
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 2775-2779

© International Research Publication House. http://www.irphouse.com

2775

Deep Learning-based End-to-End Dependency Parsing without POS Tagging

Ji-un Jeon, Do-Heon Choi and So-Young Park

Game Design and Development, Sangmyung University,

Seoul, Republic of Korea.

ORCID: 0000-0002-3049-9549 (Ji-Un Jeon)

ORCID: 0000-0001-5128-9981 (Do-Heon Choi)

ORCID: 0000-0003-0746-218X (So-Young Park)

Yeo-Chan Yoon

SW & Contents Research Laboratory,

ETRI, Daejeon. Republic of Korea.

ORCID 0000-0002-5573-8964

Abstract

In this paper, we propose a deep learning-based end-to-end

dependency parsing model using syllable-based word

representation. Part-of-speech tagging additionally requires

resources, processing time, and memory, while the part-of-

speech tagging errors can be propagated into the dependency

parsing errors. The proposed syllable-based word

representation method excludes the separate part-of-speech

tagger from dependency parsing. For faster parsing, the

proposed model allows only a single candidate, rather than all

possible candidates. Considering the long-distance dependency

between a head and its dependent, the proposed model adopts

the stack-pointer network, one of the state-of-the-art deep

learning methods. Experimental results show that the unlabeled

attachment score of the proposed parsing model without the

separate part-of-speech tagger is 88.64%, which is comparable

to 89.04% of the parsing model with the part-of-speech tagger.

Moreover, the proposed model requires 80 milliseconds per

sentence, faster than 140 milliseconds of the parsing model

with the part-of-speech tagger. Besides, the proposed model

requires 3,319 MB in memory, less than 4,840 MB of the

parsing model with the part-of-speech tagger.

Keywords: Deep Learning, Dependency Parsing, End-to-End

Learning, Natural Language Processing, Word Representation

I. INTRODUCTION

As smart applications, such as text mining and AI speakers,

rapidly develop in the recent years, they are asked to provide

the desired services by understanding the meaning of a sentence

represented by a user [1,2]. Therefore, parsing a sentence is

very important. The parser analyzes the dependency between a

head word and its dependent in the sentence after identifying

every word in that sentence. However, it is difficult to parse the

sentence, because the sentence can include some ambiguities.

For example, the word “saw” has three different meanings: the

past tense of the transitive verb “see” (to look), the present tense

of the intransitive verb “saw” (to cut wood or metal), and the

noun “saw” (a tool used for cutting wood or metal). In the

sentence “Rabbit saw the turtle walked so slowly,” the head

words of “the turtle” and “slowly” can be either “saw” or

“walked.”

To reduce the complexity of parsing the sentence, most of

previous parsing approaches have been divided into part-of-

speech tagging to assign a part-of-speech tag to every word in

the sentence and dependency parsing to analyze every

dependency between the head word and its dependent in the

sentence [3-9]. Although the part-of-speech tagging is very

useful for dependency parsing, it also has the following

weaknesses for the dependency parsing. First, it needs

resources, such as a dictionary. Second, it additionally requires

processing time and memory. Third, the part-of-speech tagging

errors can be propagated into the dependency parsing errors.

In this paper, we propose an end-to-end dependency parsing

model without the separate part-of-speech tagger. Section 2

describes some previous dependency parsing approaches.

Section 3 introduces the stack-pointer network-based

dependency parsing model. Section 4 explains the proposed

syllable-based word representation method, substituted for the

separate part-of-speech tagger. Section 5 shows the

experimental results of the proposed dependency parsing

model. Section 6 concludes the paper.

II. RELATED WORKS

Dependency parsing approaches have recently evolved from

statistical approaches into deep learning-based approaches

using the word embedding to alleviate the data sparseness

problem [3-9]. They are classified as follows. First, graph-

based dependency parsing approaches generate all possible

candidates from a sentence before they finally select the most

possible candidate by calculating the probability of generating

every candidate based on the statistical information [3]. To

alleviate the data sparseness problem, the graph-based parsing

approaches using the deep learning method utilize the word

embedding, instead of a one-hot vector [3,4]. However, they

tend to be slow because they can generate too many candidates.

Moreover, the part-of-speech tagging errors are propagated into

the dependency parsing errors; because they depend on the

part-of-speech tagging.

Second, transition-based dependency parsing approaches

generate a single candidate from the sentence because they

select the shift–reduce transition action based on the buffer and

the stack [5,6]. Unlike the graph-based approaches, they do not

allow all possible candidates per ambiguous state; hence, they

quickly parse a sentence in a deterministic linear time. Like the

graph-based approaches, they use the separate part-of-speech

tagger. To calculate the score of selecting a transition action

between a shift and a reduce, the statistical models use the

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 2775-2779

© International Research Publication House. http://www.irphouse.com

2776

statistical information, while the deep learning-based models

use the deep neural network. For improving the long-distance

dependency problem, they utilize the long short-term memory

(LSTM) [6].

Third, stack-pointer network-based dependency parsing

approaches generate a candidate from the sentence by selecting

a stack action between the push and pop actions per ambiguous

state [7,8]. They calculate the score by using the pointer

network method to learn the conditional probability [7,9]. Like

the transition-based approaches, they select the most plausible

candidate per ambiguous state; hence, they parse a sentence in

deterministic linear time. Also, they depend on the part-of-

speech tagger. To improve the long-distance dependency

problem, the stack-pointer network-based dependency parsing

approaches can utilize the information of every word in the

sentence per ambiguous state.

In this paper, we propose a stack-pointer network-based end-

to-end dependency parsing model without the separate part-of-

speech tagger. Considering the processing time, we adopt the

transition-based approach to allow only a single candidate,

rather than the graph-based approach to allow all possible

candidates. Moreover, we choose the stack-pointer network-

based approach to improve the long-distance dependency

problem. Unlike the previous approaches, the proposed end-to-

end parsing model does not depend on the separate part-of-

speech tagger.

III. STACK-POINTER NETWORK

The stack-pointer network-based dependency parsing model

[7,8] consists of an encoder, a decoder, and a parser, as showed

in Fig. 1. The encoder assigns more context information to each

word in a sentence, while the decoder interprets the encoded

word information to find the dependent of the head word. Given

a head word on the current top of the stack, the parser pushes

the most plausible dependent candidate onto the new top of the

stack by analyzing the decoded information representing the

relation between the head word and its each dependent

candidate. When the parser finds no dependent of the head

word, the parser pops the head word from the top of the stack.

Finally, the parser generates a dependency parse tree with the

stack actions, such as push and pop.

Figure 1. Stack-pointer network

 𝑇𝑟𝑒𝑒 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑇𝑟𝑒𝑒

 𝑆𝑐𝑜𝑟𝑒(𝑇𝑟𝑒𝑒 | 𝑤1𝑛) ≝ 𝑎𝑟𝑔𝑚𝑎𝑥
𝑒0,n,𝑑0,2n,𝑎0,2n

 𝑆𝑐𝑜𝑟𝑒(𝑒0,n, 𝑑0,2n, 𝑎0,2n | 𝑤1𝑛) (1)

 𝑆𝑐𝑜𝑟𝑒(𝑒0,n, 𝑑0,2n, 𝑎0,2n | 𝑤1𝑛)

 = 𝑆𝑐𝑜𝑟𝑒(𝑒0,n | 𝑤1𝑛)  𝑆𝑐𝑜𝑟𝑒(𝑑0,2n | 𝑒0,n, 𝑤1𝑛)  𝑆𝑐𝑜𝑟𝑒(𝑎0,2n | 𝑑0,2n, 𝑒0,n, 𝑤1𝑛)

 ≈ ∏ 𝑆𝑐𝑜𝑟𝑒(𝑒i | 𝑤1𝑛)𝑛
𝑖=0  ∏ 𝑆𝑐𝑜𝑟𝑒(𝑑𝑖 | 𝑒0,n, 𝑤1𝑛)2𝑛

𝑖=0  ∏ 𝑆𝑐𝑜𝑟𝑒(𝑎𝑖 | 𝑑𝑖 , 𝑒0,n, 𝑤1𝑛)2𝑛
𝑖=0 (2)

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 2775-2779

© International Research Publication House. http://www.irphouse.com

2777

As described in Eq. (1), the proposed model generates the

dependency parse tree 𝑇𝑟𝑒𝑒 with the highest score from the

words 𝑤1𝑛 in the sentence. It consists of an encoder, a decoder,

and a parser; hence, the generated dependency parse tree 𝑇𝑟𝑒𝑒

can be redefined as the sequence of the encoded word

representations 𝑒0,𝑛 , the decoded information 𝑑0,2𝑛 , and the

stack actions 𝑎0,2𝑛. As a result of both pushing and popping the

words 𝑤1𝑛 in the sentence, the number of selecting the stack

actions indicates 2𝑛 representing two times the number of all

the words in the sentence. Eq. (2) assumes that the score

function can generalize multiple events by the chain rule, and

some independent information exists.

𝑒𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑒𝑖

 𝑆𝑐𝑜𝑟𝑒(𝑒𝑖|𝑤1𝑛) ≈ 𝑒𝑖 ∘ 𝑒⃖𝑖

= 𝐿𝑆𝑇𝑀𝑓𝑜𝑟𝑒(𝑤𝑖 , 𝑒𝑖−1, 𝑐𝑖−1)

∘ 𝐿𝑆𝑇𝑀𝑏𝑎𝑐𝑘(𝑤𝑖 , 𝑒⃖𝑖+1, 𝑐𝑖+1) (3)

Given an ambiguous word, the encoder allows only a single

encoded candidate 𝑒𝑖 for the i-th word 𝑤𝑖 , as represented in Eq.

(3). Moreover, the encoder with a bidirectional LSTM model

concatenates both the output 𝑒𝑖 of the forward LSTM from the

first word to the i-th word and the output 𝑒⃖𝑖 of the backward

LSTM from the last word to the i-th word. The encoder can

consider the context of the word, such as the previous word

𝑤𝑖−1 and the next word 𝑤𝑖+1, because it utilizes the encoded

word information 𝑒𝑖−1 and 𝑒⃖𝑖+1 and the cell memory 𝑐𝑖−1 and

𝑐𝑖+1.

𝑑𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑑𝑖

 𝑆𝑐𝑜𝑟𝑒(𝑑𝑖 | 𝑒1n, 𝑤1𝑛)

≈ 𝐿𝑆𝑇𝑀𝑑𝑒𝑐𝑜𝑑𝑒𝑟 (𝑒𝑡𝑜𝑝 + 𝑒𝑡𝑜𝑝𝑔𝑟𝑎𝑛𝑑

+ 𝑒𝑡𝑜𝑝𝑠𝑖𝑏𝑖𝑙𝑛𝑔
, 𝑑𝑖−1, 𝑐𝑖−1) (4)

As represented in Eq. (4), the decoder also allows a single

decoded candidate 𝑑𝑖 for the i-th stack action. Because the

decoder adopts a single-directional LSTM model, it can utilize

the previously generated results such as the encoded word

information, and the decoded information. Eq. (4) describes

that it yields the decoded candidate 𝑑𝑖 using the encoded word

information 𝑒𝑡𝑜𝑝 of the word 𝑤𝑡𝑜𝑝 on the current top of the

stack, the encoded word information 𝑒𝑡𝑜𝑝𝑔𝑟𝑎𝑛𝑑
 of its

grandparent, the encoded word information 𝑒𝑡𝑜𝑝𝑠𝑖𝑏𝑖𝑙𝑛𝑔
 of its

siblings, the previous decoded information 𝑑𝑖−1 , and the

previous cell memory 𝑐𝑖−1.

𝑎𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎𝑖

 𝑆𝑐𝑜𝑟𝑒(𝑎𝑖 | 𝑑𝑖 , 𝑒1𝑛, 𝑤1𝑛)

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝑤𝑡𝑜𝑝𝑐ℎ𝑖𝑙𝑑

 𝑆𝑐𝑜𝑟𝑒(𝑤𝑡𝑜𝑝𝑐ℎ𝑖𝑙𝑑
 | 𝑑𝑖 , 𝑒1𝑛, 𝑤1𝑛)

 = {
 𝑝𝑢𝑠ℎ(𝑤𝑡𝑜𝑝𝑐ℎ𝑖𝑙𝑑

) 𝑖𝑓 𝑤𝑡𝑜𝑝𝑐ℎ𝑖𝑙𝑑
 𝑒𝑥𝑖𝑠𝑡𝑠

 𝑝𝑜𝑝() 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5)

The parser selects the most plausible stack action 𝑎𝑖, such as

push (𝑤𝑡𝑜𝑝𝑐ℎ𝑖𝑙𝑑
) or pop (), after calculating the action score

based on the encoded word information 𝑒0,n and the decoded

information 𝑑𝑖 representing the relations between the head

word 𝑤𝑡𝑜𝑝 on the current top of the stack and its dependent

word 𝑤𝑡𝑜𝑝𝑐ℎ𝑖𝑙𝑑
, as described in Eq. (5). When the most

plausible dependent word 𝑤𝑡𝑜𝑝𝑐ℎ𝑖𝑙𝑑
 exists in the sentence, the

parser pushes the dependent word onto the new top of the stack.

Otherwise, the parser pops the head word 𝑤𝑡𝑜𝑝 from the

current top of the stack.

𝑤𝑡𝑜𝑝𝑐ℎ𝑖𝑙𝑑
= 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑑𝑖 , 𝑒1𝑛) ≈ 𝑀𝐻𝐷𝑃𝐴(𝑄, 𝐾, 𝑉)

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (

𝑄𝐾𝑇

√𝑑𝐾

) 𝑉 (6)

In order to choose the most appropriate dependent word

𝑤𝑡𝑜𝑝𝑐ℎ𝑖𝑙𝑑
 of the head word 𝑤𝑡𝑜𝑝 from all words in the sentence,

the parser adopts the MHDPA (multi head dot product

attention), one of the most recent attention methods [10], to

obtain a probability distribution. For a more precise estimation,

the MHDPA method performs the scaled dot-product attention

after allowing multiple heads. In Eq. (6), Q, K, V, and 𝑑𝐾

denote queries, keys, values, and the dimensionality of the key

vectors used as a scaling factor, respectively. The decoded

information 𝑑𝑖 corresponds to the queries Q, while the

concatenation results 𝑒1 ∘ 𝑒2 … ∘ 𝑒𝑛 of the encoded information

𝑒1𝑛 correspond to the keys (K) and the values (V).

IV. SYLLABLE-BASED WORD REPRESENTATION

 WITHOUT POS TAG

The proposed end-to-end dependency parsing model represents

the i-th word 𝑤𝑖 in the sentence as the combinations of its

syllables 𝑠1, 𝑠2, … , 𝑠𝑙−1, 𝑠𝑙 , as described in Fig. 2 and Eq. (7).

After calculating the dot product between the word vector and

the weight matrix 𝑊0, and between the syllable vectors and the

weight matrix 𝑊𝑠, it integrates the calculated vectors with the

integration weight matrix 𝑊𝐼 , similar to previous word

representation methods[6,8,9]. To improve the unknown word

problem, the proposed model utilizes CNN mapping from the

high-dimensional vector to the low-dimensional vector, after

concatenating all syllable vectors to form the single high-

dimensional vector.

Figure 2. Syllable-based word representation method

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 2775-2779

© International Research Publication House. http://www.irphouse.com

2778

Table-1: End-to-End Parsing Performance (%) According to Syllable-based Word Representation

 base

line
𝑊1

𝑊2

𝑊1

𝑊𝑙−1

𝑊1

𝑊𝑙

𝑊2

𝑊𝑙−1

𝑊2

𝑊𝑙

𝑊𝑙−1

𝑊𝑙

𝑊1

𝑊2

𝑊𝑙−1

𝑊1

𝑊2

𝑊𝑙

𝑊1

𝑊𝑙−1

𝑊𝑙

𝑊2

𝑊𝑙−1

𝑊𝑙

𝑊1

𝑊2

𝑊𝑙−1

𝑊𝑙

UAS 76.4 80.0 85.3 85.8 85.0 86.0 86.5 85.8 87.0 87.8 87.8 88.6

LAS 57.5 64.4 77.6 79.4 77.2 79.7 80.9 78.5 81.3 82.9 82.9 84.2

Unlike the previous method [3-9] calculating the dot product

between the part-of-speech tag vector and the weight matrix,

the proposed end-to-end dependency parsing model excludes

the separate part-of-speech tagger; because the part-of-speech

tagger additionally requires resources, processing time, and

memory, while the part-of-speech tagging errors can be

propagated into the dependency parsing errors. Instead of the

separate part-of-speech tagger, the proposed model utilizes the

syllable-based word information: the dot products between the

first syllable vector and the weight matrix 𝑊1, between the first

two syllable vectors and the weight matrix 𝑊2, between the last

two syllable vectors and the weight matrix 𝑊𝑙−1, and between

the last syllable vector and the weight matrix 𝑊𝑙.

𝑤𝑖
′ = 𝑊𝐼 ((𝑊0 ∙ 𝑤𝑖) ∘ 𝐶𝑁𝑁(𝑊𝑠 ∙ 𝑠1, … , 𝑊𝑠 ∙ 𝑠𝑙) ∘ (𝑊1 ∙ 𝑠1) ∘

(𝑊2 ∙ 𝑠1,2) ∘ (𝑊𝑙−1 ∙ 𝑠𝑙−1,𝑙) ∘ (𝑊𝑙 ∙ 𝑠𝑙)) (7)

As shown in Fig. 2, for example, the English word 𝑤𝑖

“repeatedly” consists of four syllables: the first syllable 𝑠1

“re-” meaning “to do something again”, the second syllable 𝑠2

“peat” derived from the Latin “petere” meaning “to seek”, the

second last syllable 𝑠𝑙−1 “-ed” used to create the past tense

form, and the last syllable 𝑠𝑙 “-ly” used to form adverbs. A

word consists of some morphemes, and each morpheme serves

one purpose in agglutinative languages, such as in the Korean

language [6,8,9], in which too massive words exist.

Considering that the meaning or the function of the word can

be inferred from few syllables, the proposed model particularly

focuses on the first two syllables and the last two syllables in

the word.

V. EXPERIMENTS

To analyze the performance of the proposed end-to-end

dependency parsing model without the separate part-of-speech

tagger, we implement some models based on the stack-pointer

network [7,8], as presented in Table 1 and Table 2. All

embedding matrixes were initialized according to Bernoulli

distribution with word frequency. Also, we divide Sejong

corpus with 59,659 sentences into a training set with 53,842

sentences (90%) and a test set with 5,817 sentences (10%)

[6,8,9]. The unlabeled attachment score (UAS) is the ratio of

the correct candidates from all the unlabeled arcs in the test

corpus, while the labeled attachment score (LAS) is the ratio of

the correct candidates from all the labeled arcs in the test

corpus. In the measures, the candidate indicates the arc

generated by the model, and the number of labels is 39 in the

corpus [6,8,9]. The LAS checks both the label and the head

word per arc, while the UAS checks the head word.

Table 1 shows the performances of the end-to-end parsing

model without the separate part-of-speech tagger according to

the syllable combinations. The baseline model performed at

76.4% on the UAS and 57.5% on the LAS, while the proposed

best model performed at 88.64% on the UAS and 84.27% on

the LAS. As compared with the baseline model, the proposed

best model improved by 12.2% on the UAS and 26.7% on the

LAS. The result describes that the baseline with the embedding

matrixes 𝑊𝐼 , 𝑊𝑆, and 𝑊0 can improve the parsing performance

by using the syllable-based embedding matrixes 𝑊1, 𝑊2, 𝑊𝑙−1,

and 𝑊𝑙.

Table-2: Parsing Performance with or without Part-of-speech Tagging

Model UAS LAS Parsing Time

(sec)

Time per

Sentence

(sec)

Memory

(MB)

Parsing without POS tag 76.40% 57.47% 509.30 0.087 3,240

Parsing with POS tagger 89.04% 86.13% 845.91 0.145 4,840

Proposed End-to End Parsing 88.64% 84.27% 523.46 0.089 3,319

Table 2 shows that the parsing model with the KKMA part-of-

speech tagger takes 89.04% on the UAS and 86.13% on the

LAS much better than the performance of the baseline model

without the part-of-speech tagger. It describes that the part-of-

speech tagging is very useful for the dependency parsing. In

Table 2, the parsing time indicates the time of parsing 5,817

sentences in the test corpus on ubuntu system with Intel I7-

7700 3.60GHz CPU, 2 GTX 2080, and RAM 32GB. Since the

proposed end-to-end parsing model does not need the separate

part-of-speech tagger, it requires 80 milliseconds per sentence,

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 2775-2779

© International Research Publication House. http://www.irphouse.com

2779

faster than 140 milliseconds of the parsing model with the part-

of-speech tagger. Besides, it requires 3,319 MB, less than 4,840

MB of the parsing model with the part-of-speech tagger.

Nevertheless, the proposed end-to-end parsing model performs

at 88.64% on the UAS, which is comparable to 89.04% of the

parsing model with the separate part-of-speech tagger.

VI. CONCLUSION

In this paper, we propose a deep learning-based end-to-end

dependency parsing model using the syllable-based word

representation. The proposed model has the following

characteristics. First, the proposed model is inexpensive in

construction cost; because it is applied to the end-to-end

learning architecture, in which both the syllable-based word

representation step and the stack-pointer network-based

parsing step can learn from the corpus all at once.

Second, the proposed model is efficient in terms of the

processing time and memory; because it excludes the separate

part-of-speech tagger, and allows only a single candidate,

rather than all possible candidates. The experimental results

showed that the proposed model requires 80 milliseconds per

sentence, faster than 140 milliseconds of the parsing model

with the separate part-of-speech tagger. Besides, it requires

3,319 MB, less than 4,840 MB of the parsing model with the

part-of-speech tagger.

Third, the proposed model roughly correctly parses the

sentence; because it adopts the stack-pointer network, one of

the state-of-the-art deep learning methods, and the proposed

syllable-based word representation method is effectively

substituted for the separate part-of-speech tagger. The

experimental results showed that the proposed model without

the part-of-speech tagger achieved 88.64% on the UAS, which

is less than 89.04% of the parsing model with the part-of-

speech tagger.

For the future work, we will apply the proposed deep learning-

based end-to-end dependency parsing model to smart agent

systems, such as an AI speaker. We will then receive and

overcome the unexpected actual parsing problems in real

applications. We will also study how to become more efficient

and more correct in parsing.

ACKNOWLEDGEMENTS

This research was supported by Basic Science Research

Program through the National Research Foundation of

Korea(NRF) funded by the Ministry of Education(NRF-

2018R1D1A1B07048122)

REFERENCES

[1] K. Batsuren, E. Batbaatar, T. Munkhdalai, M. Li, O.

Namsrai and K. H. Ryu, A Dependency Graph-Based

Keyphrase Extraction Method Using Anti-patterns,

Journal of Information Processing Systems, 14(5), 2018,

1254-1271.

[2] Yeh, Jui-Feng, Speech act identification using semantic

dependency graphs with probabilistic context-free

grammars, ACM Transactions on Asian and Low-

Resource Language Information Processing, 15(1),

2016.

[3] Si, N., Wang, H., & Shan, Y., Exploring global sentence

representation for graph-based dependency parsing

using BLSTM-SCNN, Pattern Recognition Letters,

Elsevier, 105, 2018, 96-104

[4] He, R., Wang, Y., Song, D., Zhang, P., Jia, Y., & Li, A.

A ,Dependency Parser for Spontaneous Chinese Spoken

Language, ACM Transactions on Asian and Low-

Resource Language Information Processing (TALLIP),

17(4), 2018, 28.

[5] Ouchi, H., Duh, K., Shindo, H., Matsumoto, Y., Ouchi,

H., Duh, K., and Matsumoto, Y. Transition-based

dependency parsing exploiting supertags, IEEE/ACM

Transactions on Audio, Speech and Language

Processing (TASLP), 24(11), 2016, 2059-2068.

[6] Na, S. H., Li, J., Shin, J. H., & Kim, K, Transition-Based

Korean Dependency Parsing Using Hybrid Word

Representations of Syllables and Morphemes with

LSTMs, ACM Transactions on Asian and Low-

Resource Language Information Processing, 18(2),

2018.

[7] Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,

Graham Neubig, and Eduard Hovy. Stack-pointer

networks for dependency parsing, Proceedings of the

56th Annual Meeting of the Association for

Computational Linguistics, 1, 2018, 1403-1414.

[8] Ahn, H., Seo, M., Park, C., Kim, J., & Seo, J, Extensive

Use of Morpheme Features in Korean Dependency

Parsing, 2019 IEEE International Conference on Big

Data and Smart Computing (BigComp), 2019, 1-4.

[9] Jung, S., Park, C. E., & Lee, C, Multitask Pointer

Network for Korean Dependency Parsing, ACM

Transactions on Asian and Low-Resource Language

Information Processing (TALLIP), 18(3) 2019, 24.

[10] Dong, L., Xu, S., & Xu, B., Speech-transformer: a no-

recurrence sequence-to-sequence model for speech

recognition, 2018 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP),

2018, 5884-5888.

