 1 with S >> 1, reversal flows can occur 
close to the wall [7]. At the problem statement level, the 
research area is limited by regimes without reversal flows, but 
there is no information about whether they will occur when a 
developing pulsating flow takes place. A central difference 
scheme is applied for approximation of the first derivative of 
the transverse coordinate. It was done to increase the 
approximation order of accuracy along the transverse 
coordinate till the second level using a simpler scheme. 

The given scheme is similar to the scheme for a steady 
developing flow, proposed and described in [8]. For the case of 
a pulsating flow only the non-stationary term was added to the 
motion equation and approximated with the first order. 

The spatial grid used to solve the system of linear equations 
obtained from (4) and (5) is presented on the fig. 2. An equal 
partition along the longitudinal and transverse coordinates is 
applied. The number of partitions along the X, Y, tω 
coordinates was equal to 64 × 64 × 256 and was found by 
successive doubling and by controlling of the difference of the 
obtaining results. 

 

Fig. 2. Spatial grid. 

To find the dimensionless pressure gradient P included in 
equation (4), the method was developed based on the fact the 
average velocity over the cross section is known at every 
moment of time. 
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where Ps is the pressure gradient corresponding to a steady 

stabilized flow, * 1 sin( )kU A t      is a given law of the 

average velocity changing over the cross section, n is the 
number of the pressure selection iteration. Since 

0U X      then there is 

*( ) 1 sin( )U X U A t      . During the iterations the 

certain value is added to P, that ( )U X   approaches 

*U  . The equation (9) is a rule for selecting a pressure 

gradient so the integral continuity equation can be satisfied. It 
is evident that the right term in the equation becomes equal to 
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zero only when the average velocity over the cross section is 
equal to the given velocity. When the small pulsating 
amplitudes of A take place, the pressure gradient is close to its 
stationary value, therefore, the coefficient Ps is used to 
accelerate the convergence. As an initial approximation, the 
pressure gradient is defined like equal to Ps. This method of 
determining the pressure gradient allows to obtain its correct 
value including negative value, using small number of 
iterations, what is possible with pulsating flows with a high 
frequency. 

The solution is carried out in the following order. 

1. The system of linear equations for Ui,j,k, obtained from the 
equation (4) is solved with a checking of the setting of the 
velocity profile. 

2. The values  Pi,k and Vi,j,k. are calculated. 

3. The comparison of the pressure gradient change with the 
required accuracy should be done as well as the return to step 
1. if there is a necessity. 

To solve the systems of linear equations obtained from the 
equation (4), the Gauss-Seidel method was applied. It is well 
suited for multi-core computing devices, since it does not 
require a sequential transition from point to point, which is 
obligatory, for example, with the shuttle method. The ASUS 
STRIX R9 FURY video card was used for calculations as a 
high-performance coprocessor with a peak performance of 7.2 
Tflop/s for single-precision numbers. The program [9] was 
created using the C++ language for the calculations where the 
C++AMP library was used to implement the calculations on 
the video card. A sufficient optimization of joint parallel 
calculations in the program between the central processor and 
the video card was carried out to increase the speed of its 
operation. The calculation time for one mode was less than 30 
minutes. 

The integration over the channel cross section was carried out 
by the Simpson method, and the integration over the time was 
made by the trapezoid method. The order of accuracy of this 
integration was highly competitive to the accuracy order of the 

difference approximation of differential equations, what allows 
to use machine resources efficiently. 

IV. VERIFICATION OF HYDRODYNAMICS CALCULATIONS 

Verification of the results of hydrodynamics calculations, 
obtained by using the program, was carried out before making 
the calculations in the given range of operating parameters. Up 
to the present moment, detailed researches of hydrodynamics 
with a pulsating flow at the entrance hydrodynamic length of a 
flat channel were not carried out. However, to verify the 
solution, it is possible to use the information about the steady 
developing flow and the stabilized pulsating flow. 

The result of the calculation of the steady developing flow 
obtained by the presented method and the results of the 
calculations of other authors are presented on the fig. 3 and 4. 
To obtain this result the following input data were used in the 
program: A = 0, S = 0 and grid size is 64×64×1. 

The entrance hydrodynamic length (EHL), defined as the 
coordinate where the difference between the velocity in the 
center of the channel and the velocity in the center of the 
channel with a stabilized flow is 1%, was LEHLS = 0.0115. The 
length of the closing of the boundary layers, which is 
determined analytically Targ S.M. [10], was L = 0.00644. It 
should be noted that the EHL was LEHL = 0.011 in [11] and 
[12] and LEHLS = 0.0113 in [13]. Thus, there is a sufficient 
accurate match of the results. It proves that the convective and 
diffusion terms in the motion equation are solved correctly as 
well as the method of finding the pressure gradient also works 
correctly. 

Comparison of the velocity profile at different points of the 
time with a stabilized pulsating laminar flow obtained in the 
program [9] with the results of the calculation in the program 
[14] is presented on the fig. 5. The results of calculations in the 
program [14] were published in [7], [15], [16]. Velocity 
profiles are the same. It means that the chosen numerical 
scheme for approximating the nonstationary, convective (along 
the longitudinal coordinate) and diffusion term, as well as the 
developed method, work correctly. 

  

Fig. 3. Distribution of longitudinal velocity component along 
the channel length. 1 – for Y = 0, 2 – 0,5Y0; 3 – results of 

numerical solution, 4 – Boboia data [6], 5 – Sparrow data [11], 
6 – Liu data [12]. 

Fig. 4. Profiles of longitudinal velocity component. 1 – for X = 
0, 2 – 0,001, 3 – 0,002, 4 – 0,005, 5 – 0,0625, 6 – results of 

numerical solution, 7 – Sparrow data [11]. 
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Fig. 5. Velocity profiles for S = 8 and A = 2/3. 1 – tω = 0, 2 – 

π/4, 3 – π/2, 4 – 3π/4, 5 – π, 6 – 5π/4, 7 – 3π/2, 8 – 7π/4, 9 –

 results of numerical solution for X = 0,0625, 10 – data from 

program [14] 

. 

V. RESULTS 

The change in the longitudinal velocity component on the 
channel axis is presented on the fig. 6a. It can be noticed that 

the time-averaged velocity U  coincides with the stationary 

SU , regardless of the pulsating frequency S. The phase shift 

and the change in the amplitude of the velocity pulsating are 
distinctly noticeable while passing from the quasi-stationary to 
the high-frequency pulsating mode. The length of the 
hydrodynamic stabilization varies with time. 

The changing in the coefficient of hydraulic resistance is 
presented on the fig. 6b. Time-averaged values of the pressure 

gradient P  correspond to the stationary SP . The amplitude of 

pressure gradient pulsations increases with an increasing of the 
dimensionless pulsating frequency S. 

Since SU U , for convenience of analysis, the stationary 

velocity component is subtracted from the longitudinal velocity 
component and the pulsating velocity component 

SU U U  is obtained. The pulsating component of the 

longitudinal velocity is average over the cross 

section sin( )U A t   , then the point of strong interest is to 

consider the ratio U A depending on the amplitude A and the 

pulsating frequency S of the average velocity over the cross 
section (see fig. 7). 

With an increasing of the pulsating frequency (going from fig. 
7a to 7b or from fig. 7c to 7d), looking at the changing of the 

profile’s shape  U A  at different points in time in a quasi-

stationary mode (S = 1), the way how the profiles at every 
point of the channel cross section vary in accordance with the 

average over the cross section U   and a shift in the phase of 

pulsating at S = 8 can be observed. Close to the entrance to the 
channel the phase displacement is almost negligible due to the 
fact that convective forces and the viscous friction prevail over 
the inertia, and further downstream the influence of the inertial 

component increases relative to the others and reaches a 
maximum with a stabilized flow. 

a 

 

b 

 

Fig. 6. Longitudinal velocity component at the channel axis (a) 
and the hydraulic drag coefficients (b) for A = 2/3. 1 – steady 

flow, 2 и 3 – average for S = 1 and S = 8; 4 –  tω = 0, 5 – π/4, 6 
– π/2, 7 – 3π/4, 8 – π, 9 – 5π/4, 10 – 3π/2, 11 – 7π/4, 12 – S = 

1, 13 – S = 8. 

The appearance of a weak asymmetry of profile pulsating over 
the time can be observed with an increasing of average over the 
cross section pulsating amplitude of the velocity from A = 1/3 
to A = 2/3 (going from fig. 7a to 7c or from fig. 7b to 7d). It 
proves the influence of the transverse velocity component, 
which becomes significant when the longitudinal velocity 
average over the cross section reaches its minimum value. 
When amplitudes of pulsating are A < 2/3, pulsations at the 
entrance hydrodynamic length over the whole cross section 
occur with the first harmonic of the frequency of average 
velocity pulsations over the cross section. 

The pulsating component of the transverse velocity SV V V   

related to the amplitude of pulsations is presented on the fig. 8. 
Similar phenomena, as for the longitudinal velocity 
component, are observed, what is a consequence of the direct 
connection of these components through the continuity 
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Fig. 7. Profiles of longitudinal pulsating velocity component for various time moment over the cross section X = 0,001 (1), X = 
0,004 (2), X = 0,008 (3), X = 0,012 (4). a – for A = 1/3 and S = 1, b – A = 1/3 and S = 8, c – A = 2/3 and S = 1, d – A = 2/3 and S 

= 8. 

equation. The motion equation is dominant in the system of 
equations (1) and (2). Equation (1) determines the physical 
laws for way how the flow will develop, since the influence of 
the transverse velocity on it is insignificant, what is confirmed 
by the results of the calculations. 

Since for A < 2/3 the velocity pulsations at the entrance length 
of the channel occur according to a harmonic law, the 
calculation results can be presented as the distribution of the 

relative amplitude AU/A and the pulsating phase U  of the 

pulsating velocity component (see fig. 9). It can be noticed that 
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Fig. 8. Profiles of transverse pulsating velocity component for various time moment over the cross section X = 0,001 (1), X = 0,004 
(2), X = 0,008 (3), X = 0,012 (4). a – for A = 1/3 and S = 1, b – A = 1/3 and S = 8, c – A = 2/3 and S = 1, d – A = 2/3 and S = 8. 

in the low-frequency or in the quasi-stationary mode (see fig. 
9a), the amplitude of pulsations on the axis monotonously 
increases along the channel length and decreases close to the 
wall. In the high-frequency mode of pulsations (see fig. 9b), the 
maximum amplitude of the pulsations shifts away from the 

channel axis, and the distance, where the stabilization of the 
amplitude and the phase occurs, sharply decreases. The phase 

U  of pulsations close to the channel entrance is close to zero. 

Both in quasi-stationary (see fig. 9c) and in the high-frequency 
mode (see fig. 9d), it rearranges to the phase distribution for 
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Fig. 9. Amplitude AU/A (a, b) and phase U  (c, d) of the pulsations of longitudinal velocity component. a, c – S = 4; b, d – S = 32. 

a stabilized pulsating flow monotonously along the channel. 

The changing of the pulsation amplitude of the longitudinal 
velocity component AU/A along the channel is presented on 
the fig. 10. It can be noticed that with an increasing of the 
pulsation frequency, the section length of its stabilization 
decreases, moreover, this section has the longest length on 
the channel axis. 

The stabilization lengths of LEHL, defined by 0 ( )YU X  , 

(LEHL)max, defined as the maximum in the period, by 

0 ( , )YU X t  , LAUEHL defined by the changing of AU/A along 

the channel length are presented on the fig. 11. The 
stabilization lengths along the channel were defined as the 
distance after which the magnitude changes no more than 
1%. It follows from the obtained results that LEHL = LEHLS for 
any S and A. However, the maximum length of the entrance 
hydrodynamic length (LEHL)max is longer and increases with 
increasing the amplitude of pulsations. Since S → 0 and 
amplitudes A < 2/3, the maximum length (LEHL)max ≈ 
LEHLS(1 + A), and with increasing frequency it approaches 
LEHLS. In the quasi-stationary mode: LAUEHL > LEHLS. In the 
high-frequency mode (S > 16) LAUEHL decreases sharply. 
Since a pulsating flow takes place, complete stabilization 
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during a period is achieved at slightly longer lengths than 
with a steady flow. 

 

Fig. 10. Amplitude of the pulsations of longitudinal velocity 
component AU/A. 1 – S = 1, 2 – S = 16, 3 – S = 64, 4 – Y = 0, 

5 – Y = 0,5Y0. 

 

Fig. 11. The entrance hydraulic length LEHL – (1), (LEHL)max – 
(2, 3, 4), LAUEHL – (5). 2 – A = 1/10, 3 – A = 1/3, 4 – A = 2/3. 

VI. CONCLUSION 

A mathematical model and method of numerical simulation 
of a developing low-amplitude pulsating laminar flow in a 
flat channel based on the theory of the boundary layer was 
developed. 

Time-averaged values of pressure gradient and velocity 
correspond to stationary values. The amplitude of pressure 
gradient pulsations increases with an increasing of the 
dimensionless pulsation frequency S. 

Close to the entrance to the channel the displacement of the 
velocity pulsation phase is almost negligible due to the fact 
that convective forces and viscous friction prevail over 
inertial values. 

The transverse velocity component begins to influence on 
the flow, when amplitudes of pulsations A > 2/3.  Pulsations 
in the entrance hydrodynamic length along the whole section 
occur with the first harmonic of the pulsation frequency of 

the average velocity over the cross section when amplitudes 
of pulsations A < 2/3. 

The stabilization length of the amplitude and pulsation phase 
of the velocity decrease with an increasing of the 
dimensionless frequency, moreover, this section has the 
longest length on the channel axis. 

It was found that the length of hydrodynamic stabilization 
varies with the time and depends on the frequency and 
amplitude of pulsations. Its value, determined by the time-
averaged velocity, is equal to the length for a steady flow. 
However, the maximum length of the entrance 
hydrodynamic length during the pulsation period increases 
with increasing of the amplitude of pulsations and decreases 
with increasing the frequency. 
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