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Abstract  

Vehicle Routing Problem with Time Windows (VRPTW) 

involves traversing a coordinated set of vehicular paths such 

that a set of customers is visited once within a given time-

stamped boundary. VRPTW poses a great challenge to logistics 

distribution and supply chain management systems, due to its 

characterized stochastic and NP-hard combinatorial properties, 

which requires that its corresponding optimal path planning and 

vehicle scheduling solutions be both highly efficient and cost 

effective even as customers’ demands change dynamically. In 

this paper, a new hybrid metaheuristic scheme, tagged 

TERMHIGEN, based on the characteristics of the Termite-Hill 

algorithm and a modified Genetic Algorithm, with its 

associated adaptive self-learning and tuning schemes, based on 

is developed and applied to solving a prototype VRPTW 

specifically with the objective of minimizing overall logistic 

distribution cost. TERMHIGEN was tested using Solomon’s 56 

VRPTW instances containing 100 customers. The performance 

evaluation results of the algorithms reveal that TERMHIGEN 

produced more optimal and efficient outputs for some problem 

instances than those produced by some baseline metaheuristic 

techniques in terms of computational time efficiency and 

distance travelled. 

Keywords: Genetic Algorithm, Solomon Benchmark 

Problems, TERMHIGEN, Termite-Hill, Time-Windows, 

Vehicle Routing 

 

I. INTRODUCTION  

Polynomial-time (NP)-Hard combinatorial optimization 

problem with the goal of finding optimal set of paths for 

delivery trucks to reach the customers requesting for goods or 

services [1],[2]. This problem has closely drawn strong 

attentions from researchers in logistics distribution and 

management, transportation science, intelligent traffic 

congestion management and task sequencing among others [3]-

[9]. Very strong contexts of application of vehicle routing to 

real-life logistic and distribution-related issues include aircraft 

and bus scheduling, team rostering and scheduling, postal 

delivery, grocery delivery, product distribution, pickup 

logistics, inventory management and game playing 

[4],[10],[11]. Generally, VRP is often characterized by largely 

varying objectives and constraints requiring that solutions be 

tailored and directed to specific pre-defined problems. It is  

 

important to note that there is no general methodological 

approach to solving it [4],[12],[13]. This in turn limits the 

applicability of generalized solutions to VRP in practice. Hence, 

the main requirement of VRP is to find the least minimum cost 

required to service a set of customers with known demands in 

a set of closed path, starting and terminating at one of the end 

nodes (depots), while vehicle and depot capacity constraints are 

satisfied given that one or more depots and a fleet of vehicles 

exist [14],[15]. Genetic algorithm (GA), Ant Colony 

Optimization (ACO), fuzzy system, Nearest Neighbor Search 

(NNS), Simulated Annealing (SA) and Tabu search among 

other salient metaheuristic techniques have been successfully 

applied to many theoretical optimization problems especially 

VRP [16]-[19]. The behavioral patterns of these metaheuristic 

techniques are strongly inspired by nature which makes them 

suitable for solving a variety of real life optimization problems. 
 

GA has a good ability to conduct global search and has been 

successfully applied to other real-life problem domains ranging 

from fraud detection, traffic congestion management, pattern 

recognition to classification tasks [20]-[22]. It is also often used 

to improve the performance of some other nature-inspired 

algorithms and local search techniques [23]. Although, GA 

suffers from a number of limitations including its inability to 

produce global optimal solutions and its premature 

convergence to local minima due to its total reliance on 

crossover such that the population becomes homogeneous 

[24],[25]; consequently, modified and hybrid variants are being 

developed in more recent works to address these drawbacks. 

Examples of such variants include GA based on random 

immigrants and triggered hypermutation [12],[26],[27]. Suffice 

it to say that most of these solutions are computationally highly 

expensive, impractical and with limited flexibility and 

scalability [28]. In contrast, the complex constraints inherent in 

VRPs require that appreciable and near-optimal solutions be 

adaptive, holistically robust, computationally efficient, flexible 

and scalable while possessing some associated self-healing and 

organization features [29]. Interestingly, most of these 

requirements are only offered by metaheuristic approximations 

and recently, hybrid versions of some of these nature-inspired 

techniques have been developed to solve VRP. A number of 

VRP solutions based on metaheuristic algorithms is presented 

by Bhuvaneswari, Sumathy and Rajagopalan [30]. 
 

Pratiwi, Pratama, Sa’diyah and Suprajitno [31], Leonid, Sergey 

and Nadezhda [32] and Doerner, Hartl and Reimann [33] 

among others justifiably argued the need to combine distinct 
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solutions of different evolutionary algorithms to generate 

optimal solutions for VRP. In this paper, a hybrid metaheuristic 

algorithm tagged “TERMHIGEN” is developed. TERMHIGEN 

combines the sophisticated cooperative and self-organization 

abilities of Termite Hill algorithm, which makes it capable of 

handling complex tasks in a well-coordinated, efficient and 

adaptive manner, with the rich global convergence and 

computational efficiency offerings of a modified Genetic 

algorithm based on ranking selection  to solving a prototype 

VRP with Time Windows.   
 

The major contributions of this paper include the following:  

(1) To the best of our knowledge, this is the first paper to 

adapt the principle and social behaviour of Termites 

to solving a prototype VRPTW. Most other 

applications have been directed homogeneously 

towards mobile Ad-Hoc and wireless sensor networks; 
 

(2) An extensive review of works on VRP variants and 

existing solutions as well as Termite-inspired 

metaheuristic algorithms and their application 

environments was conducted; 
 

(3) A hybrid metaheuristic scheme, tagged TERMHIGEN, 

based on the Termite-hill algorithm and a modified 

Genetic algorithm with ranking selection, for solving 

VRPTW was proposed and tested using Solomon’s 53 

benchmark problems containing 100 customers. 
 

The rest of this paper is presented as follows: in section 2, 

vehicular routing problems and variants as well as several 

existing approaches for solving them are discussed. In section 

3, several related works on VRPTW are reviewed. The 

Termite-Hill algorithm, the Genetic Algorithm, the proposed 

TERMHIGEN algorithm, the Solomon’s Benchmark problems 

and performance evaluation metrics for VRPTW solutions are 

presented under the materials and method in section 4. The 

experimental results obtained for the VRPTW algorithms 

considered were comparatively evaluated with some best-

known solutions and presented in section 5 while conclusion 

and future works followed in section 6. 

 

II. VEHICLE ROUTING PROBLEM 

VRP is a generalization of the travelling salesman problem. 

John and Patrick [34] described VRP as a weighted graph 𝐺 =
(𝑉, 𝐴, 𝑑)  where 𝑉 = (𝑉1, 𝑉2, 𝑉3, … , 𝑉𝑚)  depicts the set of 

vertices for 𝑚 customers, 𝐴 = {(𝑉1, 𝑉2, 𝑉3, … , 𝑉𝑘): 𝑖 ≠ 𝑗} 

represents the set of arcs and 𝑑𝑖𝑗  represents the Euclidean 

distances associated with the arcs and 𝑉0 depicts the take-off 

depot for all vehicles to reach 𝑚  customers as depicted in 

Figure 1. An in-depth fundamental discussion on VRPs is 

provided in the work of Suresh and Ramasamy [5]. Basically, 

the goal of VRP is most often associated with reduction in the 

cost (number of vehicles, time, distance, expenses and so on) 

incurred on goods to be delivered to a number of customers 

with prior non-negative effective demand(s) via vehicular 

routes starting and terminating at one or more central depots 

[36]. 

 

 
 

Fig. 1. Description of a Multi-Node Vehicle Routing Problem 

[35] 

For example, this could involve finding the least cost route to 

be travelled by a fleet of capacitated delivery vehicles to reach 

destination node of each geographically decentralized customer. 

Variants of VRP include the capacitated (multi-trip, cumulative) 

[1], [37], green VRP [38], heterogeneous fleet [39], split 

delivery [40], multiple depot [41],[42], periodic [38], multi-

attribute [4] and stochastic [43] as well as those associated with 

pick-up and delivery (mixed and simultaneous) [3],[42], 

backhauls [44]-[46], cross-dock selection [47] and time 

windows (open and dynamic) [31],[48].  

 

Among all, VRP with Time Windows (VRPTW) remains the 

most widely studied mainly because it is the real engine of 

distribution management and its NP-hard nature [23],[35]. 

VRPTW involves finding and traversing a best optimal 

vehicular paths such that a large set of sparsely-distributed 

customers is visited once by a number of limited capacity 

vehicles within a given pre-determined time window. However, 

the time window can be said to be a time-stamped boundary 

having lower early arrival time and upper late arrival time 

delimiters, [𝑒𝑡 , 𝑙𝑡 ], within which a customer is to be visited 

[8],[49].   

 

From a graph-theoretic point of view, VRPTW can be defined 

as follows [48]: given a digraph 𝐺 = (𝑉, 𝐴), where 

 𝑉 = (0,1, … , 𝑚) 𝑖𝑠 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑠𝑒𝑡 𝑎𝑛𝑑 𝐴 =
{𝑎1(𝑖1, 𝑗1), 𝑎2(𝑖2, 𝑗2), … , 𝑎𝑛(𝑖𝑛 , 𝑗𝑛)} 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑟𝑐 𝑠𝑒𝑡: ∀ 𝑎𝑖(𝑖𝑖 , 𝑗𝑖) ∈
𝐴, (𝑖 ≤ 𝑛), 𝑎(𝑖, 𝑗) = {𝑑𝑖𝑗 , 𝑡𝑖𝑗 > 0} where 𝑑𝑖𝑗  is the travel cost 

and 𝑡𝑖𝑗 > 0 is the total travel and service times at vertex 𝑖 . 

However, for every vertex 𝑖 ∈ 𝑉, (𝑖 ≤ 𝑚), 𝑖 = { |𝑞𝑖|, [𝑒𝑖 , 𝑙𝑖] } 

where 𝑞𝑖 is a non-negative demand and [𝑒𝑖 , 𝑙𝑖] represents a time 

window to visit vertex 𝑖, with 𝑒𝑖 and 𝑙𝑖 being the earliest and 

latest times, respectively. For this definition, it is assumed that 

the triangle inequality theory is satisfied by matrices 𝑑𝑖𝑗  and 𝑡𝑖𝑗, 

the time windows is a hard constraint and as such cannot be 

violated and that the vehicle capacity is a soft constraint. Hence, 

given a group of 𝑥 similar vehicles of capacity 𝐶 located at the 

depot with a request to meet the demand, 𝐷𝑐𝑢𝑠𝑡_𝑖 , of each 

customer, a vehicle route 𝑅 = (0. 𝑖1, … , 𝑖𝑟 , 0) with 𝑟 ≥ 1, is a 

closed and complete path in digraph 𝐺, traversing the depot, 

visiting vertices 𝑉(𝑅) = {0. 𝑖1, … , 𝑖𝑟}, 𝑉(𝑅) ⊆ 𝑉,  such that: 

i. 𝐷𝑡𝑜𝑡𝑎𝑙 < 𝐶,  where 𝐷𝑡𝑜𝑡𝑎𝑙  is  the total demand of 

visited customers and 𝐶 is the vehicle capacity. 

ii. a vehicle exits the depot 0 at the earliest time 𝑒0 , 

reaches each customer in 𝑉(𝑅) within its supposed 
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time window, and arrives at the depot 0 before the 

latest time 𝐼0. 

iii. if the vehicle leaves the depot 0 to reach vertex at 𝑖 ∈
𝑉(𝑅) before its earliest time 𝑒𝑖 , the service will be 

delayed to the time 𝑒𝑖.  

iv. 𝑅𝑐𝑜𝑠𝑡 =  ∑ 𝐴𝑖(𝑅𝑖)
𝑛
𝑖=0  where 𝑅𝑐𝑜𝑠𝑡  is the total travel 

cost of the arc set, 𝐴(𝑅), covered by route 𝑅.  

v. for any prototype VRPTW, each customer is visited 

only once. 

However, VRPTW can be formulated as a linear optimization 

problem such that [50],[51]: 

 

min 𝑍 =  ∑  ∑  ∑ 𝐶𝑖𝑗𝑋𝑖𝑗𝑘 +  𝐶0 ∑ max (𝑡𝑒𝑖 
−𝑛

𝑖=1
𝑚
𝑘=1

𝑛
𝑗=1

𝑛
𝑖=1

𝑡𝑖 , 0) +  𝐶𝑝 ∑ max (𝑡𝑖 − 𝑡𝑙𝑖 
, 0)𝑛

𝑖=1                                           (1) 
 

 

subject to 
 

∑ ω𝑖𝑦𝑖𝑘  ≤ 𝑊   𝑘 ∈ [1, 𝑚]𝑛
𝑖=1                                                 (2) 

(vehicle capacity / load) constraint                 
 

∑ 𝑦𝑖𝑘  = 1   𝑖 ∈ [1, 𝑛]𝑛
𝑘=1                                                        (3) 

(delivery service identified by clients)                    
 

∑ 𝑋𝑖𝑗𝑘 = 𝑦𝑖𝑘    𝑗 ∈ [1, … , 𝑛], ∀𝑘   𝑖 ∈ [1, … , 𝑛], ∀𝑘𝑛
𝑖=1            (4) 

(same route constraint)          
 

𝑡𝑒𝑖 ≤  𝑡𝑖 ≤  𝑡𝑙𝑖 (time windows constraint)                            (5) 
 

𝑋𝑖𝑗𝑘,𝑦𝑖𝑘 =  {
1
0

𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘 𝑓𝑟𝑜𝑚 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑖 𝑡𝑜 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑗
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                (6) 

𝑡𝑖 =  ∑  ∑ 𝑋𝑖𝑗𝑘 (𝑡𝑖 + 𝑡𝑖𝑗 + 𝑡𝑗)     𝑗 = 1, … , 𝑛𝑚
𝑘=0

𝑛
𝑖=0                (7) 

      (delivery time of goods at customer depot) 

 

where min Z is the objective function (total distance 

travelled), 𝐶𝑖𝑗  𝑖𝑠 𝑡ℎ𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 (𝑐𝑜𝑠𝑡) 𝑓𝑟𝑜𝑚 

𝑛𝑜𝑑𝑒 𝑖 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑗, 𝑡𝑒𝑖 
𝑖𝑠 𝑡ℎ𝑒 𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 𝑡𝑖𝑚𝑒 𝑡𝑜 

𝑛𝑜𝑑𝑒 𝑖, 𝑎𝑛𝑑 𝑡𝑙𝑖 
𝑖𝑠𝑡ℎ𝑒 𝑙𝑎𝑡𝑒𝑠𝑡 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑟𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒 𝑖. 

   
For an extensive review of VRP variants, kindly refer to the 

work of Gautham et al. [36] and Toth and Vigo [52]. In the 

same vein, application areas of VRP and basic components 

(especially the road network, customers, vehicles, drivers, 

routes and the global transportation cost) were discussed by 

Tuomas [2]. Beresneva and Avdoshin [53] also provided a 

detailed analysis and mathematical formulations of VRP 

variants and appropriate approaches for their solutions. The 

exact algorithms (for example, the branch and bound 

approaches, guided local search, set segmentation techniques, 

vehicle flow formulations, commodity flow formulations, set 

partitioning, dynamic programming and integer programming 

algorithms), traditional heuristic algorithms (for example, 

savings, sweep, two-phase), heuristic algorithms (for example, 

Tabu search, GA, iterated local search, SA) and the 

metaheuristic algorithms (for example, variable neighborhood 

search, ant colony, neural network and artificial bee colony) as 

well as hybrid algorithms combining some of these approaches 

have been successfully applied to solving VRP and its variants. 

Avirup et al. [23] contains a comprehensive survey of some 

metaheuristic solutions to VRPTW. However, the serial and 

parallel algorithms for solving VRP have been discussed by 

Christopher [54]. Sequel to the extensive review and 

experimental evaluations of some exact algorithms for solving 

several classes of VRP, these methods are computationally 

inefficient especially for large VRP space [48],[52],[55]. 

Similarly, due to large solution space requirement for VRP, it 

would be most impractical to attempt especially under time 

limitations [16]. 
 

Inexact methods, often based on heuristic approaches, are 

claimed to be more practically applicable to handling such 

larger VRP situations in a more computationally efficient 

manner. More often than not, heuristics or approximate 

algorithms usually produce near optimal solutions to 

combinatorial problems as exact solutions are not guaranteed 

[30], [32], [56]. Three (3) variants of heuristics identified in 

literatures are constructive, classical and the improvement 

heuristics [57]-[59]. The constructive heuristics build stepwise 

solutions while maintaining the immediate cost at an acceptable 

minimum. An example is the Nearest Neighbour. On the other 

hand, the classical heuristics like the intraroute and the 

interroute methods are computationally time-efficient but tends 

to produce largely inaccurate results [13]. However, an 

exhaustive survey and analysis of several VRP solutions have 

been conducted by Sheng-Hua, Ji-Ping, Fu-Hao, Liang and Li-

Jian [28]. Also, a comprehensive review of exact and 

approximate algorithms for solving VRP can be found in the 

work of Jean-Francois et al. [13]. More recent approaches to 

solving VRP and its variants are those adopting metaheuristic-

related approaches, this is because they are relatively simple 

and applicable to diverse range of optimization problems [20]. 

For large and dynamic routing problems, only metaheuristic 

algorithms is best suited to offer speed, scalability, autonomy 

and adaptation features majorly required to achieve global 

convergence and optimality of solutions [5],[60]. Kindly refer 

to the work of Anna, Bertha and Gilang [61] for a comparative 

study of some metaheuristic algorithms for solving delivery 

problems. Moreso, hybrid versions of these metaheuristic 

algorithms are becoming more evident today [41]. 

 

III. RELATED WORKS 

Blanton and Wainwright [37] applied GA to solving multiple 

capacitated VRPTW. Berger et al. [62] developed a route-

directed GA to solve VRPTW ensuring a partial constraint 

relaxation maintenance between any two unique populations. 

Minimizations of total distance traversed and violations of the 

constraints of the time windows were the respective task of 

each population which was pursued independently. This 

approach proved efficient when the utilization of a reduced 

number of vehicles is the major objective. Aslaug [63] 

developed a Uniform Crossover GA (UC-GA) with Steepest 



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 2 (2019), pp. 180-195 

© International Research Publication House.  http://www.irphouse.com 

183 

Improvement Crossover to optimize the number of vehicles 

serving a number of customers from a central destination in a 

Capacitated VRP (CVRP). The local search technique used was 

based on simple random crossover and mutation operators. The 

results indicate that Steepest Improvement algorithm is best for 

small problems while UC-GA with Steepest Improvement 

Crossover produced is best fit for larger problems. John and 

Patrick [34] applied ACO algorithm to addressing the route 

construction, the trail updating and the route improvement 

strategies of a prototype VRP. Experimental evaluation 

involved single and multiple ant colonies and were applied to 

three different optimization problems. Yingjie and Michael [46] 

solved a VRP with Backhauls and Time Windows (VRPBTW) 

by using a guided local search algorithm. The objectives were 

to reduce both overall total distance of all evolving routes and 

the number of routes. The solution evolved in two phases. In 

the first phase, initial infeasible solution was generated using 

an adapted sweep algorithm while a path planning technique 

was used to enhance feasibility of routes in the second phase. 

Active Guided Evolution Strategies [64] and Scatter Search [65] 

have also been developed to solving VRPTW. Ho et al. [22] 

introduced a hybrid GA concept to solve the multi-depot VRP. 

Nie and Yue [27] merged self-optimization concept of Particle 

Swarm Optimization (PSO) with the evolving individuals’ 

concept of GA. Aziz [7] developed a hybrid metaheuristic 

technique to solve VRP that combines ACO and local search 

algorithms. Considering a graph problem, the objective of the 

technique was to group nodes in the neighborhood to same 

branch of the minimum spanning tree. ACO was introduced 

within a cluster of client nodes to improve the optimality of 

solutions and to update the associated weights of the graph arcs 

at each iteration after a route is returned by the local search 

algorithm.   

Variable Neighborhood Search with GA and Route-

Nearest Neighborhood with Tabu search have also been applied 

to solving large scale VRP [43], [66], [67]. Thangiah, Nygard 

and Juell [68] developed a GA-based heuristic technique called 

GIDEON to solve VRPTW via a genetic sectoring approach. In 

this approach, a corresponding service time is allotted to a local 

post-optimization improvement strategy for the core purpose of 

minimizing the total travel time of the vehicle relative to its 

capacity, arrival time and instantaneous travel time among 

other constraints to reach each customer to be served. 

Adaptively, via a GA, genetic sectoring method search for 

sector rays through which the customers are partitioned into 

clusters before being served. Rita, Cláudio, Valério, François 

and Saïd [69] applied a pseudo-polynomial network flow 

model to develop an iterative exact algorithm for solving 

VRPTW with multiple routes. Lingling and Ruhan [15] 

combined Nearest Neighbor search (NNS) with Tabu Search in 

a two-stage process to realize an efficient hybrid metaheuristic 

algorithm for Large-Scale VRP. The VRP was divided into two 

phases via a decomposition approach. In the first phase, the 

initial route was constructed using the Nearest Neighbor 

algorithm while both intra and inter (cross-exchange) routes 

were optimized in the second phase by Tabu search. Similarly, 

decomposition strategies such as the divide and conquer 

approach and the POPMUSIC framework have been 

successfully applied to managing large size restrictions in VRP 

[70]. 

Zhang and Wang [71] developed a Hybrid Nearest 

Neighbor Heuristic (NNH) and ACO Algorithm tagged “HAA” 

for solving VRP. In the HAA solution space, initial solution 

was generated using NNH before a more optimal solution was 

obtained using ACO via a 4-stage procedure namely 

construct_solutions, mutation operation, 2-opt heuristics and 

update_pheromone. It was reported that HAA can find feasible 

solutions and avoid premature convergence in the search space. 

ACO, ACO+2-opt and the HAA algorithm were evaluated over 

nine (9) benchmark problems in terms of speed of convergence 

and HAA performs best in this regard. Min and Ping [14] 

developed an improved ACO for optimal vehicle routing path 

planning. Factor and visibility functions were added via a 

transition probability function as well as path weight and save 

matrices. The accuracy of the route search was maintained 

using a penalty function assigned to update new pheromone. 3-

opt method was adopted to reduce the complexity of the search 

route to help realize optimized path length. More specifically, 

the improved ACO algorithm was developed to overcome 

problem of slow ad local minimum convergence and stagnation 

of ACO in VRP. Wenxue, Li and Guomin [72] combined 

improved GA and improved ACO to solve VRPTW with 

performance requirement specifications including shortest 

distance, shortest path length and minimum number of vehicles.  

Kourank, Hejazi and Mirmohammadi [40] developed 

a hybrid metaheuristic solution for VRP with delivery time cost 

based on electromagnetism and SA algorithms. In their 

approach, electromagnetism algorithm was used to generate 

diverse set of solution populations while SA was used to 

achieve global convergence. A branch-and-price approach was 

proposed by Andrea et al. [42] to address a prototype VRP with 

relaxed time windows. Masrom, Abidin, Omar, Nasir and 

AbdRahman [73] combined a PSO operator with mutation and 

crossover operators of GA with prior dynamic parameterization 

to solve VRPTW. Sheng-Hua et al. [28] addressed VRPTW via 

a particle real number encrypting method to decide the path to 

reduction in computational complexities while allowing for a 

leverage between local and global exploration strengths. The 

authors addressed premature convergence to local minimum by 

using a linear decreasing function integrated with the crossover 

operator of GA. Peiqing, Jie, Dunyong, Yongsheng and 

Chenhao [74] developed an improved GA based on a penalty 

strategy to solve VRPTW. Cagric, Tolga, Ola and Gilbert [60] 

developed a hybrid GA based on population-based search and 

adaptive large neighborhood search for heterogeneous fleet 

VRPTW. Suresh and Ramasamy [5] addressed a VRPTW in a 

3PL network. The authors employed GA to solve a prototype 

e-Commerce supplier site pickups having distribution and 

logistics challenges. The algorithm was modified using a 

random insertion-based crossover technique such that the 

suppliers’ site is visited by buyer’s vehicle to pick up some 

ordered items within specified suppliers’ time windows and 

approximate travel time. This approach was also adopted by 

Oyediran, Fagbola, Olabiyisi and Omidiora [75] to developing 

an ant-optimized mobile agent migration pattern in complex 

distributed networks. It is generally defined such that for any 

given distributed network, the cost approximate for a given 

route is: 

𝑅𝑖 ={𝑣0, 𝑣1, … . , 𝑣𝑘+1 }                                                 (8) 
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where  𝑅1, . . . , 𝑅𝑚  is a subset of V (vertex set) depicting the 

routes of the vehicles to reach all the customers; 𝑣𝑗  ϵ  V and 

𝑣0 = 𝑣𝑘+1 = 0 (where 0 depicts the depot), is given by:  
           

           𝐶𝑜𝑠𝑡(𝑅1) =  ∑ 𝐶𝑗
𝑘
𝑗=0 , 𝑗 + 1 + ∑ 𝛿𝑗

𝑘
𝑗=0          (9) 

while the cost of the generated problem solution given by S is: 
 

𝐹𝑉𝑅𝑃(𝑆) = ∑ 𝐶𝑜𝑠𝑡(𝑅1)𝑚
𝑖=1          (10) 

 

Martin [76] approached VRPTW using a modified GA and 

state space search. In the new GA, the mutation operator was 

replaced by a neighbour generation function.  Cao, Yang and 

Ren [77] introduced the cooperative hunting strategy of wolves 

to devise a solution-space model for a VRP with multiple fuzzy 

time windows. The authors modified the migration modes and 

summoning behavior of the conventional Wolf Pack Algorithm 

(WPA) by introducing drift and wave operators. These 

operators are to ensure that the entire search space is reached 

and that there is steady information flow during a fierce wolf 

raid process. A self-adaptive dynamic adjustment factor 

mechanism was also introduced to reinforce the local search 

ability. GA, Tabu search and a local search were combined by 

He and Li [3] to generate a near-optimal solution for a VRP 

with partly simultaneous pickup and delivery. Borzou, Guy, 

Fausto and Andrea [78] addressed a CVRP characterized by 

statistically-correlated and uncertain travel times (CST) via a 

mean-variance approach that penalizes paths with high 

difference in travel time. The capacitated constraint is to ensure 

that the capacity of each vehicle is not exceeded. Basically, 

CVRP-CST was developed to devise vehicular paths with 

reliable travel times only. The authors proposed two optional 

set-partitioning models for the resulting parametric binary 

quadratic system by developing an exact branch-price-and-cut 

algorithm that allows for sub-problem and column generation 

master problem-based derivation of solution(s) to the quadratic 

component of each model. Evaluation results presented 

indicate that CVRP-SCT exhibits significant improvement in 

time variability over conventional CVRP solutions. Homero, 

Leandro, Claudia and Maria [79] developed a Variable MIP 

Neighborhood Descent (VMND) algorithm by embedding a 

local search heuristic into a branch-and-bound algorithm to 

solve a multi-vehicle, multi-period VRP with due dates. 

 

Pratiwi et al. [31] developed a hybrid Bat-SA algorithm and a 

crow search-based cat swarm optimization algorithm for 

solving VRPTW with large customer base. Experimental 

evaluations indicate that the crow search-based algorithm 

outperforms the hybrid Bat-SA for large VRPTW size. In the 

work of Malek, Sana, Hafiz and Salwani [80], bee algorithm 

was used to solve VRPTW and evaluated using Solomon’s 

benchmark dataset. Gewen, Yanguang and Hao [81] developed 

a Multi-agent ACO (MACO) for solving VRP with Soft Time 

Windows and Road Factor (VRPSTWRF). The constraints of 

interest are fuel consumption, transport cost and customer 

satisfaction. In solving a prototype 40-customer VRPSTWRF, 

the authors introduced pheromone expectation and adaptive 

heuristic factors to obtain global convergence. A 3-opt strategy 

was also used to improve local search ability. Petr [41] used a 

deterministic approach to optimize ACO for solving a modified 

multi-depot VRP. Rubén, John and Mauricio [39] used eight 

intra- and inter-route local search strategies for optimizing 

travel routes for a Multi-Depot VRP with a Heterogeneous 

Fleet (MDHFVRP). Auxiliary graphs were employed for 

encoding and a modified GA was used to attain optimal quality 

of solution. Dedy, Herman and Buulolo [82] modeled the 

VRPTW with pick-up and delivery. The authors considered the 

fleet and driver as inclusion criteria into the optimization 

problem and also applied the direct search method to generate 

the solution space.  

IV. METHOD 

In this section, Genetic algorithm, Termite hill algorithm, the 

proposed hybrid TERMHIGEN, the Solomon’s benchmark 

problems and the performance evaluation metrics are presented. 
 

IV.I Termite-Hill Algorithm 

Termites are social insects often characterized as autonomous, 

interdependent, adaptive and simple but with relatively small 

size and reduced number of neurons [83],[84]. Termite colonies 

possess sophisticated cooperative and self-organization 

abilities that make them capable of handling complex tasks in 

a well-coordinated, efficient and effective manner towards 

realizing targeted global objectives [85],[86]. Their adaptive 

cooperative behaviour has been conceptualized to solving 

many real-life distributed routing problems. Termite-inspired 

schemes have shown outstanding results when applied to areas 

including intelligent route maintenance, stagnation avoidance, 

quality of service delivery and optimized network performance 

in Mobile Ad-Hoc Networks (MANET) [86]-[88]. A summary 

of Termite-inspired Algorithms and applications is presented in 

Table 1. From the evaluation of intelligent routing methods on 

MANET, termite algorithm exhibits superior performance over 

standard routing techniques like Ad-hoc On-demand Distance 

Vector (AODV) in realistically more adverse environments 

with less overhead [86]. TinyTermite routing algorithm, a 

modified variant of the traditional termite algorithm, was 

developed by Mina and Josh [9] to reduce energy consumption 

requirement of wireless sensor networks and to secure same 

against replay attacks and selective forwarding. TinyTermite 

was implemented on TinyOS-based Intel Mote 2 platform and 

offered over 30% reduction in energy use and lowered packet 

loss by over 50%. Praveenkumar, Kiran and Ram [29] 

developed a novel termite algorithm, Opt-Termite, to enhance 

loading balancing strategy on MANETs using the stigmergy 

concept for self-organization. A mobile-aware termite 

algorithm that uses pheromone smoothing mechanism to find 

reliable route and mitigate measurement bias on MANETs was 

developed by Kiran and Ram [89].  
 

In a doctoral research conducted at Harvard University by 

Petersen [56], termite-inspired robots were developed 

following the characteristic mound-building behaviour of 

termites.   An error tolerant, locally-perceiving and scalable 

multi-robot framework, termed TERMES, was developed to 

allow for cooperative assemblage of large building structures 

by these robots.
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Table 1.     Termite-inspired Algorithms and Applications 

 

Towards finding reliable routes to the destination and tackling 

stagnation problem on MANETs, Kiran and Reddy [90] 

developed a Load Balanced Termite, LB-Termite. The overall 

target is to optimize load balancing. Abdul and Khaled [91] also 

developed a mobility-aware, scalable Pheromone Termite (PT) 

model based on pheromone sensitivity and packet generation 

speed for all forms of links. PT model was developed to 

minimize latency and improve throughput in WSNs. Kiran and 

Ram [92] developed a hybrid Bat-termite routing protocol by 

consolidating the echo-location feature of mammal bats with 

the cooperative hill building nature of termites. This initiative 

was to realize rapid route maintenance and efficient multiple 

routes’ management A supervised termite colony-based 

scheme tagged, EC-STCRA, was developed by Rajarajeswari, 

Karthikeyan and Deva [93] for energy conservation in wireless 

sensor networks. EC-STCRA performed significantly better 

than most local search and metaheuristically-enhanced routing 

schemes based on Packet Loss and Delivery Ratios, delay, 

throughput, delay and Residual Energy. Sharad and Asha [96] 

developed a Termite colony optimization algorithm for 

wireless mesh networks to improve optimal route finding 

strategy. In a related manner, Termite Hill Algorithm (THA) 

was developed by Zungeru et al. [85] to demonstrate the 

characteristic social behavioral patterns of termites for solving 

real-world routing problems in wireless sensor networks. More 

recently, an energy-aware Termite hill algorithm was 

developed by Zungeru, Chuma and Mangwala [94] to realize 

increased network lifetime of radio models. In a typical termite 

hill scenario, termite agents migrate as packets through the 

network and modifying routing parameters towards finding the 

most cost effective path to reach one or more destinations 

depending on the network size. The destination is a specialized 

code often referred to as the sink node. There are forward 

soldiers that gather information that are consequently kept in 

the pheromone table. This table appears in matrix form 

containing information regarding the destination and neighbor 

nodes. At each node, a table that tracks the amount of 

pheromone on each neighbor route is maintained. This is to 

allow for the determination of selecting probabilities of each 

neighbor by the values in the table. Generally, Termite-oriented 

algorithms are energy efficient with less latency, adaptable, 

scalable and robust with a characterized global optimum 

convergence [56], [93]. The termites evaluate the quality of 

each new route to a hill by the pheromone contents of the 

pebbles on the path. A pheromone table, containing set of 

entries 𝑇𝑛,ℎ  can be described as a 𝑛 × ℎ matrix of neighbors 

and destinations such that 𝑛  is a vector containing a set of 

neighbors 𝑛1, 𝑛2, … , 𝑛𝑥 and ℎ contains a set of hills (sink nodes) 

ℎ1, ℎ2, … , ℎ𝑑  where 𝑥 𝑎𝑛𝑑 𝑑  are the total number of 

intermediate nodes and destinations, respectively. However, 

updated pheromone value for a node is denoted as [85]: 

 𝑇1
𝑛,ℎ

 
=  𝑇𝑛,ℎ +  𝛾                                           (11) 

S/N Author(s) Algorithm Purpose  Application area 

1 Zungeru et al. [85] and 

Zungeru et al. [94] 

Termite-Hill and 

energy-aware Termite-

Hill, respectively 

Energy optimization and increased 

network lifetime of radio models, 

respectively. 

Wireless Sensor 

Networks (WSN) 

and radio networks 

2 Martin and Stephen [95] Termite optimized network performance MANET 

3 Sharvani [88] Modified Termite 

Algorithm 

quality of service,  efficient and 

intelligent route maintenance 

MANET 

4 Martin and Stephen [86] Termite Routing behaviour modelling MANET  

5 Rajarajeswari et al. [93] Energy Conserved - 

Supervised Termite 

Colony-based Role 

Assignment scheme 

(EC-STCRA) 

 

Energy conservation 

 

Wireless Sensor 

Networks 

6 Petersen [56] TERMES error tolerance, local-perceptiveness 

and scalability 

Multi-Robotic 

Systems 

7 Mina and Josh [9] TinyTermite energy conservation and security  Wireless Sensor 

Networks 

8 Praveenkumar et al. [29] Opt-Termite Load balancing  for optimization MANET 

9 Sharad and Asha [96] Termite Colony 

Optimization (TCO) 

Optimal route finding and selection Wireless Mesh 

Networks 

10 Kiran and Ram [90] Load Balanced (LB) -

Termite  

Load balancing, routing protocol MANET 

11 Abdul and Khaled [91] Pheromone Termite high throughput, fast and robust 

Routing, low latency 

Wireless Sensor 

Networks 

12 Kiran and Ram [92] Bat-termite Fast route finding, backup route 

maintenance, routing protocol 

MANET 

13 Kiran and Ram [89] Mobility-aware termite Reliable path finding MANET 

14 Sharvani, Ananth and 

Rangaswamy [87] 

Modified Load 

Balancing Termite 

Algorithm 

Efficient stagnation avoidance MANET 
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where 𝑇𝑛,ℎ is the initial pheromone value.   

 Simply put,  

                                  𝛾 =  
𝑁

𝐸−(
𝐸𝑚𝑖𝑛−𝑁𝑗

𝐸𝑎𝑣𝑔−𝑁𝐽
)
                                  (12) 

where 𝛾  is the new information added to 𝑇𝑛,ℎ
 

 
when a new 

packet is delivered through an immediate node, n, from an 

originating node h; E is the initial energy of the nodes while 

𝐸𝑚𝑖𝑛  and 𝐸𝑎𝑣𝑔  depict the minimum and average energy 

expended while the forward soldier moves towards the sink 

node. Route is determined and selected via the initialization of 

the routing tables of all nodes using a uniform probability 

distribution stated as:  

𝑃𝑛,ℎ =
1

𝑁
                                                                 (13) 

This probabilistic function indicates if a forward soldier at any 

source node, n, will get to the sink node, h, and N is the total 

number of all nodes in the network.  

 

IV.II Genetic Algorithm 

Genetic Algorithm (GA), borne from the principle of natural 

evolution, has found wide application in a number of 

theoretical optimization problems and several industrial 

applications. It has been successfully adopted as a guided 

search technique and arbitrary functions’ optimizer yielding 

approximate solutions. Given a problem, a typical GA 

repeatedly encodes members of a finite set of possible 

candidate solutions (individuals) via the principle of natural 

selection with strong genetic inheritance from a population of 

chromosomes using mutation and crossover operators. A 

concise description of a typical GA procedure is presented as 

Algorithm 1 [97]: 

 

Algorithm 1: Pseudocode of the Conventional GA 

 

i. Obtain an initial population of N solutions. 

ii. While termination condition is false 

a. Devise a fitness function to evaluate each 

solution of the initial population  

b. Via randomness or probability scheme, select 

best-fit solutions to form new generation from 

the set of initial population 

c. Generate new generation from the parent 

solutions in (ii.b) via a crossover procedure. 

d. Modify the new generation randomly via a 

mutation probability. 

e. Repeat (ii) through (v) until a stopping criteria 

is satisfied. 

iii. return best-fit solution 

 

 In GA, a vehicle is represented using a chromosome. A 

demarcation between two routes in the chromosome is 

represented by each vehicle identifier. However, consequent 

upon the need for GA to maintain a large population of 

solutions, it suffers from premature convergence, consumes 

several megabytes of memory and turns out as inefficient due 

to over-reliance on crossover [21],[24]-[26],[98]. These 

limitations resulted in the development of several modifications 

specifically tailored to address VRPTW [22],[28],[99]. 

 

IV.III The Proposed TERMHIGEN Algorithm 
 

The proposed TERMHIGEN algorithm is presented in 

Algorithm 2 consisting of a modified Genetic Algorithm (GA) 

in stage 1, to offer optimized fitness measurement, evaluation 

and selection via a ranking approach, and the Termite Hill 

algorithm in stage 2, respectively. In the modified GA, the 

entire population is initially ranked such that each chromosome 

receives a fitness value due to the ranking with the worst having 

the least fitness and the best having the fitness value equivalent 

to the entire number of chromosomes that make up the 

population. This way, all the chromosomes have higher 

likelihood of being selected in a bid to eliminate premature 

convergence of GA.  

 

  Algorithm 2: The Proposed TERMHIGEN Algorithm  

 

Stage 1: Optimized Fitness Measurement, Evaluation and 

Selection 

Initialization: 

i. 𝑡 ← 0;; // at time 0 

ii. NoOfRuns : maximum number of iteration; 

iii. Iteration ← 0;  

iv. InitializeEntirePopulation [𝑃(𝑡)];   
     // P(t) = N; Given that N chromosomes form the initial 

population 

v. EvaluateEntirePopulation [𝑃(𝑡)];  ;  
     //sort the initial population based on fitness values 

vi. while not end do 

vii. 𝑃𝐼(𝑡) ← 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛[𝑃(𝑡)];   
     //creates new entire solutions 

viii. EvaluatePopulation [P1 (t)]; 

    //evaluates new solutions via the application of fitness 

function and selection strategy     

           //based on 𝑓𝑛𝑒𝑤(𝑆) as follows: 
 

{  𝑓𝑒𝑣𝑎𝑙(𝑆)= 𝑓𝑚𝑎𝑥−𝑓1(𝑆)
𝑓1(𝑆)=𝐹𝑉𝑅𝑃(𝑆)+⋌.𝑜𝑣𝑒𝑟𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑆)+𝜇.𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒(𝑆)

}        (14)                  

where 𝐹𝑉𝑅𝑃(𝑆) is the sum of the total costs of all the 

distance, overcapacity(S) is the solution’s capacity 

overhead subject to the maximum allowed value of 

each route,  ⋌ . Overtime(S) is the solution’s time 

overhead subject to the maximum allowed weight for 

each route,  𝜇.  However, 𝑓𝑒𝑣𝑎𝑙  is the final evaluated 

fitness value and 𝑓𝑚𝑎𝑥  is the maximum value 

obtainable.  

                𝑓𝑔 =  
1

𝑥𝑔
 where 𝑥𝑔 is the objective function value with               

respect to each chromosome (inverse of the total cost 

where total cost depicts the   fitness value).   

𝑓𝑛𝑒𝑤(𝑆) =  
1

2
 (𝑓𝑒𝑣𝑎𝑙(𝑆) + 𝑓𝑔)               (15)        

//fitness function                                                             

//evaluates new solutions via the application of 

ranking selection approach 

The ranking selection function used is expressed as:                                                                               

{𝑝 (𝑘) =
2𝑘

𝑀(𝑀+1)
}                           (16)
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where k is the kth individual in the rank and M represents 

the size of the population. In a case where k=M, the best 

individual emerges with a probability 
2

𝑀+1
 of being 

selected.

 ix. 𝑃(𝑡 + 1) ← 𝐴𝑝𝑝𝑙𝑦𝐺𝑒𝑛𝑒𝑡𝑖𝑐𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟  𝑠[𝑃𝑖(𝑡)] 
//next generation population 

x.      𝑡 ← 𝑡 + 1 

xi.    end while 

xii. Obtain new population, 𝑃𝑖(𝑡)  

 

Stage 2: Termite-Hill Re-Routing Procedure 

xiii. Initialize distribution parameters; 

xiv. Obtain 𝑃𝑖; // 𝑃𝑖 < 𝑃 is the new population 

xv. if there exists one or more termite hills (sink nodes), 

⋃ 𝑗 ∈ 𝑁
𝑗
1  where N is a set of natural numbers and j is 

the number of termite hills (sink nodes) depending on 

the size of the network 

begin 

a. if 
(customer_demand_available_for_transmission_

at_originating_node_to_sink (ON)) == TRUE 

and   (ON_valid_data_routing table_exist) == 

FALSE  

b. then Generate a forward soldier and send it to all       

intermediate neighbors 

c.       if 

(intermediate_node_receives_forward_soldier 

== TRUE)  

             a.    Acquire hill address (sink node /   

destination) from the forward soldier 

             b.   if (search_for_ a_valid_ 

path_to_a_hill_in_the 

local_routing_table ==  SUCCESS)  

                                             then Generate backward soldier packet      

with valid path address to the hill 

                    if (the next hop is not the originating node of the forward 

soldier),  

repeat,  

a. send backward soldier as a unicast message 

to the next intermediate node via reverse 

routes 

b. apply cross layer approach to detect and 

avoid routes with high packet loss 

c. check feedback from link layer (MAC) to 

detect link failures 

until the originating node (ON) of the forward soldier 

receives the backward soldier 

                                             endif 

endif 

                         endif  

                   endif 

   d.   update routing table on all intermediate     

nodes using equations (8 and 9) 

   e.  identify best valid route to the hill using 

updated forward pointer information   

           (equation 10) 

   f.     convey message from backward soldier to the 

next intermediate node using reverse links 

end 

         endif 

xvi. do while (iteration < NoOfRuns) 

      repeat 

      stage 1, stage 2; 

      until no further improvement is observed. 

      end do 

xvii. Output the solution 

 

As a two-staged algorithm, the fitness and selection procedures 

in GA were modified to ensure rich global convergence and 

efficiency of the overall VRP solution using Equations (14 and 

15) in the first stage. Ranking selection approach developed by 

Rakesh [100] was adopted to sort all individuals in the 

population using individual fitness value in such a way that an 

individual with a better fitness value f(x) gets a higher rank 

based on the optimization criteria using Equation 16. This helps 

to realize quick convergence as good individuals become 

predominant in the population. In the second stage, two distinct 

termites’ colonies were used and each termites’ colony was 

saddled with an objective to optimally minimize the number of 

vehicles and the distance respectively. A sophisticated 

cooperative system among the colonies through a pheromone 

update allows for information exchange such that both colonies 

become re-activated and updated when a new packet is 

delivered to a node. The basic assumptions include: 

i. each node is adjacently connected to one or more 

intermediate nodes in the network (neighbors); 

ii. to establish communication among adjacent pair of 

nodes, a node may serve multiple purposes as source, as 

a router or as a destination;  

iii. prior to packet transmission, information regarding the 

configuration of the network and routing table structure 

is unknown;  

iv. energy requirement to transmit a message between any 

pair of adjacent nodes all through the network is equal. 

 

IV.IV Solomon’s Benchmark VRPTW Problems 
 

Solomon’s benchmark problems is a standard publicly-

available VRPTW dataset developed by Solomon [101] and 

freely downloadable from http://neo.lcc.uma.es/vrp/vrp-

instances/capacitated-vrp-with-time-windows-instances. This 

dataset describes a very considerable number of different real 

life VRPTW scenarios, and in turn, has been widely used in 

several studies including the works of Malek, Sana, Hafiz and 

Salwani [80], Avirup et al., [23], Kumar and Panneerselvam 

[102], Azi, Gendreau and Potvin [103], Suresh and Ramasamy 

[5] and Yingjie and Michael [46] among others. The 

benchmark dataset contains 56 VRPTW with each having 100 

customer instances. The dataset is organized into six (6) 

categories C1, C2, R1, R2, RC1 and RC2 based on customers’ 

locations and the time windows. There are two categories for 

remotely-distributed customers (R1 and R2), clustered 

customers (C1, C2) and combinations of remotely-distributed 

and clustered customers (RC1 and RC2). Categories (C1, R1 

and RC1) have vehicles with low capacities and short time 

windows while categories C2, R2 and RC2 have vehicles with 

http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-with-time-windows-instances
http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-with-time-windows-instances
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higher capacities and longer time windows. Each of the 56 

VRPTW’s instances differ relatively based on the customer’s 

location (x and y coordinates), customer’s preferred time 

window to be served, service due time, quantity of demand, 

capacity of the vehicle, service time, vehicle travel time and 

total number of vehicles. 

 

IV.V Performance Evaluation Metrics 
 

i. Traveled Distance (TD): This is the value of the total 

distance travelled by all the vehicles 

ii. Number of Vehicles (NV): This is the value of the total 

number of vehicles used  

iii. Execution Time: This refers to the central processing unit 

runtime spent to generate solutions to each instance of 

the Solomon’s benchmark problems. 
 

V.    EXPERIMENTAL RESULTS AND DISCUSSION 

The algorithms (the modified GA, the Termite Hill and the 

TERMHIGEN) developed in this study were implemented in 

MATLAB 2015a environment and evaluated using Solomon’s 

VRPTW benchmark problems on a HP 15 Notebook PC with 

320 GB Hard drive, Windows 8.1 Pro 64-bit, Intel CPU N2820, 

2.13GHz and 4MB L3 cache specification. The results 

produced by the modified GA, the Termite Hill and the 

TERMHIGEN algorithm for solving the 56 prototype problems 

are presented in Table 2. For each of the algorithms, an average 

value of TD and NV was generated based on 10 consecutive 

runs for each problem instance. However, best (least) values of 

TD and NV generated by TERMHIGEN from the 10 

consecutive runs of each problem instance are also reported. 

The CPU time to generate the results were also computed and 

presented. The best known solutions to the 56 Solomon 

Benchmark problems presented in Table 2 were obtained from 

several studies including the works of Malek, Sana, Hafiz and 

Salwani [80], Munari and Morabito [104] and Sheng-Hua, Ji-

Ping, Fu-Hao, Liang and Li-Jian [28], having apparently 

different methodological approaches. These aforementioned 

works presented more harmonized previous best-known 

solutions which are equally more optimal than those stated in 

some other works as well as new best-known solutions which 

are also considered in this study.  

Based on the results of the developed TERMHIGEN algorithm, 

three (3) new best-known solutions, marked red and in bold 

format in Table 2, are reached for RC102, RC105 and RC106 

as summarized in Table 3. Actually, there is a trade-off between 

the number of vehicles used and the total distance travelled.  

 

Table 2.    Results of the Total Distance Travelled obtained 

 

Problem 

No. 

Problem 

Instance 

Best Known 

Solution 

Modified Genetic 

Algorithm  Termite Hill TERMHIGEN 

Best Values Average Average Best Average 

TD NV TD NV TD NV TD NV TD NV 

0 C1-01 827.30 10 843.26 10.10 842.49 10.10 827.30 10 842.45 10.00 

1 C1-02 827.30 10 828.98 10.00 828.97 10.00 827.30 10 828.76 10.00 

2 C1-03 826.30 10 847.26 10.00 832.45 10.00 826.30 10 828.04 10.00 

3 C1-04 822.90 10 823.99 10.00 823.61 10.00 822.90 10 823.28 10.00 

4 C1-05 827.30 10 849.82 10.00 843.43 10.10 827.30 10 839.95 10.00 

5 C1-06 827.30 10 846.91 10.00 847.45 10.00 827.30 10 844.68 10.00 

6 C1-07 827.30 10 842.70 10.10 842.35 10.20 827.30 10 841.96 10.10 

7 C1-08 827.30 10 855.26 10.00 845.52 10.00 827.30 10 841.18 10.00 

8 C1-09 827.30 10 889.07 10.10 841.76 10.10 827.30 10 835.79 10.10 

9 C2-01 588.88 3 598.93 3.20 598.91 3.20 589.10 3 598.89 3.10 

10 C2-02 588.88 3 628.65 3.30 610.34 3.10 589.10 3 592.11 3.10 

11 C2-03 585.27 3 606.10 3.00 604.55 3.00 591.12 3 603.58 3.00 

12 C2-04 584.49 4 689.62 3.10 665.78 3.00 590.60 3 628.37 3.00 

13 C2-05 588.49 3 599.01 3.10 598.24 3.20 588.88 3 597.85 3.10 

14 C2-06 588.49 3 600.49 3.00 589.21 3.00 588.49 3 588.32 3.00 

15 C2-07 587.31 3 599.39 3.00 599.35 3.00 587.31 3 599.33 3.00 

16 C2-08 588.32 3 612.05 3.00 603.89 3.00 588.32 3 599.62 3.00 

17 R1-01 1483.57 16 1629.21 19.00 1633.45 19.30 1628.31 20 1639.67 19.40 

18 R1-02 1355.93 14 1477.14 17.80 1476.58 17.00 1471.91 17 1476.23 17.00 

19 R1-03 1133.35 12 1239.01 14.10 1239.98 13.40 1227.67 13 1241.16 12.20 
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20 R1-04 968.28 10 992.52 9.70 992.06 9.70 979.28 10 991.96 9.50 

21 R1-05 1262.53 12 1363.42 15.00 1362.75 13.80 1343.72 14 1361.98 14.20 

22 R1-06 1201.78 12 1247.29 12.10 1247.02 12.10 1201.78 13 1246.96 12.30 

23 R1-07 1051.92 11 1088.74 10.70 1088.49 11.00 1051.92 11 1087.02 10.60 

24 R1-08 948.57 9 958.82 9.70 957.32 9.30 948.57 9 955.65 9.20 

25 R1-09 1110.40 12 1169.71 11.20 1165.60 11.20 1110.40 12 1164.70 12.20 

26 R1-10 1080.36 11 1098.14 10.20 1098.11 10.70 1080.36 11 1098.08 10.60 

27 R1-11 987.80 10 1059.14 10.60 1054.09 11.50 1042.19 12 1056.06 11.70 

28 R1-12 953.63 10 988.58 10.50 975.74 10.00 962.58 10 967.92 9.60 

29 R2-01 1148.48 6.5 1199.89 7.70 1182.64 6.10 1148.48 8 1178.26 8.20 

30 R2-02 1049.74 3 1081.57 5.70 1080.72 4.90 1049.74 6 1079.83 5.60 

31 R2-03 900.08 3 922.71 4.50 922.77 3.40 900.08 5 922.81 4.40 

32 R2-04 772.33 2 826.47 2.30 810.72 2.20 772.33 3 799.86 3.10 

33 R2-05 959.74 3 987.15 4.60 978.98 4.10 966.74 5 978.01 5.00 

34 R2-06 898.91 3 903.89 3.20 903.85 3.10 898.91 4 903.83 4.00 

35 R2-07 814.78 3 836.67 3.20 835.91 2.80 814.82 3 835.20 3.00 

36 R2-08 715.37 2 725.53 2.00 725.51 2.70 715.37 3 725.43 2.40 

37 R2-09 879.53 3 891.82 5.20 891.28 5.10 879.53 5 890.16 5.00 

38 R2-10 932.89 3 943.89 6.30 940.62 4.70 932.89 5 937.66 4.10 

39 R2-11 761.10 2 886.99 2.20 862.56 3.10 801.63 4 824.96 3.70 

40 RC1-01 1619.80 15 1685.18 14.50 1654.89 14.80 1619.80 15 1638.56 14.70 

41 RC1-02 1530.86 13 1487.10 13.50 1473.68 13.40 1462.31 14 1465.89 13.30 

42 RC1-03 1221.53 10 1262.04 11.10 1261.93 11.00 1248.67 11 1261.63 11.00 

43 RC1-04 1135.48 10 1135.89 10.00 1135.72 10.00 1135.48 10 1135.54 10.00 

44 RC1-05 1629.44 13 1639.89 15.20 1625.73 14.60 1617.32 15 1624.65 15.20 

45 RC1-06 1395.40 12 1392.80 12.20 1393.04 12.10 1375.38 12 1392.12 12.10 

46 RC1-07 1230.50 11 1246.01 12.30 1232.51 12.20 1230.50 12 1232.37 12.10 

47 RC1-08 1117.53 10 1133.24 10.50 1129.82 10.10 1117.53 10 1125.96 10.30 

48 RC2-01 1249.00 4 1391.40 7.10 1391.10 4.40 1337.62 7 1390.63 6.30 

49 RC2-02 1164.30 4 1243.34 3.30 1196.50 7.60 1168.90 8 1173.18 7.80 

50 RC2-03 1049.62 3 1055.67 3.30 1052.04 3.20 1051.62 4 1051.99 4.10 

51 RC2-04 798.41 3 798.67 3.10 798.60 3.00 798.41 3 798.52 3.16 

52 RC2-05 1161.81 7 1262.51 6.50 1255.31 4.60 1241.19 7 1250.94 6.83 

53 RC2-06 1059.89 3 1069.22 5.80 1063.57 3.60 1059.89 7 1061.07 6.01 

54 RC2-07 976.40 3 1057.62 3.70 998.84 4.10 976.40 7 994.78 6.32 

55 RC2-08 785.93 3 822.36 3.68 813.85 4.00 793.87 5 810.93 4.62 

For RC102 and RC105, TERMHIGEN comparatively only 

showed improved performance over the previously best-known 

solutions in terms of total distance travelled at the expense of 

the number of vehicles. The latter solutions required lesser 

number of vehicles. However, for RC106, TERMHIGEN 

showed improved performance in terms of total distance 

travelled than the best-known solution while maintaining same 

number of vehicles used. Twenty-one (21) out of the 56 

solutions generated by TERMHIGEN, marked bold and in 

italics, are very close to but could not reached the best-known 

solutions. However, it is able to generate similar previously 

best-known solutions to 32 out of the 56 Solomon Benchmark 

problems. As presented in Table 4, results obtained indicate 

that TERMHIGEN performs better than the modified Genetic 

algorithm and the Termite Hill algorithm in terms of the total 

and average total distance travelled for all the problem 

categories.  
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Table 3.  New best-known solutions reached for RC102, RC105 and RC106 
 

 

 

 

 

 

 

 

 

 

Table 4. Comparative Results of the Average Total Travelled Distance 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consequently, a slightly higher average number of vehicles was 

used by TERMHIGEN to solve R2 and RC2 problem 

categories than those required by the latter algorithms. 

Similarly, in comparison with some baseline VRPTW 

algorithms having previous best-known results as presented in 

Table 5, TERMHIGEN shows improved performance over 

GA+PSO [28], Bee algorithm [80], EC-MIN-DIS [105] and 

EC-MIN-VEH [105] in terms of the average number of 

vehicles used in all the solutions. In terms of the overall average 

distance travelled, TERMHIGEN performs better than EC-

MIN-VEH, Bee and R-T [106] algorithms. It is important to 

mention that since the previously best-known solutions were 

produced by methods which were implemented on different 

machines having varying configurations, it cannot be said that  

 

a method is superior to another even if its results seem more 

significant but rather acceptable in a more relative sense.  

In Table 6, the average execution times of the algorithms for 

the six (6) categories of Solomon’s Benchmark problems are 

presented. As evident in all the evaluations conducted, 

TERMHIGEN produced the least average execution times, 

hence assumes the most computationally-efficient technique 

among the three, followed by Termite-Hill and the modified 

Genetic Algorithm in that order. This order is consistent for all 

the six categories of Solomon’s Benchmark problems. The 

modified GA must have suffered high computational time 

complexity because of the incorporated ranking selection. 

Rank-based selection are usually computationally-expensive 

due to the additional sorting time requirement [100]. 

 

 

Problem 

Best Known 

Solution  

TERMHIGEN 

Algorithm 

NV ND Reference NV  ND 

 

RC1-02 13 1539.86 

Malek et 

al.[80] 14 1462.31 

 

RC1-05 13 1629.44 

Malek et 

al.[80] 15 1617.32 

 

RC1-06 12 1395.40 

Malek et 

al.[80] 12 1375.38 

 

 

Problem 

Number of 

Vehicles / 

Total Distance 

Travelled 

Modified Genetic 

Algorithm 

Termite Hill 

Algorithm 

TERMHIGEN 

Algorithm 

Average Average Average 

 

C1  

NV 10.03 10.06 10.02 

TD 847.47 838.67 836.23 

 

C2  

NV 3.09 3.06 3.04 

TD 616.78 608.78 601.01 

 

R1  

NV 12.55 12.42 12.38 

TD 1,192.64 1,190.93 1,190.62 

 

R2  

NV 4.26 3.84 4.41 

TD 927.87 921.41 916.00 

 

RC1  

NV 12.41 12.28 12.34 

TD 1,372.77 1,363.42 1,359.59 

 

RC2  

NV 4.56 4.31 5.64 

TD 1,087.60 1,071.23 1066.51 

 

All 

NV 448.28 438.90 455.34 

TD 56,762.73 56,322.18 56,106.32 



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 2 (2019), pp. 180-195 

© International Research Publication House.  http://www.irphouse.com 

191 

Table 5. Performance Comparison among VRPTW Algorithms 

  

Table 6. Results of the Average Execution Times (milliseconds) of the Algorithms 

 

 

 

 

 

 

 

 

 

 

 

VI.    CONCLUSION AND FUTURE WORK 

In this paper, a new hybrid metaheuristic algorithm tagged 

“TERMHIGEN” was developed to solve VRPTW. 

TERMHIGEN is based on combined characteristics of 

Termite-Hill and a modified Genetic algorithm using ranking 

selection. With Solomon’s Benchmark problems, 

TERMHIGEN was able to reach three (3) new best-known 

solutions for RC102, RC105 and RC106 in terms of the total 

distance travelled; however, it could not reach the recorded 

best-known number of vehicles used for RC102 and RC105. 

The developed algorithm also shows improved performance 

over the modified GA and Termite Hill in terms of the average 

total distance travelled and average execution time. However, 

further works can be directed to make TERMHIGEN better in 

terms of reduced number of vehicle requirement as a primary 

objective function. Similarly, future works can be directed 

towards the application of TERMHIGEN to solving other 

variants of VRP. In the same vein, variants of TERMHIGEN 

could be developed by combining Termite-Hill with other 

evolutionary algorithms like PSO, ACO and Bee algorithm and 

comparatively evaluate their performances for some general 

VRP instances.  
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