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Abstract 

This paper is a study of thermoelastic interactions in an elastic 

half-space at an elevated temperature field arising out from a 

ramp-type heating and harmonic loading on the bounding 

surface. The governing equations are taken in a unified system 

in which the field equations of coupled thermoelasticity as 

well as of generalized thermoelasticity can be easily obtained 

as special cases. Special attention has been paid to the finite 

time of rise of temperature. The problem has been solved 

analytically by using a state-space approach. The derived 

analytical expressions have been computed for a specific 

situation. Numerical results for the temperature distribution, 

thermal stress and displacement components are represented 

graphically. A comparison was made with the results predicted 

by the three theories. 
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NOMENCLATURE 

  
 ,

  Lame’s constants 

  


  Density 

 EC
  Specific heat at constant strain 

  t   Time 

 T  Temperature   

 oT   Reference temperature 

 ij
  Components of stress tensor  

 ije
  Components of strain tensor 

 iu
  Components of displacement vector 

 iF   Body force vector 

 K   Thermal conductivity 

 Q  Heat source 

   ,o    Relaxation times 

 

1.   INTRODUCTION 

Serious attention has been paid for the last three decades to 

the generalized thermoelasticity theories in solving 

thermoelastic problems in place of the classical uncoupled 

/coupled theory of thermoelasticity. The heat conduction 

equation for uncoupled thermoelasticity without any elasticity 

term in appears to be unphysical, since due to the mechanical 

loading of an elastic body, the strain so produced causes 

variation in the temperature field. Moreover, the parabolic 

type of the heat conduction equation results in an infinite 

velocity of the thermal wave propagation which also 

contradicts the actual physical phenomena. Introducing the 

strain-rate term in the uncoupled heat conduction equation, 

Biot [1] extended the analysis to incorporate coupled 

thermoelasticity. In this way, although the first shortcoming 

was over, there remained the parabolic type partial differential 

equation of the heat conduction, which leads to the paradox of 

the infinite velocity of the thermal wave. To eliminate this 

paradox generalized thermoelasticity theory has been 

developed subsequently. The development of this theory was 

accelerated by the advent of the second sound effects 

observed experimentally by Ackerman [2, 3] in materials at a 

very low temperature. In heat transfer problems involving 

very short time intervals and/or very high heat fluxes, it has 

been revealed that the inclusion of the second sound effects to 

the original theory yields results which are realistic and very 

much different from those obtained with classical theory of 

elasticity. 

Becouse of the advancement of pulsed lasers, accelerators, 

fast burst nuclear reactors and particle, etc. which can supply 

heat pulses with a very fast time-rise [4,5], generalized 

thermoelasticity theory is receiving serious attention of 

different researchers. The development of the second sound 

effect has been reviewed by Chandrasekharaih [6]. At present 

mainly two different models of generalized thermoelasticity 

are being extensively used-one proposed by Lord and 

Shulman [7] and the other proposed by Green and Lindsay 

[8]. The L-S theory suggests one relaxation time and 

according to this theory only Fourier's heat conduction 

equation is modified; while G-L theory suggests two 

relaxation times and both the energy equation and the 

equation of motion get modified. Contrary to the L-S theory, 

the G-L theory does not violate Fourier's law of heat 

conduction when the solid has a centre of symmetry.  

A method for solving coupled thermoelastic problems by 

using the state-space approach in which the problem cast into 

the state-space variables, namely the temperature, the 
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displacement and their gradients has been developed by Bahar 

and Hetnarski [9-11].  State space methods are the cornerstone 

of modern control theory. The essential feature of state space 

methods is the characterization of the processes of interest by 

differential equations instead of transfer functions. This may 

seem like a throwback to the earlier, primitive, period where 

differential equations also constituted the means of 

representing the behavior of dynamic processes. But in the 

earlier period the processes were simple enough to be 

characterized by a single differential equation of fairly low 

order. In the modern approach the processes are characterized 

by system of coupled, first order differential equations. In 

principle there is no limit to the order (i.e., the number of 

independent first order differential equations) and in practice 

the only limit to the order is the availability of computer 

software capable of performing the required calculations 

reliably. 

The importance of state space analysis is recognized in fields 

where the time behavior of any physical process is of interest. 

The state space approach is more general than the classical 

Laplace and Fourier transform theory. Consequently, state 

space theory is applicable to all systems that can analyzed by 

integral transforms in time, and is applicable to many systems 

for which transform theory breaks down. Furthermore, state 

space theory gives a somewhat different insight into the time 

behavior of linear systems.  

In particular, the state space approach is useful because: (i) 

linear system with time-varying parameters can be analyzed in 

essentially the same manner as time-invariant linear system, 

(ii) problems formulated by state space methods can easily be 

programmed on a computer, (iii) high-order linear systems 

can be analyzed, (iv) multiple input-multiple output systems 

can be treated almost as easily as single input-single output 

linear systems, and (v) state space theory is the foundation for 

further studies in such areas as nonlinear systems, stochastic 

systems, and optimal control. These are five of the most 

important advantages obtained from the generalization and 

rigorousness that state space brings to the classical transform 

theory [9-11]. 

Erbay and Suhubi [12] studied the longitudinal wave 

propagation in an infinite circular cylinder which is assumed 

to be made of the generalized thermoelastic material and 

thereby obtained the dispersion relation when the surface 

temperature of the cylinder was kept constant. Generalized 

thermoelasticity problems for an infinite body with a circular 

cylindrical hole and for an infinite solid cylinder were solved 

respectively by Furukawa et al. [13, 14]. A problem of 

generalized thermoelasticity was solved by Sherief [15] by 

adopting the state-space approach. Chandrasekharaiah and 

Murthy [16] studied the thermoelastic interactions in an 

isotropic homogeneous unbounded linear thermoelastic body 

with a spherical cavity, in which the field equations were 

taken in unified forms covering the coupled, L-S and G-L 

models of thermoelasticity. The effects of mechanical and 

thermal relaxations in a heated viscoelastic medium 

containing a cylindrical hole were studied by Misra et al. [17]. 

Investigations concerning interactions between magnetic and 

thermal fields in deformable bodies were carried out by 

Maugin [18] as well as by Eringen and Maugin [19]. 

Subsequently Abd-Alla and Maugin [20] conducted a 

generalized theoretical study by considering the mechanical, 

thermal and magnetic field in centro-symmetric magnetizable 

elastic solids.  

Many problems which have been solved, were in the context 

of the theory of L-S; El-Maghraby and Youssef [21] used the 

state space approach to solve a thermomechanical shock 

problem using. Sherief and Youssef [22] get the short time 

solution for a problem in magnetothermoelasticity. Youssef 

[23] constructed a model  of the dependence of the modulus of 

elasticity and the thermal conductivity on the reference 

temperature and solved a problem of an infinite material with 

a spherical cavity 

It is more useful to mention here that in most of the earlier 

studies, mechanical or thermal loading on the bounding 

surface is considered to be in the form of a shock. But the 

sudden jump of the load is merely an idealized situation 

because it is impossible to realize a pulse described 

mathematically by a step function; even very rapid rise-time 

(of the order of 10-9 s) may be slow in terms of the 

continuum. This is particularly true in the case of second 

sound effects when the thermal relaxation times for typical 

metals are less than 10-9 s. It is thus felt that a finite time of 

rise of external load (mechanical or thermal) applied on the 

surface should be considered while studying a practical 

problem of this nature. Considering this aspect of rise of time, 

Misra et al. [24-26] solved some problems subjected to a 

ramp-type heating at the bounding surface. 

The present investigation is devoted to a study of the induced 

temperature and stress fields in an elastic half space under the 

purview of classical coupled thermoelasticity and generalized 

thermoelasticity in a unified system of field equations. The 

semi-infinite continuum is considered to be made of an 

isotropic homogeneous thermoelastic material, the bounding 

plane surface being subjected to periodic loading and a ramp-

type heating. The rationale behind the study of such a type of 

heating is that the temperature of the bounding surface cannot 

be elevated instantaneously-a finite time of rise of temperature 

is required for this purpose. By adopting the state-space 

approach [15] an exact solution of the problem is first 

obtained in Laplace transform space. Since the response is of 

more interest in the transient state, the inversions have been 

carried out numericaly. The derived expressions are computed 

numerically for copper and the results are presented in 

graphical form. 

 

2.  BASIC EQUATIONS AND FORMULATION 

In the context of coupled thermoelasticity (CTE), the 

displacement and the thermal fields as well as the stress-

strain-temperature relations for a linear homogeneous and 

isotropic medium [1]: 

 
  ii,iji,jjj,i uTFuu 

, (1) 

 QuTTCTK j,joEii,   , (2) 
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     iji,ii,jj,iij Tuuu  . (3) 

In the generalized thermoelasticity (GTE) theory developed 

by Lord and Shulman, only the heat conduction equation 

given by (2.2) is modified to the form [7]: 

  QuTTC
t

1TK i,ioEoii, 











  , (4) 

while equations (1) and (3) remain unchanged. According to 

the generalized thermoelasticity (GTE) theory developed by 

Green and Lindsay (G-L), equations (1)-( 3) are replaced by 

[8]: 

   ii,iji,jjj,i uT
t

1Fuu 











 , (5)  

 QuTT
t

n1CTK j,jooEii, 











  , (6) 

      iji,ii,jj,iij TTuuu   . (7) 

 All the field equations represented by (1)-( 7) can be 

formulated in a unified system as 

   ii,iji,jjj,i uT
t

1Fuu 











 , (8) 

  QuT
t

n1T
tt

CTK j,joo2

2

oEii, 



































  , (9) 

      iji,ii,jj,iij TTuuu   . (10) 

Equations (8)-(10) reduce to (1)-( 3) (CI'E) 

when 0o  . Putting 1n  , 0 and 0o  , the 

equations reduce to (1), (4) and (3) for the L-S model, while 

when 0n  , 0and0o  , the equations reduce to 

(5)-(7) for the G-L model. 

 

3. STATEMENT OF THE PROBLEM AND THE 

GOVERNING EQUATIONS 

Let us consider a perfectly conducting elastic half space 

0x  of an isotropic homogeneous material medium whose 

state can be expressed in terms of the space variable x and the 

time variable t. The medium described above is considered to 

be exposed to ramp-type surface heating described 

mathematically as: 

  





















o1

o
o

1

ttT

tt0
t

t
T

0t0

t,0T  (11) 

T1 being a constant. It is assumed that there are no body forces 

and no heat sources in the Meduim and that the plane 

0x  is taken to be subject to a periodic loading of 

frequency  , i.e. 

   ti
oet,0   (12) 

where o is constant.  

Thus the field equations (8)-(10) in one dimensional case can 

be put as 

 
2

2

2

2

t

u
T

t
1

xx

u
2



























 , (13) 

x

u

t
n

tK

T
T

ttK

C

x

T
2

2

o
o

2

2

o
E

2

2























































 , (14) 

  T
t

1
x

u
2xx 

















 . (15) 

For convenience, we shall use the following non-dimensional 

variables: 

   u,xcu,x o ,      ,,t,tc,,t,t oo
2
ooo , 

 
 

o

1
1

T

T,T
,  , 

 




2
, 






2
oc

 

where 





2
c2

o  and 
K

CE
 . 

Equations (13)-(15) assume the form (where the primes are 

suppressed for simplicity) 

 
2

2

2

2

t

u

t
1

x
a

x

u


























 , (16) 

 
x

u

t
n

tttx 2

2

o2

2

o2

2























































 , (17) 

 


















t
1a

x

u
xx

, (18) 

where 





2

T
a o , 

EC


 and   T23   

The nondimensional forms of the boundary conditions are: 

  





















o1

o
o

1

tt

tt0
t

t

0t0

t,0 , (19) 
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   ti
oet,0  , (20) 

To solve the equations (16)-(18) under conditions (19) and 

(20) we use the method of Laplace trnasform. In the transform 

space the equations (16)-(18) read 

 
x

u
x

u
212

2









, (21) 

 
x

u

x
432

2









, (22) 

 



 2xx

x

u
, (23) 

    ss,0 5 , (24) 

    ss,0 6 , (25) 

where   2
1 ss  ,    s1as2  ,   2

o3 sss   , 

   2
o4 snss   ,  

 
2

o

st
1

5
st

e1
s

o


  and 

 





is
s o

6
, 

and an overbar symbol denotes its Laplace transform and s 

denots the Laplace transform parameter, writing 

 
 

 s,x
x

s,x





, (26) 

 
 

 s,xu
x

s,xu





, (27) 

Choosing as state variable the temperature increment, the 

displacement component in the x-direction and their gradient, 

then equations (21) and (22) can be written in matrix form as: 

 
 

   s,xVsA
xd

s,xVd
 ,  (28) 

where 

  

 

 
 
 

























s,x

s,xu

s,x

s,xu

s,xV
,    

 
























00

00

1000

0100

sA

43

21

, (29) 

the formal solution of system (28) can be written in the form 

       s,0VxsAexps,xV  . (30) 

We will use the well-known Cayley-Hamilton theorem to find 

the form of the matrix exp (A(s) x). The characteristic 

equation of the matrix A(s) can be written as 

   0kk 31
2

3421
4  , (31) 

the roots of this equation, namely, 1k and 2k , satisfy the 

relations 

 3421
2
2

2
1 kk  , (32) 

 31
2
2

2
1 kk  . (33) 

The Taylor series expansion of the matrix exponential has 

form 

  
 







0n

n

!n

x)s(A
x)s(Aexp . (34) 

Using Cayley-Hamelton theorem again, we can express A4 

and higher orders of the matrix A in terms of I, A, A2, and A3, 

where I is the unit matrix of fourth order. 

Thus, the infinite series in equation (34) can be reduced to 

     3
3

2
21o AaAaAaIas,xLxsAexp  , (35) 

where ao-a3 are some coefficients depending on x and s. By 

Cayley-Hamilton theorem, the characteristic roots 1k and 

2k of the matrix A must satisfy equation (35), thus 

   3
13

2
1211o1 kakakaaxkexp  , (36a) 

   3
13

2
1211o1 kakakaaxkexp  , (36b) 

   3
23

2
2221o2 kakakaaxkexp  , (36c)  

   3
23

2
2221o2 kakakaaxkexp  . (36d) 

The solution of this system is given by 

 
   

2
2

2
1

1
2
22

2
1

o
kk

xkcoshkxkcoshk
a




 , (37a) 

 

   

2
2

2
1

1
1

2
2

2
2

2
1

1
kk

xksinh
k

k
xksinh

k

k

a




 , (37b) 

 
   

2
2

2
1

21
2

kk

xkcoshxkcosh
a




 , (37c) 

 
   

 2
2

2
112

2112
3

kkkk

xksinhkxksinhk
a




 . (37d) 

Now, we have 

        4,3,2,1j,is,xs,xLxsAexp ji   , (38) 
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where the components  s,xji are given by 

 12011 aa  , 32312 a  ,  4213113 aa  , 2214 a   

 41321 a  , 32022 aa  , 4223 a  ,  4233124 aa   

  421131131 aa  , 32232 a  ,  4212033 aa  ,  

  3421232134 aa  , 41241 a  ,  342333142 aa   

   34244134143 aa  ,  3422044 aa  . (39) 

Since the intent is that the solution vanishes at infinity, the positive exponentials in equations (37) should be rejected. This is done 

by replacing each  xkcosh i  by  xkexp
2

1
i and each  xksinh i by   2,1i,xkexp

2

1
i  in equations (37). 

The new values of 4310 aanda,a,a expressed as: 

 2
2

2
1

xk2
2

xk2
1

o
kk2

ekek
a

12








,  

 2
2

2
1

xk

2

2
1xk

1

2
2

1
kk2

e
k

k
e

k

k

a

21









,  

 2
2

2
1

xkxk

2
kk2

ee
a

21








,  

 2
2

2
112

xk
2

xk
1

3
kkkk2

ekek
a

12








. (40) 

 

Thus, the equation (30) become as: 

       s,0Vs,xs,xV ji . (41) 

To get    s,0ands,0u  , we use equation (41) when x = 0 

       s,0Vs,0s,0V ji , (42) 

where  

 

 
 
 

 

  

















































s,0

s,0u

s,0

s,0u

s,0

s,0u

s,0V
526

5
. (43) 

 

Thus, we get 

  
 2121

21763

kkkk

kk
s,0u




 , (44) 

and 

  
 21

7453215

kk

kk
s,0




 . (45) 
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By using the equations (41), (43), (44) and (45), we get 

  
 

  

  































2

xk
2
1574533

2
2

1

xk
2
2574533

2
1

2
1

2
24

k

e
kk

k

e
kk

kk

1
s,xu

2

1

, (46) 

  
 

    xk2
157453

xk2
2574532

2
2
1

21 ekek
kk

1
s,x





 , (47) 

where 5267   

By using the equations (23), (46) and (47), we get the stress in the form 

  
 

  
   

























xk2
157453

2
11

xk2
257453

2
21

2
2

2
14

2

1

ekk

ekk

kk

1
s,x . (48) 

Those complete the solution in the Laplace transform domain. 

 

4. NUMERICAL INVERSION OF THE LAPLACE  

      TRANSFORM 

In order to invert the Laplace transform, we adopt a numerical 

inversion method based on a Fourier series expansion [27], 

[28] 

By this method the inverse )t(f of the Laplace transform 

 sf  is approximated by  

 

    ,t2t0,
t

tki
exp

t

ki
cf1Rcf

2

1

t

e
tf 1

N

1k 111

ct





















 







 
 



 

where N is a sufficiently large integer representing the number 

of terms in the truncated Fourier series, chosen such that 

   1
11 t

tNi
pxe

t

Ni
cf1Rtcpxe 
















 







 
 , 

where 1 is a prescribed small positive number that 

corresponds to the degree of accuracy required. The parameter 

c is a positive free parameter that must be greater than the real 

part of all the singularities of  sf . The optimal choice of c 

was obtained according to the criteria described in [27]. 

 

 

5.  NUMERICAL RESULTS AND DISCUSSION 

With a view to illustrating the analytical procedure presented 

earlier, we now consider a numerical example for which 

computational results are given. The results depict the 

variation of temperature, displacement and stress fields in the 

context of GTE (due to L-S and G-L models) and CTE. For 

this purpose, copper is taken as the thermoelastic material for 

which we take the following values of the different physical 

constants: 

31 skmkg386K   ,  

  15
T k1078.1 
 ,  

3mkg8954  , k293To  , 

2 1 2

EC 383.1 m k s    , 

  2110
smkg1086.3   , 

  2110
smkg1076.7   ,  

15 s10  . 

From the above values we get the nondimensional values for 

our problem as:  

a = 0.01041,  ε = 1.618, 0.000007  
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The field quantities, temperature, displacement and stress 

depend not only on the state and space variables t and x, but 

also depend on rise-time parameter to , the thermal relaxation 

time parameters τo, υ and n (for GTE) and on the loading 

parameter σo. It has been observed that in all three theories of 

CTE, L-S and G-L, the finite rise-time parameter to has 

significant effect on the temperature quantities even when the 

traction free (σo= 0.0) but , its effect on the dispacement and 

the stress quantities does not appear unless the loading on the 

boundary vanishes, in this case, the effect  of to is very strong. 

Here all the variables/parameters are taken in nondimensional 

forms. In the context of the three theories, numerical analysis 

has been carried out by taking 1o1  , 3.0t   and 

the x range from 0.0 to 1.0. The numerical values for the field 

quantities are computed separately for each theory for a wide 

range of values of finite pulse rise-time to in the two situations 

t > to and t < to respectively. For CTE we take τo = υ = 0. For 

the L-S model we take n = 1, υ = 0 and τo = 0.02, 0.04, 0.08 

and for the G-L model we consider τo = 0.02, 0.04 and υ = 

0.02, 0.04 in different combinations. Effects of the time of rise 

of temperature on the magnitude of the field quantities (in the 

context of the three theories) have been examined for a wide 

range of values of to. Results for the specific cases to = 0.1, 

0.2, 0.3, 0.4 for t = 0.3 and to = 0.4, 0.5 , 0.6 for t = 0.5, are 

being shown here. 

Figures 1-4, exhibit the space variation of temperature at 

instants, t = 0.3 for different values of to whereas Fig. 2 

indicates the variation of temperature in CTE at different 

values of to with the observation times t = 0.3 and t = 0.5, 

when to = 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 in which we observe 

the following: 

(i) In figure 1, temperature decreases as x increases for 

the three theories, whatever the value of t greater or 

smaller than to.  

(ii) In figures 1, 2, 3 and 4, the temperature at a given 

position x at any instant t decreases with the increase 

of to for the three theories. 

(iii) In figure 1, significant difference in the value of 

temperature is noticed for the three theories, when 

the bounding plane traction free  0.0o   or 

periodical loading   0.0,o  . 

(iv) In figure 3 and 4 significant difference in the values 

of the temperature when the relaxation times o and 

change 

Figures 5-9, exhibit the space and the time variations of 

displacement for different values of t,  ,oo ,t . It observed 

that: 

(i). In figure 5, no significant difference in the values of 

displacement is noticed for the three theories when the 

bounding plane has a periodic loading in different 

values of to, Thus, a single curve for each theory has 

been drawn at one value of 2.0t o  . 

(ii). In figures 6, , 7 ,8 and 9, when the bounding plane 

traction free, the value of to  has an essential role to 

change the value of the displacement at the same point 

of x for the three theories. We can see that, the 

maximum point of the displacement increases when to 

decreases in t = 0.3. 

(iii). In figure 8 and 9, significant difference in the values of 

the displacement when the relaxation times o and 

change. 

Figures 10-14, exhibit the space and the time variations of 

stress for different values of t,  ,oo ,t . It observed that: 

(i). In figure 10, no significant difference in the values of 

stress is noticed for the three theories when the 

bounding palne has a periodic loading in different 

values of to, Thus, a single curve for each theory has 

been drawn at one value of 2.0to  . 

(ii). In figure 11, 12, 13 and 14, when the bounding plane 

traction free, the value of to  has an essential role to 

change the value of the displacement at the same point 

of x for the three theories. We can see that, the 

magnitude of the maximum point of the stress increases 

when to decreases in t = 0.3  

(iii). In figure 11, when ott   and the bounding plane 

traction free, the stress start from zero to positive 

values for a small interval slowly, after this interval the 

curve fall to negative values rapidly till the sharp  point 

of the curve,  then the stress increases where  increase 

of x. But when ott  , the stress is almost negative for 

all the values of x. 

(iv). In figure 13 and 14, significant difference in the values 

of the stress when the relaxation times o and 

change. 
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Figure 1: The temperature distribution at t = 0.3
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Figure 2: The temperature distributions for CTE at different time and different values of to
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Figure 4: The temperature distributions for G-L at t = 0.3 and different to ,  and 
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Figure 5: The displacement distribution at t = 0.3 and to = 0.2
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Figure 7: The displacement distribution for CTE at different time and different values of to
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Figure 8: The displacement distributions for L-S at t = 0.3  in different  o  and to when the traction free
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Figure 9: The displacement distributions for G-L at t = 0.3 and different to ,  and  when the traction free
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Figure 10: The stress distributions at t = 0.3 and to = 0.2
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Figure 11: The stress distributions at t = 0.3 in different values of to when the traction free
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Figure 12: The stress distribution for CTE at different time and different values of to
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Figure 13: The stress distributions for L-S at t = 0.3  in different  o  and to when the traction free
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Figure 14: The stress distributions for G-L at t = 0.3 and different to ,  and  when the traction free
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6. CONCLOUSION 

Temperature, stress, and displacements fields in homogeneous 

elastic half-space due to linear temperature ramping have been 

examined within the framework of the generalized 

thermoelasticity theories of Lord and Shulman and Green and 

Lindsay. Comparisons with predictions of the classical 

coupled thermoelasticity theory, in which only a coupling 

term in the parabolic heat conduction equation, were also 

made. For the range of rise time parameter t0 considered 

herein, we find essentially no differences between the 

predictions of either theory. For small values t0, which imply a 

slower temperature rise on the boundary, the predictions from 

the CTE differ from the generalized theories. We can say that, 

the speed of wave propagation has not finite value at large 

distance x in the context of CTE which make GTE is more 

agreeable with the physical properties of the solid materials in 

small value of temperature rise time. For large values of t0, 

which are associated with much more rapid temperature rise 

on the boundary, the CTE almost are very closed to the GTE 

so any model of them may be used.  
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