
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 2 (2019), pp. 196-203

© International Research Publication House. http://www.irphouse.com

196

Investigating the Effect of Implementation Languages and Large Problem

Sizes on the Tractability and Efficiency of Sorting Algorithms

Temitayo Matthew Fagbola and Surendra Colin Thakur

Department of Information Technology, Durban University of Technology, Durban 4000, South Africa.

ORCID: 0000-0001-6631-1002 (Temitayo Fagbola)

Abstract

Sorting is a data structure operation involving a re-arrangement

of an unordered set of elements with witnessed real life

applications for load balancing and energy conservation in

distributed, grid and cloud computing environments. However,

the rearrangement procedure often used by sorting algorithms

differs and significantly impacts on their computational

efficiencies and tractability for varying problem sizes.

Currently, which combination of sorting algorithm and

implementation language is highly tractable and efficient for

solving large sized-problems remains an open challenge. In this

paper, the effect of implementation languages and problem

sizes on tractability and execution times of some sorting

algorithms is investigated. A Goal/Question/Metric approach

was adopted for the experimental design. The algorithms were

implemented in Java and ‘C’. Eight pseudo-random integer

arrays with sizes between 100,000 and 5,000,000 were

generated for testing purpose. The results obtained reveal the

unique robustness of Java to implement large sorting solutions

more efficiently at higher tractability than ‘C’ while quick sort

emerge as the most efficient method for all problem sizes.

Keywords: Efficiency, Problem_Size, Sorting_Algorithm

Tractability, Implementation_Languages

I. INTRODUCTION

Sorting is a reordering of unordered or pseudo-ordered set of

items in either an ascending or descending manner in such a

form to generate a desired solution to some practical data

organization and management problems [1]-[5]). Sorting can

be regarded as the most fundamental problem in computer

science for a variety of reasons. First, it is a necessary step for

the selection of largest element in a set, frequency distribution,

closest pair and element uniqueness identification among

others [1]-[5]. Similarly, it is significant to applications like the

battery-operated devices whose associated data is to be

arranged in some specified format [2]. In a related manner, its

application to the development of job scheduler and parallel

processors for load balancing in grid and cloud computing

environments has recorded tremendous success [2],[3],[6]-[8].

Generally, sorting has been widely applied in such real-life

practical situations including industrial noise and waste

management, game playing and design, feature dimensionality

reduction and supercomputer benchmarking [3],[4]. Its

operations could be internal or external depending on whether

the elements are to be sorted in the main computer memory or,

in situations with large number of elements involved, are to be

sorted in the auxiliary storage (heap) memories, respectively

[1],[2]. Theoretically, effective sorting of data allows for an

efficient and simple searching process to take place. This is

particularly important as most merge and search algorithms

strictly depend on the correctness and efficiency of sorting

algorithms [4]. It is important to note that, the rearrangement

procedure of each sorting algorithm differs and directly impacts

on the execution time and complexity of such algorithm for

varying problem sizes and type emanating from real-world

situations [5]. For instance, the operational sorting procedures

of Merge Sort, Quick Sort and Heap Sort follow a divide-and-

conquer approach characterized by key comparison, recursion

and binary heap’ key reordering requirements, respectively [9].

On one hand, the execution time of a sorting algorithm is

commonly influenced by the nature and properties of the

algorithm, how random the generated data is, the data array size

and data type [10]. On the other hand, complexity in turn has a

huge effect on the performance efficiency of the computer

hardware to process a task [11]. In practice, not all algorithms

can work to an acceptable level of performance mostly due to

some associated tradeoffs like efficiency, complexity and

accuracy [11], [12]. These trade-offs and their impact on the

performance of the sorting algorithms must be well

investigated relative to real-life situations and problem sizes for

the algorithms to become usable in practice. For instance,

which implementation language and algorithm are best

combinations for large sorting problems, with capacity to yield

high efficiencies and stable tractability, is still an open problem.

The “best” in this context defines an algorithm and

programming language which matches exactly with a problem

specification and generate solutions with the least

computational resource demands, execution time and cost

requirements.

In this paper, how the choice of an implementation language

and the problem size impact on the tractability and time

efficiency of some selected sorting algorithms is investigated.

Basically, the efficiency of insertion sort, selection sort, heap

sort, merge sort, quick sort and bubble sort are experimentally

determined and evaluated with large array of pseudo-random

integers with sizes between 100,000 and 5,000,000. This

attempt will help to identify the best-fit sorting algorithm and

implementation language for varying problem sizes. In terms

of problem size and computational complexities, the output

must satisfy two conditions: (i) the output is in non-decreasing

order. That is, each element is no smaller than the previous

element according to the desired ordering pattern; (ii) the

output is a permutation or reordering of the input. A Goal-

Question-Metric (GQM) approach was adopted for the

experimental design. Java, an objected-oriented language and

C, a procedural language were both used to implement the

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 2 (2019), pp. 196-203

© International Research Publication House. http://www.irphouse.com

197

sorting algorithms. The rest of the paper is arranged as follows:

section two presents some related works on sorting techniques

and evaluations, section three on materials and method

highlights the experimental design and implementation of the

selected sorting techniques; however, the results are presented

and discussed in section four while section five makes the

conclusion.

II. RELATED WORKS

Khairullah [12] investigated and compared the performance of

selection, bubble, insertion, a modified selection and heap

sorting algorithms implemented using Microsoft Visual C++

on 100,000 data items. The evaluation was conducted on 5

different computer hardware with varying specifications. The

modified Heap sort was found to be the most efficient and

Merge sort as the least efficient in terms of sorting time in all

the evaluations. Khalid, Ibrahim, Abdallah and Nabeel [13]

evaluated the time complexity of grouping comparison sort,

bubble sort, quick sort, merge sort and insertion sort

implemented using C++ over 30000 unsorted elements. The

authors reported that Quick sort is best fit for large inputs of up

to 30000 elements while selection sort performs so poorly in

that regard. Satwinder, Harpal and Prabhdeep [14]

comparatively presented the structural metadata, pseudocode,

conceptual representation, advantages and disadvantages of

library, gnome, selection, insertion, stack, deq, heap, shell,

quick, merge and proxmap sorting algorithms.

Ashutosh and Shailendra [15] compared the performance of

bubble sort, index sort, merge sort, insertion sort and selection

sort having a maximum of 10000 random integer input

sequences and implemented using MATLAB programming

language. It was observed that Merge sort proved to be the most

efficient and Bubble sort the least efficient in terms of

processing time for the input size used. Olusegun, Olufunke

and Oluwatimilehin [16] experimentally and statistically

explored the salient factors influencing the computational

efficiency of Shell, Treap and Heap sorting algorithms by

determining the Eigen values and component score coefficient

Matrix of some data associated with the sorting algorithms.

Although, it is reported that Treap sort was found to be the most

efficient, followed by Heap and Shell sorting algorithms in that

order with large dataset, actual problem size used to evaluate

the algorithms is not stated. However, the deduced factor

mentioned to be affecting efficiency of sorting algorithms is the

sorting time. Zeyad [1] implemented insertion, quick, bubble,

count and bucket Sort using Visual C++ with 30000 random

numbers to comparatively evaluate their execution times.

Ahmad [17] comparatively evaluated the execution time of

cocktail, comb and counting sorting algorithms implemented

with Java over 3000 random integer numbers. The results

obtained show that the cocktail algorithm is the most efficient

in execution time, followed by counting sort and Comb sort in

that order.

Volodymyr, Yaroslav and Nataliia [18] analyzed and evaluated

the computational characteristics of sorting algorithms for

binary inputs. A dedicated processor was also manufactured for

this purpose. The dedicated processor showed improved

performance in processing speed while using the sorting

problems as testbed for evaluation. Sehrish and Nadeem [19]

compared the time and space complexities of merge and bubble

sort algorithms using an array size of 300000 in a bid to develop

a more improved algorithm. Based on the authors’ findings,

bubble sort was said to be the most applicable for small-sized

dataset while merge sort is preferred for large-sized dataset in

terms of their sorting time requirements. Jehad [20] presented

the design pedagogies of bubble sort, gnome sort, selection

sort, divide and conquer, greedy, branch-and-bound,

backtracking and dynamic programming. Some experiments on

these algorithms were conducted to investigate their running

times relative to their worst, average and best-case efficiencies.

The algorithms were implemented using C# language on 30000

integer array size. The result of the average runtime showed

that selection sort is the best among the algorithms for the

problem size addressed. Aremu, Adesina, Makinde, Ajibola

and Agbo-Ajala [21] investigated the time and space

efficiencies of median, quick and heap sorting algorithms

implemented in C language with a maximum array size of

200000 items. Heap sort was reported to have the least time and

space complexities than median and quick sort regardless of the

problem size.

Neetu and Shipra [22] developed and experimentally compared

the performance of bucket with merge, bucket with insertion

and bucket with count sorting algorithms in terms of their

execution times using four arrays with the largest size of

5,000,000. The algorithms were implemented using Borland

C++ and bucket with count sorting algorithm emerged as the

most efficient among the algorithms. Ankit, Rishikesh, Tanaya

and Aman [23] developed a more efficient sorting algorithm

tagged ARC and compared its running time with that of

selection, insertion and bubble sorts over 20,000 random

numbers used for evaluation. ARC sorting algorithm proved as

the most efficient followed by insertion sort, selection sort and

Bubble sort in that order. McMaster et al. [9] experimentally

investigated the execution time of Select, Shell, Insert, Merge

and Quick sorting algorithms implemented in Java over an

array of integer of size 1000. Hoda, Yasser and Amr [24]

developed an enhanced mapping sorting algorithm tested over

1,000,000 random numbers and reported its best, worst and

average case complexities. The running time of quick,

insertion, merge, bubble and selection over 950 random

numbers was investigated by Naeem, Muhammad and Furqan

[25] with the selected algorithms implemented using C#.

Insertion sort proved the most efficient, followed by selection

sort, Bubble sort, Quick sort and merge sort in that order.

Anwar [26] implemented merge sort, selection sort, quick sort,

insertion sort and bubble sort with C++, then compared their

time complexities on four groups of datasets ranging from 100-

1,000; 2,000-10,000; 11,000, 20,000; to 21,000-30,000. The

outcome of this attempt is presented in Table 1. Deepthi and

Birunda [5] evaluated the energy consumption and time

complexity of quick sort, merge sort, selection sort, shell sort,

bubble sort and insertion sort implemented in C language over

a problem size of 10,000 random integer numbers. Merge sort

had the least time complexity, followed by Quick sort, Shell

sort, selection sort, insertion sort and Bubble sort in that order.

However, quick sort is the most energy efficient followed by

merge sort, shell sort, insertion sort, selection sort and bubble

sort in that order.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 2 (2019), pp. 196-203

© International Research Publication House. http://www.irphouse.com

198

Table 1. Time Complexities of Sorting Algorithms [25]

Algorithm Best Case
Average

Case

Worst

Case

Bubble Sort
O(n) O(n^2) O(n^2)

Insertion Sort
O(n) O(n^2) O(n^2)

Selection Sort
O(n^2) O(n^2) O(n^2)

Quick Sort
O(n^2) O(n^2) O(n.log.(n))

Merge Sort
O(n.log.(n)) O(n.log.(n)) O(n.log.(n))

Juliana [27] conducted an empirical comparison of the sorting

times of quick sort, shell sort, bubble sort, selection and

insertion sorts over an array size of 50,000. Results obtained by

the author indicated that in terms of sorting time, Shell sort is

best for limited dataset size while Quicksort is best for larger

dataset sizes. Faki, Yusuf and Akosu [28] determined and

compared the sorting time of insertion, bubble, selection, shell

and quick shaker implemented with C++ over a data size of

50000. The study emphasized the use of shell sort for large

problem size. Florim [29] developed a modified counting sort

algorithm and compared the performance with some standard

benchmark counterparts including bubble sort, merge sort,

selection sort, heap sort, bucket sort, quick sort and insertion

sort. The running time of the algorithms were evaluated over a

maximum of 100,000 random numbers. Summarily, none of

these works investigated the effect of moderate to large

problem sizes and different implementation languages on the

efficiency and tractability of the sorting algorithms. Noticeably,

only Neetu and Shipra [22] considered a problem size large

enough to contain 5,000,000 elements but on some unusual

sorting algorithms. On the other hand, their evaluation is very

limited in scope as it did not consider the performance impact

of varying programming language implementations and

problem sizes on complexity and tractability of the sorting

algorithms. These identified limitations inherent in current

solutions make the application of most sorting algorithms to

address real-life practical situations very challenging.

III. MATERIALS AND METHOD

The experimental design and implementation approach are

presented in this section.

III.I Experimental Design

A Goal/Question/Metric (GQM) procedure [30] was adopted

for the experimental design of this research. GQM is a

standardized practical and flexible approach for describing,

simplifying and analyzing software measurement problems

[30],[31]. In Table 2, the Research Questions (RQ) that form

the focus of this paper are presented using the GQM procedure.

RQ1 investigates if there is a disparity in the time efficiency of

different implementation languages for implementing a sorting

algorithm to solve same instance of a problem of a same given

size. RQ2 investigates how the varying input sizes of the

problem affects the time efficiency of the different sorting

algorithms for distinct programming environments. Which

sorting algorithm is highly efficient for small and large sorting

problems is identified with this question. RQ3 identifies the

most robust and efficient implementation language for solving

large sorting problems. C language is a representative class of

procedural language while Java is a representative class of

objected-oriented programming language. Literally,

comparative investigation of the power of procedural and

object-oriented implementation of algorithms to drive

efficiency and tractability of solutions was conducted.

Furthermore, RQ4 investigates the relationship between the

object-orientation or otherwise of an implementation language

and solvability of a given problem instance.

Table 2. Our GQM Design

GQM Description

Goal Investigate the effect of varying implementation languages
and problem sizes on the efficiency and tractability of some
selected sorting algorithms

RQ1 Do different implementation languages expends different
execution times for executing the same sorting algorithm
with same problem size?

Metric Execution time, data size

RQ2 How does problem size affects the efficiency of different
sorting algorithms implemented with the same language?

Metric Execution time, Data size

RQ3 What implementation language is largely tractable and
computationally efficient for solving large sorting problems?

Metric Execution time, Data size

RQ4 Does the class of implementation language (procedural or
object-oriented), have an effect on the tractability of large
sorting problems?

Metric Intractability / unsolvability

III.II Implementation

All the experiments were conducted on a machine with 64-bit

operating system Hotspot JVM with Intel(R) Celeron(R) Dual

Core CPU N2840 @ 2.16GHz and an installed RAM of 6.00GB

(5.89 GB usable). Some terms and parameters used in our

experiments are defined as presented in Table 3. The

pseudocode of selection sort, merge sort, quick sort, bubble

sort, insertion sort and heap sort have been extensively

discussed in some related works [1-3], [5], [13], [14]. The Java

and ‘C’ implementations of these algorithms were developed in

NetBeans 8.0 environment and Code blocks 16.01,

respectively. The sample snippet for the dynamic declaration of

arrays in Java is presented in Algorithm 1. In C, the arrays were

also declared in the heap memory as presented in Algorithm 2.

In Figure 1, the flow description of experimental evaluations of

the sorting algorithms conducted in this work is presented.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 2 (2019), pp. 196-203

© International Research Publication House. http://www.irphouse.com

199

Table 3. Terms, parameter definition and their values

Term /
Parameter

Definition Value

Sorting
Algorithms

The algorithms that were
experimentally
evaluated in this study

𝜖 {SS, BS, IS, QS,
MS, HS}

Dataset Size
generated

Number of random
integer numbers that
make up the datasets to
be sorted by each
distinct sorting algorithm
under study,

𝜖 {100,000;
200,000; 250,000;

1,000,000;
2,000,000;
3,000,000;
4,000,000;
5,000,000}

Programming
Language (PL)

The programming
languages used to
implement the sorting
algorithms

𝜖 {C, Java}

Class of the
PL (PLC)

The taxonomy of the
programming language

𝜖 {𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑎𝑙,

𝑂𝑏𝑗𝑒𝑐𝑡 −
𝑂𝑟𝑖𝑒𝑛𝑡𝑒𝑑}.

Intractability A situation in which the
complexity of the
problem grows such that
a result (output)
becomes undetermined
or could not be returned

𝜖 {0,1}.
′0′𝑖𝑓 𝑎 𝑟𝑒𝑠𝑢𝑙𝑡 𝑖𝑠

𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑, 1′ ′

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Small sorting
problems

Relatively small problem
(array) sizes

𝜖 {100,000;
200,000; 250,000}

Large sorting
problems

Relatively large problem
(array) sizes

𝜖{1,000,000;
2,000,000;
3,000,000;
4,000,000;
5,000,000}

Execution
time (ET)

The finite time expended
by a sorting algorithm to
accept an input, process
it and generate an output
for a given problem
instance.

See Tables (4) and
(5)

Algorithm 1: Code Snippet for our dynamic declaration of the

arrays in the heap memory with Java

srand (time (NULL));

int* array = new int [5000000];

 for (int i = 0; i < 5000000; i++)

{

 array[i] = (rand() % 5000000) + 1;

}

Algorithm 2: Code Snippet for the array declaration in the

Heap Memory with ‘C’ Language

#include <stdio.h>

#include<stdlib.h>

#include<time.h>

#include<math.h>

#define ARRAY_SIZE 5000000

int main (void)

{

Static int MyBigArray [ARRAY_SIZE] = {0};

size_t i = 0; srand (unsigned) time(NULL));

for (i = 0; i < ARRAY_SIZE; ++i)

 {

 MyBigArray[i] = rand();

 }

 return 0;

}

Eight (8) array datasets of pseudo-random numbers were

created in the range 100,000, 200,000, 250,000, 1,000,000,

2,000,000, 3,000,000, 4,000,000 and 5,000,000. These datasets

were inserted into C and Java as arrays sequentially. Six (6)

sorting algorithms (selection, merge, heap, bubble, quick and

insertion) were implemented and each algorithm was executed

5 times consecutively in the same programming environment

and with the same dataset size. Then, the average of the

Execution Time (ET) for the 5 consecutive runs is taken as the

ET of that algorithm for each problem size executed. Each

algorithm has a total of 40 runs for all the dataset sizes and a

total of 240 runs was made for the 6 sorting algorithms

considered in this study. However, the Random Access

Memory (RAM) was freed before each new run to ensure that

internal space complexity does not interfere with the expected

ET of the algorithms.

IV. RESULTS AND DISCUSSION

The average results of the execution times and instances of

intractability of the problems encountered with both Java and

C language implementations are summarized into Tables (3 and

4). To address the first research question, RQ1: Do different

implementation languages expends different execution times

for executing the same sorting algorithm with same problem

size?

In all the evaluations, for each dataset group having the same

problem size, the average execution time for each sorting

algorithm produced by Java and C is completely different as

depicted in Figure 2. Better results are observed with

algorithms implemented in Java when compared with

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 2 (2019), pp. 196-203

© International Research Publication House. http://www.irphouse.com

200

corresponding results of same algorithms implemented in C.

Therefore, for RQ1, different implementation languages spend

different running times to execute same sorting algorithm with

the same problem size. For the RQ2, “How does varying

problem sizes affect the efficiency of different sorting

algorithms implemented with the same language?”,

Fig. 1 The flow control of the Experimental Evaluation of the Sorting Algorithms

Fig. 2 Plot of Execution Time in milliseconds against Data Size for Java and C

0

100000

200000

300000

400000

500000

600000

C Java C Java C Java

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

100,000 Random Numbers 200,000 Random Numbers 250,000 Random Numbers

Selection Bubble Insertion Quick Merge Heap

Insertion

Sort

Start

Stop

Generate Pseudo-Random Integer Numbers into 8 different groups:

(100,000, 200,000, 250,000, 1,000,000, 2,000,000, 3,000,000, 4,000,000,

5,000,000)

Insert each group of

Randomly Generated

Numbers into C and Java

Arrays

C-language

implementation of the

sorting algorithms

averaged over 5 runs

Java language

implementation of the

sorting algorithms

averaged over 5 runs

Generate average

execution time and

tractability for each array

size and algorithm

Generate average

execution time and

tractability for each array

size and algorithm

Performance Evaluation and Comparisons

Display results

Selection

Sort
Merge Sort Heap Sort Bubble Sort Quick Sort

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 2 (2019), pp. 196-203

© International Research Publication House. http://www.irphouse.com

201

Tables (4) and (5) present the summary of the average

execution times in milliseconds for implementing the sorting

algorithms for all problem sizes in both ‘C’ and Java,

respectively. Generally in all the evaluations, it was observed

that, as the problem size grows, the efficiency of the sorting

algorithms decreases. However, from the results of the

algorithms implemented with C, the rate of decrease in

efficiency as the problem size increases is highest in bubble

sort, selection sort and insertion sort in that order than those

observed in merge sort and heap sort as conceptually presented

in Figure 3. On the other hand, with Java implementation of the

algorithms, as the problem size grows, there was observed a

decline in the efficiency of bubble sort, selection sort, insertion

sort, merge sort and heap sort in that order as shown in Figure

4. For the RQ3, “What implementation language is largely

tractable and computationally efficient for solving large sorting

problems?”, it was observed that more solutions were obtained

with Java implementation than C.

TABLE 4.

SUMMARY OF AVERAGE EXECUTION TIMES OF SORTING ALGORITHMS IN MILLISECONDS WITH ‘C’ IMPLEMENTATION

Groups Insertion

Sort

Selection

Sort

Bubble

Sort

Quick

Sort

Merge

Sort

Heap Sort

Group 1

(100,000)
52768 63077 105344 26691 38475 26487

Group 2

(200,000)
167928 204906 368330 51759 84850 55994

Group 3

(250,000)
231960 303931 557256 64229 97531 68178

Group 4

(1,000,000)
No result No result No result No result No result No result

Group 5

(2,000,000)
No result No result No result No result No result No result

Group 6

(3,000,000)
No result No result No result No result No result No result

Group 7

(4,000,000)
No result No result No result No result No result No result

Group 8

(5,000,000)
No result No result No result No result No result No result

TABLE 5.

SUMMARY OF AVERAGE EXECUTION TIMES OF SORTING ALGORITHMS IN MILLISECONDS WITH JAVA

IMPLEMENTATION

Groups Insertion

Sort

Selection

Sort

Bubble

Sort

Quick

Sort

Merge

Sort

Heap Sort

Group 1

(100,000)
6107 20221 36097 1796 4193 2627

Group 2

(200,000)
19227 69960 140755 4077 8860 5762

Group 3

(250,000)
29027 109083 218780 6431 10078 7260

Group 4

(1,000,000)
444683 1551636 No result 21439 42433 29689

Group 5

(2,000,000)
2844678 6009347 No result 43237 82535 58815

Group 6

(3,000,000)
4719407 No result No result 66285 123381 91192

Group 7

(4,000,000)
No result No result No result 86645 164617 116349

Group 8

(5,000,000)
No result No result No result 107115 211979 141898

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 2 (2019), pp. 196-203

© International Research Publication House. http://www.irphouse.com

202

Fig. 3: Plot of Execution time (ms) against Data Size of

Sorting Algorithms implemented with ‘C’

Fig. 4: Plot of Execution time (ms) against Data Size of

Sorting Algorithms implemented with Java

With ‘C’ implementation, no result was obtained for all

algorithms while dealing with problem sizes beyond 250,000

as shown in Table 4. However, with reference to Table 5, Java

only could not determine the execution time of insertion sort

for the last 2 groups, selection sort for the last 3 groups and

bubble sort for the last 5 groups. Therefore, Java largely

ensures the tractability of the sorting algorithms, more suitable

and more computationally-efficient for solving large problems

than ‘C’. For RQ4, “Does the class of implementation language

have an effect on the tractability of large sorting problems”

based on the results obtained for RQ3, it becomes clearer and

more evident that object-oriented languages like Java are more

effective to ensure tractability of large sorting problems than

their procedural counterparts like ‘C’. This could be as a result

of the fact that object-oriented programs are more efficient,

much easier to develop, maintain, reuse and modify [29].

V. CONCLUSION

In this paper, the efficiency and tractability of heap sort,

selection sort, quick sort, insertion sort, merge sort and bubble

sort for varying sizes of sorting problems and implementation

languages were investigated. In all, a total of 240 experiments

were conducted. Based on the evaluation results obtained,

quick sort emerges the best-fit algorithm for sorting large data

sizes. Next to quick sort is the heap sort, merge sort, insertion

sort, selection sort and bubble sort in order of declining

efficiency irrespective of the problem size. It was also observed

that the execution time of all the sorting algorithms

implemented with C programming language could not be

determined for problem sizes beyond 250,000 elements neither

was a viable solution generated unlike the case of

implementation with Java. Therefore, Java programming is

more efficient and robust for implementing sorting algorithms

especially with the case of associated large problem sizes. In

our future work, the effect of varying hardware configurations

and architectures, operating systems, implementation

languages and problem size on the efficiency and tractability of

some emerging sorting algorithms shall be investigated.

REFERENCES

[1] Zeyad A. A., “Comparison Study of Sorting Techniques

in Dynamic Data Structure”, A Masters’ Thesis in the

Faculty of Computer Science and Information

Technology Universiti Tun Hussein Onn Malaysia,

March 2016.

[2] Yuan Y., “Performance Evaluation of Sorting

Algorithms in Raspberry Pi and Personal Computer”, A

Master’s Thesis in the Department of

Telecommunication Engineering, Faculty of

Technology, University of Vaasa, Malaysia, 2015, pp. 1-

78.

[3] Elmenreich W. and T. Ibounig and I. Fehervari

”Robustness versus Performance in Sorting and

Tournament Algorithms”, Acta Polytechnica Hungarica,

2009.

[4] Buhmann J. M., M. Haghir Chehreghani and A. P.

Streich and M. Frank, “Information Theoretic Model

Selection for Pattern Analysis”, ICML Workshop on

Unsupervised and Transfer Learning, 2011.

[5] Deepthi T. and A. M. Birunda, Time and Energy

Efficiency: A Comparative Study of Sorting Algorithms

Implemented in C, International Conference on

Advancements in Computing Technologies - ICACT

2018, Volume: 4 Issue: 2, pp. 25-27.

[6] Naglaa M. R., Tawfik A., Mohamed A. Marzok and

Soheir M. Khamis (2015). Sort-Mid Tasks Scheduling

Algorithm in Grid Computing. Journal of Advanced

Research, 6(6), 987-993.

[7] Pang N., Zhu D., Fan Z., Rong W., Feng W. (2015). A

Large-Scale Distributed Sorting Algorithm Based on

Cloud Computing. In: Niu W. et al. (eds) Applications

and Techniques in Information Security. ATIS 2015.

Communications in Computer and Information Science,

vol 557, Springer, Berlin, Heidelberg.

[8] Zahra Khatami, Sungpack Hong, Jinsoo Lee, Siegfried

Depner, Hassan Chafi, Ramanujam J., Hartmut Kaiser

(2017). A Load-Balanced Parallel and Distributed

Sorting Algorithm Implemented with PGX.D. IEEE

0

200000

400000

600000

So
rt

in
g

Ti
m

e
(m

s)

Size of random numbers

C-LANGUAGE IMPLEMENTATION

Selection Bubble Insertion Quick Merge Heap

0
2000000
4000000
6000000
8000000

SO
R

TI
N

G
 T

IM
E

(M
S)

SIZE OF RANDOM NUMBERS

JAVA IMPLEMENTATION

Selection Bubble Insertion Quick Merge Heap

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 2 (2019), pp. 196-203

© International Research Publication House. http://www.irphouse.com

203

International Parallel and Distributed Processing

Symposium Workshops.

[9] McMaster K., S. Sambasivam, B. Rague and S. Wolthuis

(2015). Distribution of Execution Times for Sorting

Algorithms Implemented in Java. Proceedings of

Informing Science & IT Education Conference (InSITE)

2015, 269-283.

[10] Vandana S., S. S. Parvinder, S. Satwinder and S. Baljit

(2008). “Analysis of Modified Heap Sort Algorithm on

Different Environment”, World Academy of Science,

Engineering and Technology, International Journal of

Electrical and Computer Engineering, Volume 2,

Number 6, pp. 1143-1145.

[11] Fagbola T. M., R. S. Babatunde and A. Oyeleye (2013).

Image Clustering Using a Hybrid GA-FCM Algorithm.

International Journal of Engineering and Technology,

UK, 3(2): pp 99-107.

[12] Md. Khairullah, “Enhancing Worst Sorting

Algorithms”, International Journal of Advanced Science

and Technology, Vol. 56, July, 2013, pp. 13-26.

[13] Khalid Suleiman, M. A. Ibrahim and I. Z. Nabeel

“Review on Sorting Algorithms: A Comparative Study”,

International Journal of Computer Science and Security

(IJCSS), Volume (7), Issue (3): 2013, pp. 120-126.

[14] Satwinder K., S. Harpal and S. Prabhdeep, “Comparison

based identification of sorting algorithm for a problem”,

International Journal of Advanced Computational

Engineering and Networking, Volume – 1, Issue – 1,

Mar-2013, pp. 67-75.

[15] Ashutosh B. and M. Shailendra, Comparison of Sorting

Algorithms based on Input Sequences, International

Journal of Computer Applications, 78 – No.14, 2013, pp.

7-10.

[16] Olusegun F., R. V. Olufunke and S. Oluwatimilehin “An

Exploratory Study of Critical Factors affecting the

Efficiency of Sorting Techniques (Shell, Heap and

Treap)”, Anale Seria Informatica, Volume 8, Issue 1,

2010, pp. 163-172.

[17] Ahmad H. E., and A. Y. A. Maghari, “A Comparative

Study of Comb, Cocktail and Counting Sorting

Algorithms”, International Research Journal of

Engineering and Technology (IRJET), Volume: 04

Issue: 01, Jan ‐2017, pp. 1387-1390.

[18] Volodymyr G., N. Yaroslav, V. Nataliia and K. Boris

“Synthesis of a Microelectronic Structure of a

Specialized Processor for Sorting an Array of Binary

Numbers”, IEEE MEMSTECH 2017, 20-23 April, 2017,

Polyana-Svalyava (Zakarpattya), UKRAINE, pp. 170-

173.

[19] Sehrish M. C. and S. F. Y. Nadeem, “Contrastive

Analysis of Bubble & Merge Sort Proposing Hybrid

Approach”, The Sixth International Conference on

Innovative Computing Technology, 978-1-5090-2000-

3/16, pp. 371-376

[20] Jehad H. “A Comparative Study between Various

Sorting Algorithms”, IJCSNS International Journal of

Computer Science and Network Security, Vol.15 No.3,

March 2015, pp. 11-17

[21] Aremu, D.R., O.O. Adesina, O.E. Makinde, O. Ajibola

and O.O. Agbo-Ajala (2013). A Comparative Study of

Sorting Algorithms, Afr J. of Comp & ICTs. Vol 6, No.

5. Pp 199-206.

[22] Neetu F. and S. Shipra “The Detailed Experimental

Analysis of Bucket Sort”, 2017 7th International

Conference on Cloud Computing, Data Science &

Engineering – Confluence, IEEE 2017, 78-1-5090-

3519-9, pp. 1-7.

[23] Ankit R. C., M. Rishikesh, M. Tanaya and C. Aman

“ARC Sort: Enhanced and Time Efficient Sorting

Algorithm”, International Journal of Applied

Information Systems (IJAIS), Foundation of Computer

Science FCS, New York, USA Volume 7– No. 2, April

2014, pp. 31-36.

[24] Hoda O., O. Yasser and B. Amr “Mapping Sorting

Algorithm”, SAI Computing Conference, July 13-15,

2016, London, UK, pp. 488-491.

[25] Naeem A., I. Muhammad and R. Furqan-ur-Rehman,

“Sorting Algorithms – A Comparative Study”,

International Journal of Computer Science and

Information Security (IJCSIS), Vol. 14, No. 12,

December 2016.

[26] Anwar N. F “Comparison Study on Sorting Techniques

in Static Data Structure”, A Masters’ Thesis in the

Faculty of Computer Science and Information

Technology, Universiti Tun Hussein Onn Malaysia,

March 2016, pp. 1-40.

[27] Juliana P. O. “An empirical comparison of the runtime

of five sorting algorithms”, International Baccalaureate

Extended Essay, Colegio Colombo Británico, Santiago

De Cali, Colombia, 2008, pp. 1-26.

[28] Faki A. S., M. Yusuf and S. J. Akosu, “Empirical

Performance of Internal Sorting Algorithm”, British

Journal of Mathematics & Computer Science, 20(1): 1-

9, 2017;

[29] Florim I., R. Avni and D. Fisnik “A New Modified

Sorting Algorithm: A Comparison with State of the Art”,

6th Mediterranean Conference on Embedded

Computing (MECO), 11-15 June 2017, Bar,

Montenegro, pp. 1-6.

[30] Rini V. S. and B. Egon “The Goal/Question/Metric

Method: A Practical Guide for Quality Improvement of

Software Development”, The McGraw-Hill Publishing

Company, Shoppenhangers road, Maidenhead,

Berkshire, SL6 2QL, England, pp. 1-216.

[31] Mohammad R., A. Luca and T. Marco “Energy

Consumption Analysis of Algorithms

Implementations”, ACM/IEEE International

Symposium on Empirical Software Engineering and

Measurement (ESEM), 22-23 October, 2015, Beijing,

China, pp. 1-4., DOI:10.1109/ESEM.2015.7321198.

