
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 2769-2774

© International Research Publication House. http://www.irphouse.com

2769

Dynamic UCB Adaptation Strategy for MCTS based GVGAI

Jun Hwan Kang, Hang Joon Kim

School of Computer Science and Engineering,
Kyungpook National University, Daegu, Republic of Korea.

 ORCID: 0000-0001-6592-7585 .

Abstract

Recent with amazing performance improvement of computer

hardware and the generalization of AI technologies, such as

deep learning and big data, game AI gained the attention of

many people, and has also shown remarkable achievements in

problems such as Go game, that were considered difficult to

solve in the past. Among the many new AI studies, Monte

Carlo Tree Search (MCTS) played the biggest role, and it is

thought that game AI can solve almost any problem if given

ample learning opportunities.

In this study, we propose ways to expand and improve the

approach currently used in the general video game AI research

aimed at solving various video games that are frequently

encountered by ordinary people in real time without pre-

learning. This approach suggested that, within the framework

of adding a progressive history to MCTS, which is the latest

method currently used, the parameters that most affect MCTS'

problem pool characteristics can be dynamically converted as

the game progresses, thereby demonstrating progress over the

existing static method.

The specific optimal values of the reset cycle, the pre-emption

period, and the delay interval to determine this dynamic

change will depend on the type of game to be applied or its

specific characteristics, so further studies such as how to

confirm it in the future are thought to be necessary, but it is

certain that performance can be improved relative to the static

method just by using the appropriate values determined

through the experiment.

Keywords: UCB, MCTS, Game AI, General Video Game

I. INTRODUCTION

With the recent emergence of new software-driven products

and services along with improved performance of computer

hardware, many new software technologies in various fields

have come into the spotlight. And artificial intelligence is one

of them, AI was stagnant due to the limitations of insufficient

computing performance and algorithms, but now it becomes a

key technology in many areas such as image recognition and

language processing as the emergence of neural networks and

machine learning. It was 1996 when AI first demonstrated its

power in chess games, and after 20 years AI gets much

stronger and can defeat human in far more complex game

such as Go game. This time, AI research has started to receive

real public attention whether AI really surpasses human

intelligence.

In the case of Go game, once there was a question whether AI

can find a workable algorithm, for it is very difficult to access

all cases of the Go game as efficiently as in chess games.

Monte Carlo Tree Search (MCTS) algorithms [1] [2] open a

new door to solve that difficulty, and demonstrated that it is

possible to solve problems which requires extensive number

search effectively, through large-scale arbitrary enforcement.

MCTS algorithms are very effective algorithms in board

games such as Go, where game situation change is static and

all the opponent's information is open so you don't have to

deduce the opponent's hidden information. Recently most Go

AI systems used MCTS-based algorithms and shows the most

visible performances. AI’s great success comes from applying

machine learning to each part of MCTS algorithm in a

sophisticated way. In addition, research on Reinforcement

Learning by applying this approach to game, it showed that

simple joystick-based one-man games can be solved

completely solved through machine learning and MCTS

algorithm.

However, there are clear limitations to incorporating these

studies into other real-life commercial games. Many video

games require immediate human response and understanding

of complex rules, and it is often not a static game like a Go

game, that of limiting actionable units to perform numerical

searches in turn. In dynamic situations, action is required in

real time over time, given information about the opponent is

limited, learning opportunities is limited, and immediate status

changes occur. Traditional AI methods are difficult to apply

and it requires a different approach. Usually we need an AI

agent who can make an immediate real-time response are

required according to the dynamic change of state. It should

make an accurate inference of the opponent's condition and

predict enemy behavior based on it within a limited time.

In this paper, we studied general game playing research which

tries to find a single algorithm that can be applied to the

various forms of one-time game environment, and proposes to

improve its performance by adapting its parameters to

optimize its behavior in real time according to the changing

situation, so it can actively respond to different environments.

This paper follows the research environment provided by

GVGAI, a general video game play artificial intelligence

conference, and aims to achieve overall performance

improvements by applying the same artificial intelligence

under various conditions

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 2769-2774

© International Research Publication House. http://www.irphouse.com

2770

II. BACKGROUND

A. General Video Game Artificial Intelligence

General Game Playing (GGP) is a study that is designed to

overcome limitations where AI algorithms of current games

are mostly designed for single environments. The goal is to

design a single game AI that can work well in as many

different environments as possible, and furthermore, based on

it, we want to achieve better results than the traditional

method of applying it to real games.

The GGP is a field of research that began in video game

scripts. Research was conducted in two main ways. One

method is to use computer vision to obtain video recognition

data from game monitor graphics and design AI to understand

them, and the other is to design game AI by referring to data

needed for AI provided inside the game. [3] [4] For Arcade

Learning Environment (ALE), a game AI research platform

using machine learning, related research [5] has already been

carried out, and it has now successfully reached nearly 100%.

This raised the need for AI research that showed good

performance without relying on machine learning. The

General Video Game AI (GVGAI), a general video game for

GGP research presented under these conditions, is designed to

operate for the first time without any chance of pre-learning

for all games[6][7]. This is to develop AI, which is close to

human intelligence, even when there is no help in learning

machines, by presenting the same situations that humans have

done for the first time. In the case of GVGAI, it was designed

by referring to internal data, which excludes the gap in image

recognition efficiency due to differences in performance of

computing equipment, the burden of establishing video

recognition environment, and the risk of error generation, and

the advantage of conducting research focused on AI

algorithms using only internal game data. Accordingly,

research was conducted by designing and operating AI by

accommodating research platforms provided by GVGAI. The

GVGAI competition is an international competition that is co-

hosted by University of Essex and DeepMind and held

periodically at IEEE WCCI and IEEE CIG.

A total of 82 test games are available in the basic test

environment for research, and are operated by attaching AI

developed according to the interface of a given JAVA

platform. The calculation time allocated for each AI is 40ms,

and calculations and actions must be performed and

completed within a given frame time. The actionable unit is

presented as an action per ton, such as Go game, but AI

requires a dynamic response capability because the time limit

given to a one-turn is limited to a real-time gaming

environment, which is limited to 30 frames per second. If the

action cannot be determined in time because the calculation

has not been completed, then the action is taken without

taking any action. The 82 tests given are for pre-research

purposes, and since other randomly prepared gaming

environments are applied at the main competition to measure

AI performance, they are designed to eliminate efforts to

increase the odds by increasing the odds or performing

machine learning in advance.

The progression of the game follows the environment in

which people play themselves. Based on the interface that you

type and play on the player's keyboard, most of the case, you

can only do up to five different actions each time, including

up and down keys and special action keys. Most of the objects

that exist in the game also behave regularly, and even if they

move randomly, the total number of possible actions is limited.

The movement of the main character in the game is also

limited within five actions, si its search space is much limited

then that of the chess and Go game, but still it’s large enough

to search easily. However, the GGP does not necessarily have

to perform a full search, as it is aimed at exploring the number

of cases in time and not at finding the best number, but at

satisfying the final win-win conditions by repeating the best

actions available now by exploring the number of cases in

which they are seen. That is, it is not a problem that requires

an algorithm to fully resolve its complexity at once, and rather

than obtain the highest global maximum at once, the goal is to

somehow reach the level of value that satisfies the winning

condition by constantly exploring the global maximum value.

The finals have a total of three categories: one-man play, two-

man competition play and machine learning-based game play.

For machine learning-based competitions, we excluded it

because it deviates from the research topic of this paper. For

two-player competition, it is possible that the AI type in a

given gaming environment may significantly change the paid.

This was considered to be inappropriate for measuring the

objective performance of AI, such as [8] when the developed

AI is valid or vulnerable to a particular style of AI design.

B. Upper Confidence Bound

Algorithms mainly used by AI agents with excellent GVGAI

are genetic algorithms, avarice algorithms, and Monte Carlo

Tree Search. They include MCTS algorithms. Although many

genetic and rule-based algorithms were early in the

competition, most of the MCTS algorithms are currently at the

top of the list. The Monte Carlo Tree Search algorithm is the

search algorithm of the tree structure to find the best desired

goal among the number of cases. Like conventional game tree

searches, there are features that are constantly exploring and

expanding to find as many cases as possible and choose the

most suitable one. However, since conventional tree-search

algorithms follow navigation rules based on existing data

structure formats that recursively search by fixing the sequence

of searches with depth-first or width-first searches, there is a

fatal problem where the proper global maximum value cannot

be obtained until all searches are complete. This is not

effective in a real-time gaming environment that needs to be

updated by searching for the best numbers right now.

The performance of most MCTS depends on how the policies

of the selection and implementation phases are improved. A

general approach has not been formed yet, with performance

significantly reversed depending on the nature of the

application environment. For the selection phase, the policy

using the Upper Confidence Bound formula [15] is mainly

referred to, and is currently used by default in most MCTS.

The UCB plays a role in making the tree somewhat balanced,

rather than biasedly expanding its navigation priorities. If you

continue to expand based on the node you selected for the

initial random selection and select only the best evaluation

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 2769-2774

© International Research Publication House. http://www.irphouse.com

2771

values, you will have a problem with searching based on some

of the nodes found earlier in the tree navigation. To address

this, a formula was proposed that would allow the scope of the

search to be flexibly controlled by adding weights to nodes that

have a small number of searches or that have not yet been

evaluated.

The UCB formula is as follows.

(1)

 is the evaluation value of the current node and is the total

number of visits by the parent node. is the total number of

visits to the child node and C is the constant that controls the

nature of the tree navigation. The higher the C value, the

greater the correction for the insufficient number of searches,

and the lower the C value, the less the correction for the

insufficient number of searches. This is called the "Exploration

and Exploitation" relationship.

The proposed plan is the Progressive History, which introduces

a concept that reflects all records obtained during the tree

exploration process into evaluation values. PH does not rely on

knowledge-based methods because it reuses the cumulative

arbitrary enforcement results for each case in a random trial

without throwing them away.

(2)

It consists of the child node evaluation values from the

beginning, the middle part of the UCB, and the PH reflection

part, which was finally added. Where and have different

characteristics from the previous child node evaluation value

, not using the MCTS valuation values established through

the current inversion wave, but recording and accumulating all

of the evaluation values for the number of cases used in

random trials until now. In other words, use the evaluation

value obtained during random execution, not the evaluation

value stored on the node on the MCTS that the child node has.

Weighing W values are used to determine the reflection rate

of the PH portion, which is also empirically given. In order to

differentiate the ratio of the W value from each node, the W

value for each node is divided by the value. This is the

total number of visits on the node minus the number of wins,

which is the number of defeats on the node. For additional

constant 1, the constant is to avoid the situation where the

denominator is zero. According to the formula, the higher the

number of defeats, the lower the W value, the higher the W

value, which increases the biased characteristic of the

accumulated record. Currently, the higher the probability of

winning the node, the more the evaluation value is, the more

the accumulated arbitrary trial value is to be reflected. This is

a correction to prevent the distortion of the tree's direction of

expansion, such as actively creating nodes by reflecting the

cumulative enforcement value SA even if the current node's

evaluation value is poor. When SA values are often

accumulated where they are not related to the current node's

parents, the adverse effects of selecting and expanding a node

are not fatal if the existing evaluation values are good, but the

adverse effects caused by past accumulated values that are not

related to the current node are likely to worsen the future

situation and reduce the percentage of the cumulative values.

III. STRATEGIES

In this paper, when the Progressive History technique is first

applied, it seeks to obtain the interval of the initial weight

value with the highest average odds, and to obtain a strategy to

overcome the fixed odds in the initial weight value and find the

best odds in real time through the dynamic formula that

reflects it in real time. Existing MCTS algorithms also perform

actions to find the best odds through the selection phase, but

considering only the best winning values during the selection

phase leads to problems of inefficient behavior, such as the

algorithm being buried at the local maximum value. To

compensate for this, it is a common approach to improve

performance at the selection stage through dynamic UCB

formulas that have improved PH formulas, etc., and to find

global maximums more efficiently. However, the C and W

parameters in the formula are empirically obtained and entered

for each application environment, and the criteria are not clear.

The most winning weight values from the development test set

provided for the GGP may be obtained in advance, but weights

are not empirically available for any test set presented at the

GVGAI’s main line. In other words, the traditional approach to

fixing weights presents a performance-determined problem for

each test environment in which it is run.

Therefore, in this paper, using the test set given as an example,

we are going to ask through the experiment what range of C

and W weight values are empirically favorable for each test,

and propose a way to reset the weight values favorable for

each test in real time.

A. GVGAI Play Environment

The execution environment has a limited time of 40ms per unit

1 tic (or 1 frame) AI agent capable of behavioral and AI

counting, even if the game is typically over but the time-out is

within 1000 ticks. Based on the 2000 game, the maximum run

time given is 80000ms. Most of the time, winning or losing

before, and reaching 2000 ticks does not always mean losing

over time. In some cases, the conditions must be maintained

until the 2,000-ticks are reached after satisfying the conditions

for victory. The tests presented in the competition are one-man

and two-player play games, and this paper conducted

experiments in a one-man play game environment. Even a

single-player game is static and rarely wins, and the difficulty

of the test varies enough to measure the superiority of

performance. While all environments have static games, such

as the Wayfinding Game, the number of cases is sufficiently

complex and can be classified as non-decisive if there are

multiple NPCs that move randomly independently of the

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 2769-2774

© International Research Publication House. http://www.irphouse.com

2772

player. In the former case, full navigation in place without

using MCTS is likely to win, but in the latter case, calculation

in place until the end of the full search will force minimum

actions to detect and avoid risks each time because there is a

situation where the NPC attempts to disrupt and defeat the

player. Although it is difficult to predict and explore the

behavior of the unpredictable NPCs every time, the behavior of

the NPCs changes every time, due to the behavior of the NPCs

that were calculated in advance at the previous stage, is no

longer valid and likely to be wasted at the next stage.

For all 82 tests, there are five levels of difficulty, ranging from

very easy to very difficult, and there are changes in the form of

maps and the number of NPCs and objects. In this paper, the

experiment was conducted and analyzed based on the level 1

difficulty, as the experiment determined that the probability

variety was sufficient to be worth analyzing the performance

of the algorithm even in phase I. MCTS policies in both the

selection and implementation phases followed the same way as

the basic algorithms of MaastCTS2. As a result, the values C

and W were minimized to the extent that they did not affect

victory or defeat, and the evaluation values reflected in the

reverse wave phase were divided into +1, -1, and the scores

were not affected by the score, but the scores were better.

B. Dynamic Parameter Adjustment Strategies

First, a strategy was proposed to reset the weight value

periodically to cope with the problem of frequent timeouts by

having the same pattern of behavior repeated throughout a

given area by the weight value initially set. The main purpose

of this strategy is to change the values C and W at a given

interval of , so that they repeat the same behavior and fall

outside the scope of timeouts. The aim is to avoid falling into

the pattern of action by inducing to the extent of the weight

that does not occur. For each adjustment, one search is

performed along a total of nine weight combinations by setting

the search range from the existing C values to +1, existing

values, -1, existing W values, and -1 ranges. The existing

weights are reset in real time by selecting the combination of

the C and W values with the highest evaluation values through

PH calculations. By adjusting the weight of PH, the variables

of the UCB calculation formula used in the selection phase are

dynamically applied, and in real time they are close to the

formula in favor of victory. After analyzing the validity of the

real-time weight reset strategy by applying it to real-time

games, there were many games where the odds were

significantly improved, but there were also many games that

did not have much impact, especially for the type of games that

were quickly determined in the early stages of the game.

If a reset strategy was used to respond to situations in which

early wins and losses were quickly determined, the C and W

values should be in the appropriate range as soon as possible,

but the periodic reset alone was not sufficient. In the case of

zenpuzle, on average, victory or defeat is determined when

51.41 ±20 ticks are reached, so it is necessary to reset to the

effective range before about 30 ticks. However, setting the

reset cycle too short is not necessarily an appropriate method,

as the existing reset strategy makes it difficult to maintain the

optimal cycle already found for games that can produce good

results. Therefore, by attempting to reset each time at the

beginning of the run only to a certain time, a weight pre-

emptive strategy is proposed in which the initial weight value

falls within the favorable weight range in a fast time in a win-

sensitive test. In the case of zenpuzzle, it is a dependent test

environment in which the odds vary markedly according to the

value C, and unlike realsokoban, the odds are also very high

when the value C is within range. On average, however, after

51st-ticks, no action is allowed, and they lose out over time. To

resolve this, it is necessary to reset the stable C value at least

before a win or loss is determined. The effects of setting the

pre-emptive period at the start of the new game were tested

in real-world games and the results of using this pre-emptive

strategy looks favorable for games that did not work well with

the weight reset strategy only, but in some cases the winning

rate was reduced, especially for the games that produced good

results by the reset strategy alone.

When using a periodic reset strategy and a preemptive strategy,

we have identified that the effectiveness of the policy is

contradictory, as in the case of the aforementioned zenpuzzle

and realsokoban. In the case of zenpuzzle, it is necessary to

actively reset the C value early on because of the low

probability of winning the initial C value. However, there is a

problem that contradicts the response to realsokoban, which is

more advantageous if there are fewer changes in the initial C

value. As a result of the review, it is expected that if the initial

application of the pre-emptive strike is delayed by and the

width of the change to the current 11 Index is changed from

50% of the delayed time to ±2 Index, the C value can be

quickly reset to 2.0 or higher even if the pre-emptive strike is

delayed briefly. For example, in experimental environments set

to =20, =10, =6, a pre-emption is required for 10 ticks,

but six ticks are set to be delayed. Therefore, the pre-emption

does not work up to the 6 ticks. However, it is required to reset

the pre-emptive front-point of each tick with a variation of ±2

from 6 to 6+6/2=9 and to reset the pre-emptive front-point of

the change of ±1 Index from 10 to 6+10=16 Ticks normally.

After that, resetting the cycle is performed normally every 20

ticks.

IV. EXPERIMENTS

In order to measure the effectiveness of the strategy proposed

in this paper, we measured the changes in the winning rate

according to each case, changing the values of the , , and .

Table 1 shows the values of the variables with the best three

odds for the blacksmith game. Here you can see the best

winning rate is 60% when the values for the , , and are

50, 35 and 15, respectively.

TABEL I. GAME: BLACKSMOKE

Winning Rate

60%(Best) 50 5 15

10%(Worst) 10 10 5

0%(Static) 0 0 0

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 2769-2774

© International Research Publication House. http://www.irphouse.com

2773

Table 2 is the case for the firecaster game, in which case best

winning rate is 100% while the values of , , and are 20,

20, and 15.

TABEL II. GAME: FIRECASTER

Winning Rate

100%(Best) 20 10 15

40%(Worst) 5 35 5

20%(Static) 0 0 0

In order to measure the effectiveness of the strategy proposed

in this paper, we measured the change in the winning rate

according to each case, changing the values of the , , and .

Table 1 shows the values of the variables with the best three

odds for the blacksmith game. Here you can see the best results

when the values for the , , and are 50, 35 and 15,

respectively

Depending on the type of game, the optimal variable values

vary, but we can see that the overall results are better than the

proposed strategy of self-reliance. After experimenting with

the effects of variable values in each game, the value of the

variables with the best odds was obtained and the value of

value 50, value 35 and value 5 were obtained. Using these

three strategies, the final experiment was designed and the

odds measured by applying them to the entire test

environment.

 The final experiment also confirmed that the average winning

rate for the entire 82 tests was valid and resulted in a slight

increase from 57.40% to 60.84%. Calculating the odds of a

valid group of experiments, except where the odds are 0% or

100% for both before and after the experiment, resulted in a

further increase from the previous 48.94% to 55.82%.

Accordingly, the three dynamic UCB strategies introduced for

real-time adaptation of C and W values have been identified to

have a positive effect on improving the uniform performance

of the average odds over the entire test.

For the experiment, we use the hardware consisted of Intel i5-

6600 3.30GHz (4Core 4Thread) CPU with 16G memory using

two DDR4 8G PC4-19200 (2400MHz) RAM. Test software

was designed and implemented with the JAVA platform

provided by GVGAI, and the other execution environment

followed the underlying environment provided by the platform.

V. CONCLUSION

In this paper, we tried to find a way to adopt MCTS algorithm

to the dynamic, first encountered game, and propose to adjust

progressive history approach by adjusting its C and W

constant in the real time during the game play period. As a

result, we can find a way to dynamically adjust PH parameters

and optimize them to improve the winning ratio. Although

some games are very sensitive to that parameter chang and

some is not so sensitive, experimental results show that there

is a certain improvement in the total winning rates..

When we test the proposed strategy to the total given,

according to the goals of the general game play study,

experimental results show that performance could be

improved for some tests by introducing a periodic reset

strategy, a pre-emptive strategy, and a delay pre-emptive

strategy and by adjusts the values of C and W for each

environment, showing that the average performance for the

entire test was also improved.

Although our experimentation used heuristic initial values for

the C and W, and use that value as a start point of proposed

strategy, it looks possible to find the optimized values with

further research and expect better performance. If

environmental factors, such as knowledge-based modules, are

classified and inputted to compute the range of weight values

that focus on winning improvements for each input state, it is

likely that the appropriate values can be estimated and adapted

in the same way as in this paper. This can be seen as similar to

a human player's previous experience of playing similar

games.

On the other hand, further study from a different point of view

is likely to be needed for tests with little win-loss change in

the C and W values of existing tests. For problems where the

number of valid cases in which scoring occurs exists at a very

deep stage, so that tree navigation cannot be reached, or that

require more effective navigation methods to be introduced

during the implementation phase, improvements in the

implementation phase are likely to be more effective, such as

adjusting the depth of the exploration of the NST strategy,

adjusting the proportion of the LA strategy, or applying the

cumulative bias values to the implementation phase by

adopting the RAVE strategy. In the future, through these

general game play studies, we will be able to learn more about

non-learning environments.

REFERENCES

[1] Chaslot, Guillaume Maurice Jean-Bernard Chaslot.

Monte-carlo tree search. Diss. Maastricht University,

2010.

[2] Browne, Cameron B., et al. "A survey of monte carlo

tree search methods." IEEE Transactions on

Computational Intelligence and AI in games 4.1

(2012): 1-43.

[3] Świechowski, Maciej, et al. "Recent advances in

general game playing." The Scientific World Journal

2015 (2015).

[4] Levine, John, et al. "General video game playing."

(2013): 77-84.

[5] Mnih, Volodymyr, et al. "Playing atari with deep

reinforcement learning." arXiv preprint

arXiv:1312.5602 (2013).

[6] Perez-Liebana, Diego, et al. "The 2014 general video

game playing competition." IEEE Transactions on

Computational Intelligence and AI in Games 8.3

(2016): 229-243.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 2769-2774

© International Research Publication House. http://www.irphouse.com

2774

[7] Bontrager, Philip, et al. "Matching games and

algorithms for general video game playing." Twelfth

Artificial Intelligence and Interactive Digital

Entertainment Conference. 2016.

[8] Perez, Diego, Spyridon Samothrakis, and Simon

Lucas. "Knowledge-based fast evolutionary MCTS

for general video game playing." Computational

Intelligence and Games (CIG), 2014 IEEE

Conference on. IEEE, 2014.

