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Abstract 

In this paper our goal is to maximize the individual user 

capacities of massive multi-input multi-output (MU-MIMO) 

systems through wireless powered communication network 

(WPCN). A multiple-objective optimization 

approach (MOOP) is developed while guaranteeing the 

quality of service (QoS) requirement. A new concept is 

proposed to derive Pareto solution via weighted Tchebycheff 

method from an equivalent single-objective optimization 

problem (SOOP) that minimizes the maximum of several 

quasiconvex fractional functions by iterative algorithm. The 

simulation results show that the proposed algorithm has the 

optimal performance and the user capacity of the distributed 

massive (DM) multi-input multi-output (MIMO) is 

considerably higher than that of the centralized massive 

(CM)-MIMO system.  

Keywords - Multiobjective optimization, Pareto optimal, 

quasiconvex, wireless powered communication networks 

 

I. INTRODUCTION 

Wireless powered communication network (WPCN) is a novel 

paradigm in which the battery of wireless communication 

devices can be remotely replenished by means of microwave 

wireless power transfer (WPT) technology. By WPCN, 

replacement of manual battery is reduced, and thus 

considerably improves the performance over conventional 

communication networks in many aspects, such as better 

throughput, higher device lifetime, and lower network 

operating cost [1]. 

In WPCN, wireless terminals are powered by the radio signals 

for information transmission. The terminals harvest energy 

from radiated signals by transmitters and then transmit 

information signals by using the harvested energy [2]. 

Though, the transmission efficiency of the WPT reduces 

rapidly depending on the transmission distance. Conveniently, 

the distributed massive (DM) multi-input multi-output 

(MIMO) system has a capability of solving the double near-

far problem [3, 4], where a user which is far from the radio 

remote heads (RRHs) has receives less power than a user 

which is near to RRH in the downlink (DL) energy transfer. In 

the uplink (UL) information transmission more signal power 

is attenuated due to path loss. Such a path loss can be reduced 

because RRH are geographically distributed in the DM-

MIMO. Also, DM-MIMO system can achieve high frequency 

efficiency [5, 6] and energy efficiency [6].  

For comparison, we also study the case of multi-user 

centralized massive (CM) MIMO system where the base 

station operates in half duplex (HD) mode. Remarkably, 

unlike CM-MIMO, the DM-MIMO system consists of 

geographically distributed radio remote heads (RRHs) that 

mitigates the inherent channel propagation loss, and thus can 

achieve significantly higher energy and frequency 

efficiencies.  

In this paper, we study in WPCN to improve and optimize the 

user capacity. The capacity of every single user should be 

separately measured. The capacities of these different users 

cannot be optimized simultaneously. The influences of this 

paper are shortened as follows. 

 Multi-objective optimization problem (MOOP) is 

formulated to set of Pareto optimal solution [8]. We adopt 

a weighted Tchebycheff method to find Pareto optimal of 

each user capacity to convert MOOP into a single 

objective optimization problem (SOOP). 

 The SOOP is a generalized fractional programming (GFP) 

problem [9, 10]. Iterative algorithm is used to solve above 

method. Simulation results are provided to compare the 

user capacity performance and confirm that this method 

succeeds in achieving better outcome with fast 

convergence speed. 

The rest of this paper is organized as follows. The system 

model and the problem formulation is presented in Section II. 

In Section III, the problem will be studied and by iterative 

algorithm we get its solution. Sections IV shows the 

simulation results and we finally conclude in Section V. 

 

II. SYSTEM MODEL 

We consider a WPCN model containing of N RRHs equipped 

with M antennas and K users with a single antenna. We 

assumed radius of hexagon cell is 1m. The RRHs are 

connected to a baseband process unit (BPU) via optical fibers. 

In WPCN model, both wireless energy transfer (WET) in DL 

mode and wireless information transmission (WIT) in the UL 

mode are coordinated by a central processing unit.  A frame-

based transmission is done and without loss of generality, it is 

normalized to 1. It is   supposed that the channel matrix is 

known perfectly at the BPU.  In each block, in the first 

duration θ (0 <  θ <  1) time, the RRHs in the DL mode 

broadcast energy signals to transfer energy to all users 

simultaneously, while in the remaining (1 − θ) amount of 

time of the block, all users transfer their independent 

information to the RRHs simultaneously in the UL using their 

harvested energy. 

The channel vector from all the RRHs to the kth user is 

expressed by  

                         𝐠𝑘 = 𝚲𝑘 
1 2⁄

𝐡𝑘                                        (1) 

where   𝚲𝑘 = diag([ζ1,𝑘, … , ζ𝑁,𝑘])⨂𝐈𝑀 and  

            𝐡𝑘 = [𝐡1,𝑘
𝑇  , . . . , 𝐡𝑁,𝑘

𝑇  ]
𝑇
.  
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Here (. )𝑇 is the transpose and  𝜁𝑛,𝑘   is the path loss of the 

channel between the nth RRH and the kth user. ⨂ is the 

Kronecker product and 𝐡𝑛,𝑘  is the 𝑀×1 independent Rayleigh 

fading coefficients between the nth RRH and the kth user. In 

the DL phase, assuming channel reciprocity, the received 

signal 𝑥𝑘 at the kth user can be given by 

                   𝑥𝑘 = √𝑝𝑘𝐠𝑘
𝐻𝐰 + 𝑛𝑘                                     (2) 

where 𝑝𝑘 is the DL transmission power to the kth user,   𝐰 =
∑ 𝐮𝑘

𝐾
𝑘=1 ,  and n𝑘 is zero-mean additive white Gaussian noise 

with variance 𝜎𝑑
2 . Here 𝐮𝑘  is the DL energy beamforming 

vector for the kth user. The noise power is too small for 

energy harvesting compared with the received signal power. 

Therefore, the harvested energy at the kth user is written as 

                  
 
𝐸𝑘 = 𝜀𝜃𝔼[|𝑥𝑘|2] = 𝜀𝜃𝑝𝑘𝔼[|𝐠𝑘

𝐻𝐰|2]       (3)
 

where 𝔼[∙] denotes the statistical expectation and 0 < 𝜀 ≤ 1 is 

the energy conversion efficiency. The received signal vector 

for UL phase is given by 

                     𝐫 = 𝐆𝐬 + 𝒛                                                   (4) 

Here 𝐆 = [g
1

, . . . , g
𝐾

], 𝐬 is the information carrying signals of 

the users, and 𝐳 is the receiver noise vector with zero mean 

and variance  𝜎𝑢
2. The BPU decodes the received signals from 

the kth user via a receive beamforming vector denoted by v𝑘,
𝑘 = 1, . . . , 𝐾 . Thus, the achievable UL capacity for the kth 

user is given by 

         

       
  𝐶𝑘 = (1 − 𝜃) log2(1 + 𝛾𝑘)

       (5)  

where  𝛾𝑘 is the signal to interference plus noise ratio (SINR) 

given by 

                 𝛾𝑘 ≜
𝑆𝑘

𝐼𝑘
=

𝑞𝑘|𝐯𝑘
𝐻𝐠𝑘|

2

∑ 𝑞𝑖|𝐯𝑘
𝐻𝐠𝑖|+𝐾

𝑖=1,𝑖≠𝑘 |𝐯𝑘
𝐻𝐯𝑘|𝜎𝑢

2                      (6) 

Here 𝑞𝑘 denotes the average UL transmit power for the kth 

user 

In this section, we are interested in maximizing the capacity of 

all individual users by optimizing over time allocation (θ), 

transmit power (p) in UL and beamforming vectors (w, V), 

i.e., 

         max
, ,

C
k p w,V

 
    

                         (7) 

                      C 1:  0 < 𝜃 < 1             (8) 

                      C 2:  (1 − 𝜃) 𝑞𝑘 = 𝐸𝑘,   ∀  𝑘  (9) 

                      C 3:  ∑ 𝑝𝑘  <  𝑝𝑚𝑎𝑥     (10) 

                                  C 4:   ∥ 𝐰 ∥ = 1    (11) 

where  𝐩 = [𝑝1, . . . , 𝑝𝐾 ] and  𝐕 = [𝐯1, . . . , 𝐯𝐾]. 

 

III. THE PROPOSED ALGORITHM 

In this section, an algorithm is proposed to find the Pareto 

optimal of user capacity by converting the MOOP in (7) into a 

SOOP. This MOOP function is non-convex due to the coupled 

variables and UL transmit power constraints, which can be 

converted into single objective optimization [7, 8] using the 

weighted Tchebycheff method expressed as 

         0max min
, , k

C C
k kk





w p,V

   (12) 

subject to (8)-(11). Here, 𝝋 =  {𝜑1, . . . , 𝜑𝐾}  is positive 

weighting vector and 𝐶𝑘
0  is the Utopia capacity of user k.  

Further, the above objective function (12) is quasiconvex and 

can be solved by separating w from others since DL 

beamformer only affects amount of energy harvesting as per 

(3). Let 𝐮k
∗  represents the optimal beamforming vector for 

maximizing the harvested energy of user k which is the 

dominant eigenvector of  g
𝑘
g

𝑘
𝐻 . Thus, the proposed optimal 

downlink beamforming vector is given by 

                𝐰∗ = ∑
1

𝐾

𝐮𝑘
∗

‖𝐮𝑘
∗ ‖

 𝐾
𝑘=1                                        (13) 

Next, fixing  𝜃 =  𝜃̅  and substituting for 𝛾𝑘 in objective 

function (12) is equivalent to the following: 

                     

0

min max
I S

k k k
kk I

k




    
 

 
   

p,V
                (14) 

The above expression (14) is a generalized fractional 

programming (GFP), which minimizes the maximum of 

numerous fractions [8, 10]. Using the following method, 

equation (14) can be transformed to better tractable one, i.e., 

the objective function (14) is quasiconvex and equivalent to 

[7], 

0( )
1max min ( ,

Y

1

K
y I S
k k k k kkf

Ky
y I
k kk

  






y p,V
p,V

)     (15) 

where   ,..., 0, , 1
1 1

Ky y y k y
K kk k

    
.  

The optimization problem (15) can be solved by iteratively 

finding the solutions of the following two subproblems: 

finding the optimal {𝐩∗, 𝐕∗} for a given y, and finding the 

optimal y. Let ( ) = min ( , , )
,

γ fy y p V
p V

and * max ( )
Y

 


y
y

.  

We define a function as  

      0, ( )
1

K
U y I S I

k k k k k kk
     


y

      

(16) 

Let 
( )

, 0,1,...
n

n y be a sequence updated by the following 

equation for any initial y(0) 

   ( 1) ( )
arg max min ,

Y

n n
U 




 p,V
y y y

y
              (17) 
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The optimal solutions can be achieved as follows:  

(a)  when   min , 0U  
p,V

y y ,  ( )γ y is obtained. 

(b) when
( 1) ( )

 ( ) ( )
n n

 


y y , 
( )

* ( )
n

  y  is obtained.  

For the above functions Dinkelbach algorithm is used to find 

the optimal solution [9].  

We can solve the problem (14) by the iterative algorithm in 

Table I. In the table, the first subproblem are solved in steps 2 

to 9 whereas steps 10 to 17 gives the solution of the second 

subproblem.  ε1  and ε2 are small values, respectively. 

Table 1 Algorithm to find Pareto Optimal 

1. Initialize 
(0)

, , 0, and  21
 n   y                      

2. Find    ( )
arg min ,

n
U 

* *
p , V y

p,V
. 

3. If    ( ) 0 * * *
- -1 1

K n
y I S Ik k k k k k k     , then 

4.          set   n
 y . 

5.          goto step (10). 

6. else 

7.         update 

( ) 0 * *
( - )

1

( ) *

1

K

K

n
y I Sk k k k kk

n
y Ik kk

 











. 

8.         goto step (2). 

9. end 

10. Update     ( 1) ( )
arg max min ,

Y

n n
U 





y y y

p,Vy
. 

11.  If     ( 1) ( )
- 2

n n
  


y y , then 

12.         set  ( )* n
  y . 

13.         exit. 

14.  else 

15.        update  1n n  . 

16.        goto step (2). 

17.  End 

 

The first subproblem for given y in step 2 can be written as 

        
  0

1

max ( )

. . 1 4

K

k k k k k k

k

y I S I

s t C C

  


 




p,V                 (18) 

The second subproblem in step 10 can be written as  

       
0

Y
1

max min ( ( ) )
K

k k k k k k
y

k

y I S I  




 
p,V

           (19) 

The above optimization problem is convex. Accordingly, a 

classic convex optimization method is used to solve it [11]. 

 

IV. SIMULATION RESULT 

We consider a hexagonal cell which has randomly distributed 

user K. Seven RRHs are distributed with radius 

 𝑟1 = 0, 𝑟2 = . . . = 𝑟7 = (3 − √3) 2⁄  and angles  𝜃1 = 0 , 

 𝜃2 = 𝜋 6⁄ , 𝜃3 = 3𝜋 6⁄  ,𝜃4 = 5𝜋 6⁄ ,  𝜃5 = 7𝜋 6⁄ ,  𝜃6 = 9𝜋 6⁄ , 

𝜃7 = 11𝜋 6 .⁄   𝜎 𝑢
2 = 𝜎 𝑑

2  = −50𝑑𝐵𝑚 with path loss model 

𝜉𝑛.𝑘 = 10−3𝑑𝑛,𝑘
−3  where 𝑑𝑛,𝑘 is the distance between the user k 

and the RRH n. RRH is equipped with M = 50 antennas and 

the total number of antennas is MN = 350, which is assumed 

to be same both in CM-MIMO and DM-MIMO. We assumed 

K = 2 users that are uniformly distributed. 

 

 

Fig. 1 Convergence of SINR in DM- MIMO and CM-MIMO 

 

Fig. 1 shows the convergence of  ( )n y . One can see that the 

proposed algorithm has a faster convergence speed. Also the 

DM-MIMO shows better performance compared with the 

CM-MIMO.  

Fig. 2 demonstrates the user’s capacity versus the total 

maximum transmission power in both CM-MIMO and DM-

MIMO scenario. It is noticeable that the DM-MIMO achieves 

higher user capacity compared with the CM-MIMO. It is seen 

that both DM-MIMO and CM-MIMO increases the user 

capacity according to the total maximum transmission power. 
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Fig.2. Comparison of user capacity versus pmax  

for DM-MIMO and CM-MIMO. 

 

V. CONCLUSIONS 

 In this paper, we considered the multiobjective optimization 

for user capacity in WPCN network. To find Pareto optimal, 

the multiobjective optimization problem is converted into a 

single objective problem using Tchebycheff method. Then it is 

solved by iterative algorithm. It is shown that the proposed 

algorithm achieves a higher user capacity for both CM-MIMO 

and DM-MIMO. Further, the user capacity of the DM-MIMO 

is significantly higher compared with the CM-MIMO. 
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