Abstract
The concept behind stereoscopy is that two images that are marginally different are shown separately to the left and right human eyes. The brain combines these images to produce a perception of 3D vision. The storage data or transmission data required for stereoscopic image is twice or even more when compared to two-dimensional (2D) image. Thus, this initiate effective compression technique that reduces the storage requirement and transmission bandwidth required for stereoscopic images. A new compression model Symbols Frequency based Image Coding for Stereoscopic Image (SFICSI) is proposed in this article for stereoscopic image compression. In this new model the dissimilarity between left and right images and the left image is encoded separately using Symbols Frequency based Image Coding (SFIC). The decoding of the encoded data results in the synthesis of the retrieved left and right images with high compression ratio while at the same time maintaining the quality of the images. The recommended scheme is also compared with DWT based Arithmetic Coding (DWTAC). From the experimental analysis, it is observed that the proposed new SFICSI outperforms DWTAC.

Keywords: stereoscopic image, image compression, lossless compression, lossy compression

I. INTRODUCTION
Image stereoscopy is a research field that has received great notice recently. The main idea behind stereoscopy is that two images that are marginally different are shown in a particular technique to the human eyes. The brain combines these two images and perceives 3D vision[1]. The principle of stereoscopic work is, manipulating the ability of the Human visual system (HVS) to recognize the difference between two stereo pair images that result in the realization of a perceptual image with depth insight. This is the result of two interactions with respect to binocular vision namely fusion and suppression[2].

The advancements in the field of stereoscopic display and network technologies resulted in the widespread application of 3D image processing technologies in 3D television (3DTV), and Free Viewpoint Video (FVV) [2][3][4][5]. Other applications of stereoscopy include stereoscopic video cameras[7], judgement of position and distance, identification of objects, spatial manipulation of objects, navigation, and spatial understanding[8], medicine[9], military[10], industrial computer aided design[11] and photogrammetry[11].

Provision of high quality content is the key factor that indicate the success of 3D applications[12], but at the same time brings in new concerns and challenges[13][14][15]. The storage data and transmission data required for stereoscopic image is twice or even more when compared to two-dimensional (2D) image[16]. As a result, number of image compression systems has been proposed[2][17][18][19]. For the effective transmission of stereo pair images, for the use in 3D systems, compression is adopted before transmission. This initiated for designing efficient coder for the compression of images[20].

The method of reducing the redundant information in an image with the help of various encoding scheme to achieve lesser storage requirement but at the same time does not completely compromise the quality of image is known as image compression. The advantages provided by image compression include lesser transmission time and reduced storage requirement[21][22][23]. There is a recent shift from gray scale image compression related research work to color image compression due to the extensive use of color images in multimedia as well as over internet[24][25][26]. Thus, this research article focuses on color images from LIVE database. The image encoder works well with grayscale images. The spatial redundancy between two images that are marginally different or the stereo pair is exploited to achieve high compression ratio for stereoscopic images[20].

One of the approaches in stereo pair compression focus on disparity compensated residual system where one view acts as a base to predict the another and where coding of their difference takes place[20][27][28][29][30][31][32]. The commonly used approach here was the monoscopic encoding of one channel and then the prediction based encoding of the disparity vector or the residual image[20]. The compression scheme that involves the SFIC encoding of quantized disparity vector and the left image is the focus of this research article.

II. RELATED STEREOSCOPIC IMAGE COMPRESSION WORKS
Che-Chun et al. introduced a new model for stereoscopic images that captures distorted image’s spatial correlation[33]. The average Peak Signal to Noise Ratio (PSNR) obtained through this approach was 6.51. This approach motivated to develop a coding scheme for stereo images by avoiding the spatial correlation. Yu-Hsun and Ja-Ling proposed a new metric for stereoscopic image quality analysis[34]. The noticeable improvement is observed in performance even if one stereo image is generated from another stereo image. This initiated motivation to synthesize right image from the retrieved left image.

Ankit et al. compared the approaches for mixed resolution coding for stereo images with reference to their visual fatigue using three methods[35]. It was observed from the results that
use cases for each method was directly dependent on the time required for viewing, frame rate, and amount of down sampling. This directed to develop a coding scheme that uses a reference image and a disparity vector in the encoding process. Majia et al. developed a new model for stereoscopic image compression on the influence of depth cues as well as compression levels on the quality of the image on as well as depth on an autostereoscopic display[36]. It was observed from the results that the presence of stereoscopic cues helps the visual system in humans to make more reliable depth estimates. This motivated to develop a coding scheme where high compression ratio is attained without compromising the quality of the image.

Feng et al. proposed a new multimodal blind system where the quality valuation of multiply distorted stereoscopic images was completed[37]. The Root Mean Square Error (RMSE) obtained through this approach was 0.0757. This approach initiated to concentrate on a coding scheme where quality of the image is not compromised. Ratiq et al. developed a new model for image quality metric where the main idea was the reproduction of the signal produced by the simple and complex cells to calculate the linked binocular energy[38]. The average RMSE achieved through this method was 0.8741. This approach directed to reproduce the images after encoding using a decoder that uses SFIC decoding.

Kaaniche et al. proposed compression scheme for a 2D non-separable stimulating systems that enabled exact decoding and progressive reconstruction of still and stereo images[39]. The advantage was the yielding of attractive optimization of all the intricate decomposition operators. The PSNR obtained through this approach was 30.41 and the average Compression Ratio (CR) was 28.57. This approach motivated to reproduce the stereo pair images with high compression ratio and PSNR.

Balasubramanyam et al. recommended a novel coding scheme for natural stereo images where the algorithm could accurately capture joint statistics of residual sub band coefficients and luminance[40]. The average PSNR obtained through this approach was 41.0466. This approach initiated to develop a novel coding scheme where the removal of artifacts in depth image is completed by binary segmentation based depth filtering[41]. This directed to develop an encoder that includes compression of depth images in the encoder.

Tilo Struts proposed a new prediction technique where the image data is treated as interleaved sequence generated by multiple sources[44]. The method achieved lossless color image compression. The average CR obtained through this method was 13.613. Tilo Struts proposed a family of multiplier less transform for color images that was reversible and inspected their performance in lossless image compression[45]. The average CR obtained through this method was 12.48. This approach initiated to include color transforms before encoding.

Che-Chun Su proposed the OCMDNI[33] with Application of a no-reference Natural Stereopair Quality index (S3D-BLINOQ Index). OCMDNI achieved high correlations to S3D image quality using the novel bitrate and correlation NSS models. Here an automatic no-reference (NR) S3D image quality model was developed. In this model, it was possible to predict the quality of S3D images, that made it useful for practical applications. Here, 2D IQA algorithm was applied to left and right stereo pair images and the quality of the image was analyzed. The average CR obtained through this method was 1.61.

In 3D-BLINOQ Index, a convergent cyclopean was formed for an image using the disparity vector formed by evaluating the left and right images of stereoscopic image. The next stage consisted of extracting the spatial and wavelet domain features and bivariate and correlation NSS features. These features were extracted from the convergent cyclopean image. The mapping of the extracted features to human opinion scores were completed to predict quality S3D image[33]. The PSNR obtained through this approach was 6.51. This research article proposes a new compression technique for stereoscopic images using the left image difference vector. The technique named as Symbols Frequency based Image Coding for Stereoscopic Image (SFICSI) is analyses for Color Image Compression. The following section IV explains the proposed new SFICSI technique. The section V discusses about the experiments and results, analyses SFICSI and compares with DWTAC. Conclusions are drawn in section VI.

IV. STEREOSCOPIC IMAGE COMPRESSION

Two main factors that indicate the performance of an encoder are Compression Ratio (CR) and Peak Signal to Noise ratio (PSNR). CR gives clue of the rate of compression. PSNR is an indication of the quality of the reconstructed image after decoding.

a) Compression Ratio

The ratio of added size of the original left image and right image (l+r) and the added size of the compressed image (cl+cr) [49].

\[
CR = \frac{l+r}{cl+cr}
\]

b) Peak Signal to Noise Ratio

PSNR is an expression for the ratio between the maximum possible value (power) of a signal and the power of distorting noise that affects the quality of its representation[26].
The mathematical representation of the PSNR is as follows:

\[\text{PSNR} = 20 \log_{10}\left(\frac{\text{MAX}^2}{\text{MSE}} \right) \]

(2)

where, \(\text{MSE} \) (Mean Square Error) is the error factor. \(\text{MSEL} \) and \(\text{MSER} \) is initially calculated using Equation (3) and is fed into Equation to generate \(\text{PSNRL} \) and \(\text{PSNRR} \) (2).

\[\text{MSE} = \frac{1}{mn} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \| f(i,j) - g(i,j) \|^2 \]

(3)

Quantization process in the image compression technique results in the scaling of the data set by quantization factor that results in data loss that is irreversible and the respective encoding process becomes lossy compression[25].

A. Proposed new SFICSI Scheme

In this section, the new compression scheme for stereoscopic images namely, SFICSI, is explained, where SFIC[25] is used as the encoder. The flowchart of SFICSI is displayed in figure 1 while the flowchart of SFIC is displayed in figure 2.

In the initial stage of SFICSI, the transformed matrix of the left and right stereoscopic image is retrieved. Further, colour components of the stereoscopic left image and right image are extracted. In the next step quantization of the colour components of the transformed matrices is completed. Further the encoding scheme is completed using SFIC encoding[25] for the disparity vector, \(D \), obtained by mapping the dissimilarity between left and right image, and the left image \(L \). CR is calculated from the results of encoding using equation 1.

During the encoding process, separate symbol tables are generated for \(L \) and \(D \). A sample symbol table is shown in the following table I. The symbol table consists of pixel values(symb), frequency of symbols(count), and index of the pixels(index) in \(L \) and \(D \). In the symbol table, first column represents the unique elements, second column represents the frequency of symbols, and third column represents the index assigned to each of the unique elements. The input for the encoder is the index_matrix_o that contains the quantized \(L \) and \(D \) values rewritten in terms of index assigned in the symbol table. In the next stage, minimal frequency symbol matrix is generated.

An illustration of the methodology is explained below. For example, part of the source left image matrix is considered as \(L \) and part of source right image is considered as \(R \).

L	107 114 125 124 121
	105 95 101 102 104
	101 106 105 107 104
	107 107 98 84 110
	96 63 62 61 62

R	85 92 101 115 115
	115 93 99 99 99
	97 95 101 99 100
	102 99 100 92 85
	92 83 85 84 89

The following CL and CR represents the colour space transformed Y components of above \(L \) and \(R \) respectively. For illustrative purpose, one of the colour space components of \(L \) and \(R \) are shown below.

\[
\begin{align*}
\text{CL} &= \\
93.2493 & 89.8631 & 101.1162 & 99.6554 & 97.1768 \\
80.4254 & 67.1334 & 70.3824 & 70.6391 & 70.5507 \\
68.5763 & 73.9765 & 73.8177 & 74.2333 & 69.9487 \\
74.0375 & 74.6395 & 68.9121 & 60.2903 & 85.9236 \\
73.9001 & 45.4610 & 44.6022 & 44.3454 & 44.6022
\end{align*}
\]

\[
\begin{align*}
\text{CR} &= \\
65.0551 & 71.1647 & 80.0003 & 92.0239 & 92.0239 \\
90.7219 & 65.6116 & 67.4606 & 68.7626 & 68.3564 \\
65.8409 & 65.9294 & 71.5864 & 66.4524 & 66.6113 \\
68.8330 & 68.0627 & 71.1338 & 64.7528 & 60.6450 \\
67.3567 & 57.6254 & 59.3430 & 59.0863 & 63.3804
\end{align*}
\]

The following \(D \) represents the disparity vector obtained from CL and CR

\[
\begin{align*}
\text{D} &= \\
-10.2964 & 1.5218 & 2.9217 & 1.8765 & 2.1943 \\
2.7354 & 8.0472 & 2.2312 & 7.7809 & 3.3374 \\
\end{align*}
\]

In the next stage, quantization is applied to CL and D. The following QCL represents the quantized CL values.

\[
\begin{align*}
\text{QCL} &= \\
84 & 92 & 100 & 100 & 100 \\
84 & 68 & 68 & 68 & 68 \\
76 & 84 & 100 & 100 & 100 \\
84 & 68 & 76 & 76 & 68 \\
68 & 76 & 84 & 100 & 92
\end{align*}
\]

The quantized D data, \(QD \) is generated in the same method. Further, SFIC encoding is applied to CL and D and the encoded data is obtained. In order to accomplish this, separate symbol table with the unique pixel value, frequency of occurrences, and an index are generated for CL and D. The following table I shows the symbol table of QCL, namely TABQCL. In the symbol table TABQCL, first column represents the unique elements (symb), second column the frequency of occurrence (count), and third column represents the index assigned to each of symb (index).
In the next stage, index matrix, IQCL is generated using symb and index. IQCL replaces the respective symb in QCL with index values.

\[
\text{IQCL} = \\
\begin{array}{cccccc}
3 & 4 & 5 & 5 & 5 \\
3 & 1 & 1 & 1 & 1 \\
2 & 3 & 5 & 5 & 5 \\
3 & 1 & 2 & 2 & 1 \\
1 & 2 & 3 & 5 & 4
\end{array}
\]

In the next stage, SFIC encoding is applied to ICL and encoded data, SCL is generated. During decompression, SFIC decoding is applied to the encoded data, RCL, and disparity vector, RD is retrieved. Here, RCL is the retrieved colour transformed left image data. Following is an illustration of RCL and RD.

\[
\text{RCL} = \\
\begin{array}{cccccc}
84 & 76 & 68 & 68 & 68 \\
76 & 76 & 76 & 76 & 76 \\
92 & 84 & 76 & 68 & 68 \\
76 & 76 & 76 & 76 & 68 \\
100 & 100 & 84 & 76 & 76
\end{array}
\]

\[
\text{RD} = \\
\begin{array}{cccccc}
20 & 20 & 12 & 4 & 4 \\
4 & 4 & 4 & 4 & 12 \\
20 & 20 & 20 & 4 & 4 \\
4 & 4 & 4 & 4 & 4 \\
20 & 28 & 20 & 12 & 4
\end{array}
\]

Retrieved colour transformed right image data, RCR is obtained by the summation of RCL and RD. Following is the SFICSI encoding algorithm.

SFICSI Encoding Algorithm

1. Read the source image, \(L \)
2. Read the frequency factor, \(y \)
3. Perform the colour space conversion on \(L \)
4. Generate the symbol table
5. Generate indexed data
6. Generate the minimal data
7. Generate the disparity data
8. Generate the unique data
9. Compression ratio is calculated

Encoding algorithm helps in the generation of minimal frequency symbols. A user defined input \(y \) is used to find the minimal pixel value among \(y \) elements in the matrix. In the next stage, index_matrix_m is generated by assigning the minimal value for the \(y \) consecutive elements in index_matrix_o. In the next step, index_Diff1 is generated by finding the difference between index_matrix_m and index_matrix_o. In the next step, individual distinct values of index_matrix_m are generated and thus the compressed matrix, index_DataComp is generated. Since a unique element is assigned for every \(y \) minimal elements, the resultant index_DataComp generated is highly compressed.
The following figure 1 shows flowchart of SFICSi compression scheme.

For the reconstruction purpose, transmission of compressed matrix; index_DataComp, frequency factor; y, index_DiffI and unique symbols will be sufficient. The decoding process is summarized as below.

The following figure 2 shows flowchart of SFIC compression scheme.

![Flowchart of proposed SFICSi](image1)

![Flowchart of SFIC](image2)
Following is the SFICSI decoding algorithm.

SFICSI Decoding Algorithm

1. Read the compressed data
2. Read the disparity data
3. Perform inverse unique data generation
4. Generate the minimal retrieved data
5. Retrieved indexed data = minimal retrieved data - disparity data
6. Perform inverse index mapping
7. Perform inverse colour space transformation
8. Reproduced image is generated
9. PSNR is calculated

Decoding phase consists of two main stages. In the first step, index_DataRet1 is generated by recursively printing the individual elements in index_DataComp y times. This process regenerates the retrieved index_matrix_m. In the next phase, index_DataRet2 is generated by finding the difference between index_DataRet1 and index_Diff1. This process regenerates the retrieved index_matrix_o. The next phase of SFIC consists of generating the retrieved data, matrix_m by comparing the index_DataRet2 and the unique symbols with respect to index. Index is the number 1 to N assigned in ascending order for the unique symbols.

In the case of SFICSI, matrix_m_l is generated for retrieving left image and matrix_m_d is generated for retrieving disparity vector using SFIC decoding algorithm.

In the next stage, matrix_m_l and matrix_m_d is concatenated to generate matrix_m_r. Inverse colour transform is then applied on matrix_m_l to generate the retrieved left image, RL. Inverse colour transform is applied on matrix_m_l to generate the retrieved right image, RR. From the retrieved left image, RL and the retrieved right image, RR, PSNR is calculated using Equation 2. The following figure 2 shows flowchart of SFIC compression scheme.

V. RESULTS

The following table I shows the Compression Ratio (CR) and PSNR for the images used for testing using the proposed new SFICSI compression scheme for images.

<table>
<thead>
<tr>
<th>Source Images</th>
<th>CR</th>
<th>PSNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIFICSI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>im3</td>
<td>12.9474</td>
<td>44.6377</td>
</tr>
<tr>
<td>im5</td>
<td>9.9388</td>
<td>35.3094</td>
</tr>
<tr>
<td>im10</td>
<td>12.0750</td>
<td>37.0683</td>
</tr>
<tr>
<td>im12</td>
<td>15.2976</td>
<td>41.1002</td>
</tr>
<tr>
<td>im13</td>
<td>16.3000</td>
<td>48.6570</td>
</tr>
</tbody>
</table>

Table II contains the original images used for testing and the reproduced images. The experimental research work and analysis are performed on the standard LIVE 3D image database [52]. It is observed from the results that the highest CR is for im13 (16.3000). The lowest CR is for im5 (9.9388). The highest PSNR of left and right images is 48 and lowest PSNR is 31. However, left images achieved higher PSNR values compared with the right images.

SFICSI is analyzed with a set of color images shown in following table II.

Table II. Source images and reproduced images
The following table III shows the comparison results of compression ratios of proposed new SFICSI image compression scheme and DWT based Arithmetic Coding (DWTAC).

<table>
<thead>
<tr>
<th>Source Images</th>
<th>CR</th>
<th>DWTAC</th>
<th>SFICSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>im3</td>
<td>5.7781</td>
<td>12.9474</td>
<td></td>
</tr>
<tr>
<td>im5</td>
<td>5.9705</td>
<td>9.9388</td>
<td></td>
</tr>
<tr>
<td>im10</td>
<td>4.6689</td>
<td>12.0750</td>
<td></td>
</tr>
<tr>
<td>im12</td>
<td>8.2080</td>
<td>15.2976</td>
<td></td>
</tr>
<tr>
<td>im13</td>
<td>8.3092</td>
<td>16.3000</td>
<td></td>
</tr>
</tbody>
</table>

The following table IV shows the comparison of PSNR values of proposed new SFICSI image compression scheme and DWT based Arithmetic Coding (DWTAC).

<table>
<thead>
<tr>
<th>Source Images</th>
<th>PSNR DWTAC</th>
<th>PSNR SFICSI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left Image</td>
<td>Right Image</td>
</tr>
<tr>
<td>im3</td>
<td>41.9888</td>
<td>44.6377</td>
</tr>
<tr>
<td>im5</td>
<td>29.3674</td>
<td>35.3094</td>
</tr>
<tr>
<td>im10</td>
<td>32.9700</td>
<td>37.0683</td>
</tr>
<tr>
<td>im12</td>
<td>33.0860</td>
<td>41.1002</td>
</tr>
<tr>
<td>im13</td>
<td>39.9287</td>
<td>48.6570</td>
</tr>
</tbody>
</table>

In the above table III and table IV, SFICSI is compared with DWTAC. It is observed from the experimental analysis that the proposed new SFICSI coding achieves better compression ratio 6 - 11 % improvement compared with DWTAC. It is also observed that the proposed SFICSI achieved higher PSNR values compared with DWTAC. Thus, SFICSI outperforms DWTAC.

VI. CONCLUSION

A new approach for stereoscopic image compression is proposed in this research article. In this new approach, SFIC encoding algorithm is applied on left image and disparity vector mapping between images. It is observed from the experimental analysis that the proposed SFICSI scheme exhibits higher compression ratio and higher PSNR values. This new compression method is compared with DWT based Arithmetic Coding (DWTAC). It is observed that SFICSI outperforms DWTAC.

REFERENCES

