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Abstract 

Recent with amazing performance improvement of computer 

hardware and the generalization of AI technologies, such as 

deep learning and big data, game AI gained the attention of 

many people, and has also shown remarkable achievements in 

problems such as Go game, that were considered difficult to 

solve in the past. Among the many new AI studies, Monte 

Carlo Tree Search (MCTS) played the biggest role, and it is 

thought that game AI can solve almost any problem if given 

ample learning opportunities.  

In this study, we propose ways to expand and improve the 

approach currently used in the general video game AI research 

aimed at solving various video games that are frequently 

encountered by ordinary people in real time without pre-

learning. This approach suggested that, within the framework 

of adding a progressive history to MCTS, which is the latest 

method currently used, the parameters that most affect MCTS' 

problem pool characteristics can be dynamically converted as 

the game progresses, thereby demonstrating progress over the 

existing static method. 

The specific optimal values of the reset cycle, the pre-emption 

period, and the delay interval to determine this dynamic 

change will depend on the type of game to be applied or its 

specific characteristics, so further studies such as how to 

confirm it in the future are thought to be necessary, but it is 

certain that performance can be improved relative to the static 

method just by using the appropriate values determined 

through the experiment. 
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I.  INTRODUCTION  

With the recent emergence of new software-driven products 

and services along with improved performance of computer 

hardware, many new software technologies in various fields 

have come into the spotlight. And artificial intelligence is one 

of them, AI was stagnant due to the limitations of insufficient 

computing performance and algorithms, but now it becomes a 

key technology in many areas such as image recognition and 

language processing as the emergence of neural networks and 

machine learning. It was 1996 when AI first demonstrated its 

power in chess games, and after 20 years AI gets much 

stronger and can defeat human in far more complex game 

such as Go game. This time, AI research has started to receive 

real public attention whether AI really surpasses human 

intelligence. 

In the case of Go game, once there was a question whether AI 

can find a workable algorithm, for it is very difficult to access 

all cases of the Go game as efficiently as in chess games. 

Monte Carlo Tree Search (MCTS) algorithms [1] [2] open a 

new door to solve that difficulty, and demonstrated that it is 

possible to solve problems which requires extensive number 

search effectively, through large-scale arbitrary enforcement. 

MCTS algorithms are very effective algorithms in board 

games such as Go, where game situation change is static and 

all the opponent's information is open so you don't have to 

deduce the opponent's hidden information. Recently most Go 

AI systems used MCTS-based algorithms and shows the most 

visible performances. AI’s great success comes from applying 

machine learning to each part of MCTS algorithm in a 

sophisticated way. In addition, research on Reinforcement 

Learning by applying this approach to game, it showed that 

simple joystick-based one-man games can be solved 

completely solved through machine learning and MCTS 

algorithm. 

However, there are clear limitations to incorporating these 

studies into other real-life commercial games. Many video 

games require immediate human response and understanding 

of complex rules, and it is often not a static game like a Go 

game, that of limiting actionable units to perform numerical 

searches in turn. In dynamic situations, action is required in 

real time over time, given information about the opponent is 

limited, learning opportunities is limited, and immediate status 

changes occur. Traditional AI methods are difficult to apply 

and it requires a different approach. Usually we need an AI 

agent who can make an immediate real-time response are 

required according to the dynamic change of state. It should 

make an accurate inference of the opponent's condition and 

predict enemy behavior based on it within a limited time. 

In this paper, we studied general game playing research which 

tries to find a single algorithm that can be applied to the 

various forms of one-time game environment, and proposes to 

improve its performance by adapting its parameters to 

optimize its behavior in real time according to the changing 

situation, so it can actively respond to different environments. 

This paper follows the research environment provided by 

GVGAI, a general video game play artificial intelligence 

conference, and aims to achieve overall performance 

improvements by applying the same artificial intelligence 

under various conditions 
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II. BACKGROUND 

A. General Video Game Artificial Intelligence 

General Game Playing (GGP) is a study that is designed to 

overcome limitations where AI algorithms of current games 

are mostly designed for single environments. The goal is to 

design a single game AI that can work well in as many 

different environments as possible, and furthermore, based on 

it, we want to achieve better results than the traditional 

method of applying it to real games. 

The GGP is a field of research that began in video game 

scripts. Research was conducted in two main ways. One 

method is to use computer vision to obtain video recognition 

data from game monitor graphics and design AI to understand 

them, and the other is to design game AI by referring to data 

needed for AI provided inside the game. [3] [4] For Arcade 

Learning Environment (ALE), a game AI research platform 

using machine learning, related research [5] has already been 

carried out, and it has now successfully reached nearly 100%. 

This raised the need for AI research that showed good 

performance without relying on machine learning. The 

General Video Game AI (GVGAI), a general video game for 

GGP research presented under these conditions, is designed to 

operate for the first time without any chance of pre-learning 

for all games[6][7]. This is to develop AI, which is close to 

human intelligence, even when there is no help in learning 

machines, by presenting the same situations that humans have 

done for the first time. In the case of GVGAI, it was designed 

by referring to internal data, which excludes the gap in image 

recognition efficiency due to differences in performance of 

computing equipment, the burden of establishing video 

recognition environment, and the risk of error generation, and 

the advantage of conducting research focused on AI 

algorithms using only internal game data. Accordingly, 

research was conducted by designing and operating AI by 

accommodating research platforms provided by GVGAI. The 

GVGAI competition is an international competition that is co-

hosted by University of Essex and DeepMind and held 

periodically at IEEE WCCI and IEEE CIG. 

A total of 82 test games are available in the basic test 

environment for research, and are operated by attaching AI 

developed according to the interface of a given JAVA 

platform. The calculation time allocated for each AI is 40ms, 

and calculations and actions must be performed and 

completed within a given frame time. The actionable unit is 

presented as an action per ton, such as Go game, but AI 

requires a dynamic response capability because the time limit 

given to a one-turn is limited to a real-time gaming 

environment, which is limited to 30 frames per second. If the 

action cannot be determined in time because the calculation 

has not been completed, then the action is taken without 

taking any action. The 82 tests given are for pre-research 

purposes, and since other randomly prepared gaming 

environments are applied at the main competition to measure 

AI performance, they are designed to eliminate efforts to 

increase the odds by increasing the odds or performing 

machine learning in advance. 

The progression of the game follows the environment in 

which people play themselves. Based on the interface that you 

type and play on the player's keyboard, most of the case, you 

can only do up to five different actions each time, including 

up and down keys and special action keys. Most of the objects 

that exist in the game also behave regularly, and even if they 

move randomly, the total number of possible actions is limited. 

The movement of the main character in the game is also 

limited within five actions, si its search space is much limited 

then that of the chess and Go game, but still it’s large enough 

to search easily. However, the GGP does not necessarily have 

to perform a full search, as it is aimed at exploring the number 

of cases in time and not at finding the best number, but at 

satisfying the final win-win conditions by repeating the best 

actions available now by exploring the number of cases in 

which they are seen. That is, it is not a problem that requires 

an algorithm to fully resolve its complexity at once, and rather 

than obtain the highest global maximum at once, the goal is to 

somehow reach the level of value that satisfies the winning 

condition by constantly exploring the global maximum value. 

The finals have a total of three categories: one-man play, two-

man competition play and machine learning-based game play. 

For machine learning-based competitions, we excluded it 

because it deviates from the research topic of this paper. For 

two-player competition, it is possible that the AI type in a 

given gaming environment may significantly change the paid. 

This was considered to be inappropriate for measuring the 

objective performance of AI, such as [8] when the developed 

AI is valid or vulnerable to a particular style of AI design.  

 

B. Upper Confidence Bound 

Algorithms mainly used by AI agents with excellent GVGAI 

are genetic algorithms, avarice algorithms, and Monte Carlo 

Tree Search. They include MCTS algorithms. Although many 

genetic and rule-based algorithms were early in the 

competition, most of the MCTS algorithms are currently at the 

top of the list. The Monte Carlo Tree Search algorithm is the 

search algorithm of the tree structure to find the best desired 

goal among the number of cases. Like conventional game tree 

searches, there are features that are constantly exploring and 

expanding to find as many cases as possible and choose the 

most suitable one. However, since conventional tree-search 

algorithms follow navigation rules based on existing data 

structure formats that recursively search by fixing the sequence 

of searches with depth-first or width-first searches, there is a 

fatal problem where the proper global maximum value cannot 

be obtained until all searches are complete. This is not 

effective in a real-time gaming environment that needs to be 

updated by searching for the best numbers right now. 

The performance of most MCTS depends on how the policies 

of the selection and implementation phases are improved. A 

general approach has not been formed yet, with performance 

significantly reversed depending on the nature of the 

application environment. For the selection phase, the policy 

using the Upper Confidence Bound formula [15] is mainly 

referred to, and is currently used by default in most MCTS. 

The UCB plays a role in making the tree somewhat balanced, 

rather than biasedly expanding its navigation priorities. If you 

continue to expand based on the node you selected for the 

initial random selection and select only the best evaluation 
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values, you will have a problem with searching based on some 

of the nodes found earlier in the tree navigation. To address 

this, a formula was proposed that would allow the scope of the 

search to be flexibly controlled by adding weights to nodes that 

have a small number of searches or that have not yet been 

evaluated.  

The UCB formula is as follows. 

 

 

(1) 

 

 is the evaluation value of the current node and  is the total 

number of visits by the parent node.  is the total number of 

visits to the child node and C is the constant that controls the 

nature of the tree navigation. The higher the C value, the 

greater the correction for the insufficient number of searches, 

and the lower the C value, the less the correction for the 

insufficient number of searches. This is called the "Exploration 

and Exploitation" relationship. 

The proposed plan is the Progressive History, which introduces 

a concept that reflects all records obtained during the tree 

exploration process into evaluation values. PH does not rely on 

knowledge-based methods because it reuses the cumulative 

arbitrary enforcement results for each case in a random trial 

without throwing them away. 

 

 

(2) 

 

It consists of the child node evaluation values from the 

beginning, the middle part of the UCB, and the PH reflection 

part, which was finally added. Where  and  have different 

characteristics from the previous child node evaluation value 

, not using the MCTS valuation values established through 

the current inversion wave, but recording and accumulating all 

of the evaluation values for the number of cases used in 

random trials until now. In other words, use the evaluation 

value obtained during random execution, not the evaluation 

value stored on the node on the MCTS that the child node has. 

Weighing W values are used to determine the reflection rate 

of the PH portion, which is also empirically given. In order to 

differentiate the ratio of the W value from each node, the W 

value for each node is divided by the   value. This is the 

total number of visits on the  node minus the number of wins, 

which is the number of defeats on the  node. For additional 

constant 1, the constant is to avoid the situation where the 

denominator is zero. According to the formula, the higher the 

number of defeats, the lower the W value, the higher the W 

value, which increases the biased characteristic of the 

accumulated record. Currently, the higher the probability of 

winning the  node, the more the evaluation value is, the more 

the accumulated arbitrary trial value is to be reflected. This is 

a correction to prevent the distortion of the tree's direction of 

expansion, such as actively creating nodes by reflecting the 

cumulative enforcement value SA even if the current node's 

evaluation value is poor. When SA values are often 

accumulated where they are not related to the current node's 

parents, the adverse effects of selecting and expanding a node 

are not fatal if the existing evaluation values are good, but the 

adverse effects caused by past accumulated values that are not 

related to the current node are likely to worsen the future 

situation and reduce the percentage of the cumulative values. 

 

III. STRATEGIES 

In this paper, when the Progressive History technique is first 

applied, it seeks to obtain the interval of the initial weight 

value with the highest average odds, and to obtain a strategy to 

overcome the fixed odds in the initial weight value and find the 

best odds in real time through the dynamic formula that 

reflects it in real time. Existing MCTS algorithms also perform 

actions to find the best odds through the selection phase, but 

considering only the best winning values during the selection 

phase leads to problems of inefficient behavior, such as the 

algorithm being buried at the local maximum value. To 

compensate for this, it is a common approach to improve 

performance at the selection stage through dynamic UCB 

formulas that have improved PH formulas, etc., and to find 

global maximums more efficiently. However, the C and W 

parameters in the formula are empirically obtained and entered 

for each application environment, and the criteria are not clear. 

The most winning weight values from the development test set 

provided for the GGP may be obtained in advance, but weights 

are not empirically available for any test set presented at the 

GVGAI’s main line. In other words, the traditional approach to 

fixing weights presents a performance-determined problem for 

each test environment in which it is run. 

Therefore, in this paper, using the test set given as an example, 

we are going to ask through the experiment what range of C 

and W weight values are empirically favorable for each test, 

and propose a way to reset the weight values favorable for 

each test in real time. 

A. GVGAI Play Environment 

The execution environment has a limited time of 40ms per unit 

1 tic (or 1 frame) AI agent capable of behavioral and AI 

counting, even if the game is typically over but the time-out is 

within 1000 ticks. Based on the 2000 game, the maximum run 

time given is 80000ms. Most of the time, winning or losing 

before, and reaching 2000 ticks does not always mean losing 

over time. In some cases, the conditions must be maintained 

until the 2,000-ticks are reached after satisfying the conditions 

for victory. The tests presented in the competition are one-man 

and two-player play games, and this paper conducted 

experiments in a one-man play game environment. Even a 

single-player game is static and rarely wins, and the difficulty 

of the test varies enough to measure the superiority of 

performance. While all environments have static games, such 

as the Wayfinding Game, the number of cases is sufficiently 

complex and can be classified as non-decisive if there are 

multiple NPCs that move randomly independently of the 
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player. In the former case, full navigation in place without 

using MCTS is likely to win, but in the latter case, calculation 

in place until the end of the full search will force minimum 

actions to detect and avoid risks each time because there is a 

situation where the NPC attempts to disrupt and defeat the 

player. Although it is difficult to predict and explore the 

behavior of the unpredictable NPCs every time, the behavior of 

the NPCs changes every time, due to the behavior of the NPCs 

that were calculated in advance at the previous stage, is no 

longer valid and likely to be wasted at the next stage. 

For all 82 tests, there are five levels of difficulty, ranging from 

very easy to very difficult, and there are changes in the form of 

maps and the number of NPCs and objects. In this paper, the 

experiment was conducted and analyzed based on the level 1 

difficulty, as the experiment determined that the probability 

variety was sufficient to be worth analyzing the performance 

of the algorithm even in phase I. MCTS policies in both the 

selection and implementation phases followed the same way as 

the basic algorithms of MaastCTS2. As a result, the values C 

and W were minimized to the extent that they did not affect 

victory or defeat, and the evaluation values reflected in the 

reverse wave phase were divided into +1, -1, and the scores 

were not affected by the score, but the scores were better. 

 

B. Dynamic Parameter Adjustment Strategies 

First, a strategy was proposed to reset the weight value 

periodically to cope with the problem of frequent timeouts by 

having the same pattern of behavior repeated throughout a 

given area by the weight value initially set. The main purpose 

of this strategy is to change the values C and W at a given 

interval of , so that they repeat the same behavior and fall 

outside the scope of timeouts. The aim is to avoid falling into 

the pattern of action by inducing to the extent of the weight 

that does not occur. For each adjustment, one search is 

performed along a total of nine weight combinations by setting 

the search range from the existing C values to +1, existing 

values, -1, existing W values, and -1 ranges. The existing 

weights are reset in real time by selecting the combination of 

the C and W values with the highest evaluation values through 

PH calculations. By adjusting the weight of PH, the variables 

of the UCB calculation formula used in the selection phase are 

dynamically applied, and in real time they are close to the 

formula in favor of victory. After analyzing the validity of the 

real-time weight reset strategy by applying it to real-time 

games, there were many games where the odds were 

significantly improved, but there were also many games that 

did not have much impact, especially for the type of games that 

were quickly determined in the early stages of the game. 

If a reset strategy was used to respond to situations in which 

early wins and losses were quickly determined, the C and W 

values should be in the appropriate range as soon as possible, 

but the periodic reset alone was not sufficient. In the case of 

zenpuzle, on average, victory or defeat is determined when 

51.41 ±20 ticks are reached, so it is necessary to reset to the 

effective range before about 30 ticks. However, setting the 

reset cycle too short is not necessarily an appropriate method, 

as the existing reset strategy makes it difficult to maintain the 

optimal cycle already found for games that can produce good 

results. Therefore, by attempting to reset each time at the 

beginning of the run only to a certain time, a weight pre-

emptive strategy is proposed in which the initial weight value 

falls within the favorable weight range in a fast time in a win-

sensitive test. In the case of zenpuzzle, it is a dependent test 

environment in which the odds vary markedly according to the 

value C, and unlike realsokoban, the odds are also very high 

when the value C is within range. On average, however, after 

51st-ticks, no action is allowed, and they lose out over time. To 

resolve this, it is necessary to reset the stable C value at least 

before a win or loss is determined. The effects of setting the 

pre-emptive period  at the start of the new game were tested 

in real-world games and the results of using this pre-emptive 

strategy looks favorable for games that did not work well with 

the weight reset strategy only, but in some cases the winning 

rate was reduced, especially for the games that produced good 

results by the reset strategy alone. 

When using a periodic reset strategy and a preemptive strategy, 

we have identified that the effectiveness of the policy is 

contradictory, as in the case of the aforementioned zenpuzzle 

and realsokoban. In the case of zenpuzzle, it is necessary to 

actively reset the C value early on because of the low 

probability of winning the initial C value. However, there is a 

problem that contradicts the response to realsokoban, which is 

more advantageous if there are fewer changes in the initial C 

value. As a result of the review, it is expected that if the initial 

application of the pre-emptive strike is delayed by  and the 

width of the change to the current 11 Index is changed from 

50% of the delayed  time to ±2 Index, the C value can be 

quickly reset to 2.0 or higher even if the pre-emptive strike is 

delayed briefly. For example, in experimental environments set 

to =20, =10, =6, a pre-emption is required for 10 ticks, 

but six ticks are set to be delayed. Therefore, the pre-emption 

does not work up to the 6 ticks. However, it is required to reset 

the pre-emptive front-point of each tick with a variation of ±2 

from 6 to 6+6/2=9 and to reset the pre-emptive front-point of 

the change of ±1 Index from 10 to 6+10=16 Ticks normally. 

After that, resetting the cycle is performed normally every 20 

ticks. 

 

IV. EXPERIMENTS 

In order to measure the effectiveness of the strategy proposed 

in this paper, we measured the changes in the winning rate 

according to each case, changing the values of the , , and . 

Table 1 shows the values of the variables with the best three 

odds for the blacksmith game. Here you can see the best 

winning rate is 60% when the values for the , , and  are 

50, 35 and 15, respectively.  

TABEL I. GAME:  BLACKSMOKE 

Winning Rate    

60%(Best) 50 5 15 

10%(Worst) 10 10 5 

0%(Static) 0 0 0 
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Table 2 is the case for the firecaster game, in which case best 

winning rate is 100% while the values of , , and  are 20, 

20, and 15. 

TABEL II. GAME:  FIRECASTER 

Winning Rate    

100%(Best) 20 10 15 

40%(Worst) 5 35 5 

20%(Static) 0 0 0 

 

In order to measure the effectiveness of the strategy proposed 

in this paper, we measured the change in the winning rate 

according to each case, changing the values of the , , and . 

Table 1 shows the values of the variables with the best three 

odds for the blacksmith game. Here you can see the best results 

when the values for the , , and  are 50, 35 and 15, 

respectively 

Depending on the type of game, the optimal variable values 

vary, but we can see that the overall results are better than the 

proposed strategy of self-reliance. After experimenting with 

the effects of variable values in each game, the value of the 

variables with the best odds was obtained and the value of  

value 50,  value 35 and  value 5 were obtained. Using these 

three strategies, the final experiment was designed and the 

odds measured by applying them to the entire test 

environment. 

 The final experiment also confirmed that the average winning 

rate for the entire 82 tests was valid and resulted in a slight 

increase from 57.40% to 60.84%. Calculating the odds of a 

valid group of experiments, except where the odds are 0% or 

100% for both before and after the experiment, resulted in a 

further increase from the previous 48.94% to 55.82%. 

Accordingly, the three dynamic UCB strategies introduced for 

real-time adaptation of C and W values have been identified to 

have a positive effect on improving the uniform performance 

of the average odds over the entire test. 

For the experiment, we use the hardware consisted of Intel i5-

6600 3.30GHz (4Core 4Thread) CPU with 16G memory using 

two DDR4 8G PC4-19200 (2400MHz) RAM. Test software 

was designed and implemented with the JAVA platform 

provided by GVGAI, and the other execution environment 

followed the underlying environment provided by the platform. 

 

V. CONCLUSION  

In this paper, we tried to find a way to adopt MCTS algorithm 

to the dynamic, first encountered game, and propose to adjust 

progressive history approach by adjusting its C and W 

constant in the real time during the game play period. As a 

result, we can find a way to dynamically adjust PH parameters 

and optimize them to improve the winning ratio. Although 

some games are very sensitive to that parameter chang and 

some is not so sensitive, experimental results show that there 

is a certain improvement in the total winning rates.. 

When we test the proposed strategy to the total given, 

according to the goals of the general game play study, 

experimental results show that performance could be 

improved for some tests by introducing a periodic reset 

strategy, a pre-emptive strategy, and a delay pre-emptive 

strategy and by adjusts the values of C and W for each 

environment, showing that the average performance for the 

entire test was also improved. 

Although our experimentation used heuristic initial values for 

the C and W, and use that value as a start point of proposed 

strategy, it looks possible to find the   optimized values with 

further research and expect better performance. If 

environmental factors, such as knowledge-based modules, are 

classified and inputted to compute the range of weight values 

that focus on winning improvements for each input state, it is 

likely that the appropriate values can be estimated and adapted 

in the same way as in this paper. This can be seen as similar to 

a human player's previous experience of playing similar 

games. 

On the other hand, further study from a different point of view 

is likely to be needed for tests with little win-loss change in 

the C and W values of existing tests. For problems where the 

number of valid cases in which scoring occurs exists at a very 

deep stage, so that tree navigation cannot be reached, or that 

require more effective navigation methods to be introduced 

during the implementation phase, improvements in the 

implementation phase are likely to be more effective, such as 

adjusting the depth of the exploration of the NST strategy, 

adjusting the proportion of the LA strategy, or applying the 

cumulative bias values to the implementation phase by 

adopting the RAVE strategy. In the future, through these 

general game play studies, we will be able to learn more about 

non-learning environments. 
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