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Abstract 

In this paper, we proposed a novel and robust enhanced Space-

Time Adaptive Process (STAP) assisted moving sea-target 

detection model. Unlike conventional approaches, our 

proposed method implements an enhanced STAP with optimal 

Antenna-Pulse Selection (APS) that reduces space-time 

subspace training impulse requirement for clutter covariance 

matrix estimation. To perform optimal APS provision at first 

we have performed Space Spectrum Correlation Coefficient 

(SSCC) estimation, which has been further processed for the 

optimal Antenna-Impulse Pair Selection that approximates 

clutter covariance matrix to achieve enhanced Signal-to-

Clutter plus Noise Ratio (SCNR). Here, the use of SSCC helps 

achieving optimal separation between target signal and clutter 

subspace or allied clutter Fourier basis. Additionally, it 

suppresses jamming and noise power components that 

eventually assist enabling accurate moving target detection. 

Thus, the proposed method justifies its robustness not only 

towards moving target detection under sea-clutter by 

suppressing clutter subspace, but also alleviates the problem of 

jamming. Hence, it enables secure, reliable and efficient 

moving target detection under sea-clutter. The overall 

proposed model has been developed based on impulse radar 

setup using MATLAB tool where, multiple moving targets are 

detected for the received signal impulses. The proposed 

method can be a potential solution for multiple moving target 

detection even under heterogeneous environment containing 

clutter, jamming attacks, noise and other interferences. Thus, it 

is well suited for moving small target detection under sea 

clutter for efficient coastal surveillance purposes.    

Keywords: Moving Target Detection, Sea-Clutter 

Environment, Impulse Radar, Space Time Adaptive Process, 

Clutter-Suppression, Antenna, Pulse Pair Selection, Coastal 

Surveillance.   

 

I. INTRODUCTION 

In the last few years, the development of advanced imaging 

systems, signal processing techniques and hardware 

capabilities has enabled different solutions to meet major at 

hand demands pertaining to industries, scientific researches, 

civil and defense purposes. Amongst the major technologies 

signal processing has always been the dominant paradigm to 

serve up-surging demands. Amongst the critical application 

demands, surveillance and security systems have always 

attracted academia-industries as well as defence related 

stakeholders to achieve more efficient solution. Considering 

the contemporary global scenario where almost all nations are 

undergoing problems like terrorism, smuggling, illegal 

migration or infiltration etc. Amongst the different reasons 

causing aforesaid issues, migration or intrusion through sea-

ways (intrusion through coastal) is the most causative factor. 

Additionally, for defense purposes detecting small moving 

object becomes very tedious task, especially under oceanic 

disturbances or wave’s non-linearity. It motivates academia-

industries to develop more efficient RADAR systems to 

achieve effective sea-target or object detection. The moving 

target detection becomes tedious in case of sea-clutter and 

jamming conditions. Thus, the development of robust moving 

sea-target (say, object) detection can be vital to detect and 

identify commercial vessels, defence vessels, oceanic-creature 

as well as intruders. It can help making optimal decision in 

real-time surveillance purposes.   

In the last few years the development of highly advanced 

signal processing technologies has broadened the capabilities 

of radar systems to detect targets and monitor large range of 

geography. However, detecting small moving object, 

especially under non-linearity such as oceanic waves is a 

tedious task [1][2]. Dynamism in oceans or sea makes small 

maritime target detection very complicate that becomes even 

severe under clutter condition. As illustration, small objects 

such as boats, wood-log, ice-bergs, parts of the damaged plane 

or sea-wrecks, Rigid Inflatable Boats (RIBs) etc are small in 

size that makes detection difficult using conventional radar 

system [1-3][30]. To enable a robust target detection radar it is 

inevitable to alleviate the problems caused due to clutter which 

depends on the oceanic events, local weather condition such as 

wind speed, wind-direction, height of waves, and the grazing 

angle of radar, as well as jamming issues [1-3]. Oceanic 

echoes seem to possess sea-spikes that create significant 

clutter which makes target detection difficult [1] Furthermore, 

detection of the multiple targets moving at slow speed 

becomes even more complicated during sea-clutter, and hence 

requires optimal clutter suppression model [2]. Jamming 

situation which is intentionally employed by intruders, in 

conjunction with sea-clutter can make overall detection 

process tedious [6]. In such case designing a robust clutter 

suppression model with jammer resilience and noise-power 

cancellation can be of vital significance [1-6]. It has been 

considered as the motivation of the presented research work. 
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Considering moving target detection issues in sea-clutter, 

authors [3][4] proposed clutter modelling concept with 

different statistical distributions. However, non-linearity in 

clutter amplitude and jamming could not be incorporated using 

classical statistical modeling method. Additionally, numerous 

efforts have been made from academician as well as defense 

sector towards moving object or target detection under sea-

clutter. Some of the key efforts were made by employing 

Spatio-Temporal Fourier Transform (STFT) that enables space 

as well as time domain analysis of the received signal to detect 

moving object [55-57].  However, its efficacy often remains 

suspicious under high clutter and jamming condition, which is 

very common and probable in current scenarios. Though, 

wavelet packet analysis, and Fourier analysis approaches have 

been applied for moving target detection [33], the use of both 

spatial as well as temporal features opens us further scope for 

enhancement [5][6]. Unlike conventional methods, the use of 

Space-Time Adaptive Processing (STAP) method because of 

its ability to process temporal as well as spatial subspace has 

gained significant attention across academia-industries to 

perform moving target detection [6-8][11][13][14][16][22-24]. 

It exhibits combining the different signals and/or allied pulses 

received from varied antenna-arrays to perform target 

detection accurately, even under clutter and jamming 

conditions [5-8]. Functionally, it applies the Clutter-plus-

Noise Covariance Matrix (CCM) of the received signal which 

is processed for whitening before employing any Matched-

Filter Detector (MFD). Since, CCM remains non-linear and 

unknown in case of coastal or oceanic clutter condition, STAP 

methods for example the Sample Matrix Inversion (SMI) can 

be able to retrieve the maximum-likelihood estimate of the 

CCM. However, it requires large number of Independent and 

Identically Distributed (IID) training data to estimate average 

Signal-to-Clutter-plus-Noise Ratio (SCNR) [5-8]. It used to 

outnumber the degree of freedom of the radar detector [8], 

which becomes highly complicate under non-homogenous and 

non-linear condition like sea (coastal)-environment [9]. 

Noticeably, the oceanic (sea) clutter and its heterogeneity 

along with limited training samples due to mobility can force 

classical STAP to undergo huge computational overheads  

[11][13][14][16][22-24]. Alleviating such complexities 

requires strengthening STAP to have higher interference 

suppression and clutter-signal separation capacity [8]. In 

majority of the clutter and interference suppression problems 

the radar systems used to be rank-deficient that enables STAP 

to function even with lower adaptive degree of freedom (DOF) 

requirements (in comparison to the DOF needed by array). 

To achieve optimal performance by STAP, DOF can be 

reduced that can be vital for moving sea-object detection. To 

further augment it, certain pre-processing methods can be 

applied so as to retain only significant training data and 

eliminating the problem of clutter heterogeneity [10-14]. A 

recently proposed method called knowledge-assisted STAP 

(KSTAP) used a priori knowledge to enhance CCM 

convergence so as to make swift target detection [15–17]. 

Authors applied D3 algorithm [18] with the maximum 

likelihood detector to assist target detection without applying 

additional training data. Realizing large scale training data, 

recently authors proposed an image processing based STAP 

[19] where Principle Component Analysis (PCA) was used to 

transform feature data into lower dimensional feature subspace 

to estimate CCM for target detection [65]. The use of sparse 

recovery (SR) methods has been applied to assess clutter 

spectrum in the angle-Doppler plane to perform target 

separation [20][21]. Unfortunately, these methods are 

computationally complex, especially STAP based approaches 

which need a full-dimensional matrix inversion. As an 

alternate solution, authors [22][23] found that the use of sparse 

nature of the STAP filter weights can be more efficient to 

make target detection under clutter condition. It broadens the 

horizon for researcher to use efficient and adaptive STAP 

filter-weights for better detection accuracy. Though, numerous 

efforts have been made towards STAP based target detection 

under clutter; however no significant effort is available to 

detect multiple moving target under sea-clutter, noise and 

jamming conditions [19][22][23].  

In this paper a highly robust and efficient Antenna-Pulse Pair 

Selection (APS) assisted STAP model is proposed for multiple 

(moving) sea-target detection in sea clutter and jamming 

probable environment. The proposed target detection model 

has been augmented with an enhanced ASP model that enables 

selecting an optimal set of Antenna-Pulse Pairs for each 

snapshot or time-range, which is then followed by using STAP 

to perform moving sea-target detection. Unlike a classical 

method [24], in which authors preferred employing antenna 

array distinctly rather he pulse train and considered using array 

information to suppress clutter information, we used antenna-

pulse data obtained from participating sensors or receivers 

defined in terms of antenna number (M) and associated pulse 

number (N)for a snapshot to enable target detection and allied 

clutter suppression. Our proposed method enables reduction in 

both temporal as well as spatial subspace that ensures retention 

of the optimal sensors (say, radar array) and associated (subset 

of) antenna-pulse to achieve efficient clutter and jamming 

separation from the target signal. We have applied Spatial 

Spectrum Correlation Coefficient (SSCC) to support better 

APS provision in such manner that it could maximize or 

enhance the disparity between target signals and clutter 

(Fourier basis) and jammer components. SSCC has been 

designed in a manner that it intends to achieve higher SINR, 

even under clutter, noise and jamming condition. The use of 

SSCC enables higher SCNR output that results into efficient 

clutter suppression and sea-target detection. Considering 

realistic maritime navigation conditions, we have examined 

efficacy of the proposed target detection model to detect 

multiple moving targets. The overall proposed system has 

been developed using MATLAB tool, while its performance 

has been examined in terms of SINR, SINR losses, SINR 

Improvement Factor (SIF) etc. Overall simulation results 

affirmed efficiency of the proposed model for real-time coastal 

surveillance using pulse radar setup.  

The remaining sections of the presented manuscript are given 

as follows. Section II discusses the related work, which is 

followed by research questions in Section III. Section IV 

presents the problem formulation, while the proposed model 

and its implementation is given in Section V. Simulation 

results obtained are given in Section VI, and the overall 

research conclusion is discussed in Section VII. References 

used in this study are given at the end of the manuscript. 
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II. RELATED WORK 

Though, a large number of efforts have been made for target 

detection using radar systems; however clutter condition or 

other jamming conditions are different for the sea-condition or 

coastal environment. Therefore, understanding other existing 

approaches pertaining to object detection under sea-clutter can 

be significant to make novel contribution. With this motive, 

this section briefs some of the key literatures pertaining to sea-

target detection under clutter conditions.  

To detect small floating target in sea clutter, Li et al [25] 

proposed fractal-based detector where they applied normalized 

Hurst exponent to achieve better detection accuracy under un-

uniform sea surface condition. Yang et al [26] in their work 

designed Orthogonal Projection method (OP) that performed 

target detection without using multiple radar systems. 

McDonald et al [27] exploited non-coherent integration, 

coherent integration and Kelly detector along with adaptive 

linear quadratic detector to detect floating target in sea clutter. 

Wavelet analysis was also explored for small target detection 

by Davidson et al [28], who found that the design or a wavelet 

determination model can be effective to assess scattered signal 

within the Doppler spectra of non-Gaussian sea clutter. 

Wavelet determination can be suitable feature extraction 

method to perform target detection in sea clutter. Similarly, 

Normalized Doppler Power Spectrum (NDPS) was applied by 

Li et al [29] for floating small target detection in sea clutter. 

Unlike [28, 29], Xu et al [30] focused on employing different 

polarization features including the relative surface scattering 

power, the relative volume scattering power, and the relative 

dihedral scattering power to perform target detection. This 

method enabled achieving a multi-polarization channel that 

created a 3-D feature detector for floating (small) target on 

sea-surface. However, these approaches are highly complex 

and possess computational overheads.  

Due to low range of object floating, numerous targets might 

undergo undetected, Carretero-Moya et al [31] designed a 

Radon transform assisted heuristic concept for of low radar 

cross-section targets detection in sea clutter. Radon transform 

enabled sequential profile generation to detect small target in 

sea clutter. Shui et al [32] used three key features from the 

received signals; relative amplitude, relative Doppler peak 

height, and relative entropy of the Doppler amplitude spectrum 

to segment target in sea clutter. To enhance computation, 

authors [32] applied convex hull learning algorithm. To 

enhance detection, Duk et al [33] applied Stationary Wavelet 

Transforms (SWT); however it was well suited for the target 

detection in medium grazing angle X-band sea-clutter. 

Panagopoulos et al [34] applied three distinct signal 

processing techniques, like Signal Averaging (SA), 

Morphological Filtering (MF) and Time-Frequency Analysis 

(TFA) to detect target in sea clutter. Shi et al [35] used 

smoothed pseudo-Wigner-Ville distribution (SPWVD) model 

to enhance time frequency features of the given signal. 

SPWVD extracted time series information at the Cell-Under-

Test (CUT) as well as reference cells near the CUT that helped 

estimating the differences between target returns and the TF 

pattern of sea clutter. Later authors substituted the target 

region from the sea clutter. Yang et al [36] used Butterworth 

high-pass filter to detect a small slowly moving target. 

Similarly, Jin et al [37] gave more preference to the Velocity 

Steering Vector (VSV) than the classical searching approaches 

to perform small slowly moving targets detection in spiky sea-

clutter. For better feature learning, Leung et al [38] designed 

Genetic Algorithm (GA) based Artificial Neural Networks 

(ANN) to detect the target in sea clutter. In this method [38] 

GA was used to enhance signal reconstruction, while Radial 

Basis Function (RBF) was used as learning model (for sea-

clutter feature learning). Hennessey et al [39] too used ANN 

for radar clutter modeling that effectively dealt with the 

inherent nonlinearity nature of the sea-clutter. RBF ANN 

learnt sea-clutter information to locate small moving target in 

sea clutter. Zuo et al [40] used time-frequency iteration 

decomposition based slow moving target detection in sea-

clutter. Authors applied X-band sea echo with a weak 

simulated target to examine efficiency of the proposed 

method. Brekke et al [41] developed Probabilistic Data 

Association Filter with Amplitude Information (PDAFAI) 

which exploited conservative amplitude probabilities to detect 

small floating targets in sea-clutter. Guan et al [42] focused 

mainly on enhancing the signal analysis and developed 

Fractional Fourier transform (FRFT), by combining statistic as 

well as FRFT-based target detection method.  

Considering the complexities caused due to dynamic waves, 

size of the target and sea clutter, Croney et al [43] 

recommended using clutter de-correlation method by 

employing fast antenna scanning followed by camera or direct-

view storage-tube integration. This approach was found 

efficient towards small slow moving target detection under 

sea-clutter. Dong et al [44] applied revised Visual Attention 

Model (VAM) and the Anti-Vibration Pipeline-Filtering 

(AVPF) algorithm for maritime target detection. However, it 

could not guarantee accurate target detection and tracking 

under sea-clutter [45]. To achieve better accuracy Leung et al 

[46] modeled radar echoes retrieved from sea surface as 

nonlinear deterministic dynamical system. Obtaining the 

signal, authors [46] used two dynamic target detection systems 

using dynamical invariant also known as the attractor 

dimension to enable separation of target signal from sea 

clutter. Unlike classical linear prediction model Leung et al 

[47] proposed a nonlinear prediction (NLP) model to avoid 

clutter condition for better target detection. Undeniably, the 

nonlinearity and non-Gaussianity nature of clutter process 

enables NLP to suppress clutter efficiently.  

Rodriguez et al [48] proposed the GLRT-based adaptive multi-

frame detection scheme for multi-pixel targe detection. 

Authors modelled sea-clutter as the channel encompassing 

Gaussian noise added with the background Gaussian clutter 

with varying covariance matrix. Authors [49] applied spatial-

temporal patches also called frames to obtain the specified 

target appearance that eventually helped in estimating 

background clutter. It encompassed the multi pixel Adaptive 

Subspace Detector (ASD) along with the Adaptive Multipixel 

Background-Plus-Noise Power Change Detector (AMBPNC) 

for multi pixel target detection in sea clutter. Zhao et al [50] 

developed Eigen value-based detection method where Eigen 

values of the covariance matrix were used to calculate the 

correlation amongst the signal retrieved. However, authors 

could not assess their efficacy over varying Doppler 
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characteristics, which is common with target movement 

condition. In addition, clutter was not addressed. Gao et al [51] 

used Multi-Scale Adaptive Gray and Variance Difference 

(MSAGVD) to detect small target in sea-clutter. To alleviate 

the issue of false alarm under dynamic background condition, 

authors [52] used a multi-scale variance difference measures. 

Authors found that their approach with a threshold-adaptive 

segmentation can achieve better performance. Maresca et al 

[53] too made effort to alleviate clutter (sea waves) from who 

Doppler spectrum to enhance ship’s detection accuracy by 

Sky-Wave Over-the-Horizon Radar (OTHR). In [54], Haykin 

et al applied the concept of Time-Frequency Analysis (TFA) 

by performing feature extraction and pattern classification for 

small target detection under dynamic background. For TFA 

authors [55] used Wigner-Ville distribution (WVD) by 

transforming echoes signal into a time-frequency image (time-

varying nature of the received signal's spectral content of the 

iceberg). In addition, Hanning window function was used with 

Fourier transforms to detect moving object in sea- clutter. 

Baggenstoss et al [56] assessed different window sizes and 

their impact on detection accuracy. The use of Guassian noise 

helped detecting pulses of unknown duration, while 

windowing enabled suppressing multiple radio frequency 

interference [57].  

Undeniably, numerous efforts have been made to detect 

moving target in sea clutter amongst then STFT based TFA 

has performed better. However no significant effort has been 

made on optimizing selection of STFT parameters to achieve 

better window analysis which can be significant for time-

series analysis, especially for the small moving target 

detection in sea clutter. Though, above discussed approaches 

intended to achieve better clutter suppression and target 

detection; however majority of the existing approaches either 

focus on clutter suppression or Doppler analysis based target 

detection. On contrary, in contemporary conditions it is 

inevitable to detect moving target irrespective of size while 

assuring optimal clutter suppression, jamming attack-

resilience even with low computational cost and training 

impulses. These gaps and allied scopes have been considered 

as the motive for this research work. 

 

III. RESEARCH QUESTIONS 

Considering overall research intends, scopes and allied prior-

identified solutions, we have framed a few research questions. 

These research questions assess whether the proposed 

methodologies can achieve eventual goal or not. In other 

words, the overall proposed method intends to achieve optimal 

answers for the following research questions.  

 RQ-1Can the use of Space-Time Adaptive Processing 

(STAP) technique with adaptive weight and filter be effective 

to perform small moving target detection under sea clutter and 

jamming threats? 

 RQ-2 Can the use of an enhanced Antenna-Pulse-Pair 

Selection (APS) strategy be effective to reduce or approximate 

the CCM so as to achieve computationally efficient STAP for 

moving target detection in sea-clutter? 

 RQ-3 Can the strategic use of APS followed by SSCC 

with optimal CCM be efficient to suppress clutter subspace, 

noise and jammers to help optimal moving target detection 

under sea clutter? 

 RQ-4 Can the above stated (RQ-1 to RQ-4) methods as 

cumulative solution be effective to perform multiple moving 

target detection under sea-clutter and jamming threats for 

coastal surveillance? 

 

IV. PROBLEM FORMULATION 

The high pace rise in oceanic movement including sea-ways, 

sea-tourism, commercial sea-ways transportation, and more 

importantly the increased probability of smuggling, human 

trafficking and terrorism has alarmed associated stakeholders 

to develop more efficient and robust coastal surveillance 

systems for continuous monitoring and dynamic decision. 

Though, to achieve it numerous radar systems and allied signal 

processing techniques have been developed, the adverse 

coastal conditions such as dynamic wave patterns, non-linear 

sea-surface, clutter etc make major conventional radar systems 

confined. On the other hand, in the last few years intruders 

have been found applying jammer to deviate radar system that 

affects the detection accuracy. The detection becomes more 

challenging in case of small moving targets under clutter and 

jamming attack probability. This as a result can adversely 

affect overall target detection and dynamic decision capability 

for coastal surveillance. Though, few approaches like Doppler 

analysis assisted STFT have been designed for moving target 

detection, their efficacy has remained limited due to 

insufficient training data, varying locations, inappropriate 

clutter suppression, ambiguity between clutter and signal 

information, insufficient azimuth and elevation information 

etc. Considering these all facts, the use of STAP technique can 

be vital. The ability to process both space as well as time 

subspace enables STAP suitable for moving target detection in 

sea-clutter and jamming condition. STAP has been found 

robust to perform clutter suppression as well as jamming 

resilience, which can be of utmost significance for coastal 

surveillance purposes or allied moving small target detection. 

However, the conventional STAP methods require more 

training impulses and optimal antenna-array adjustment to 

achieve clutter suppression and associated target detection. 

Considering it as gap and resulting scope in this research paper 

the focus is made on developing a lightweight and efficient 

STAP model. The proposed adaptive STAP model has been 

designed by incorporating a robust APS model, which intends 

to select or retain significant or optimal Antenna-Pulse Pairs 

for each snapshot or received signal matrix (over M array and 

allied N pulses for each snapshot). The proposed APS model 

has been designed in such manner that it intends to achieve 

higher SCNR by performing or approximating CCM. To 

achieve it, at first SSCC has been obtained which has been 

followed by convex optimization and enhanced correlation 

assessment process, which eventually enables (optimal) clutter 

subspace (Clutter Fourier Basis) separation from target signal 

subspace. Noticeably, in proposed method SSCC intends to 

enhance SCNR output so as to achieve better clutter 

suppression without assuming target signal as clutter subspace 
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components and avoiding jamming affect. It achieves optimal 

moving target detection, which has been justified for its ability 

to detect multiple moving targets detection under sea-clutter, 

noise and jamming conditions.  

In the proposed model both space as well as time subspace has 

been reduced by performing optimal APS provision in each 

time-interval (say, snapshot or patch), which can enable it 

achieving accurate moving target detection. The proposed 

model has been developed as impulse radar setup solution 

where antenna-pulse data has been obtained from participating 

sensors with M antennas and N number of pulses each interval 

or period. Thus, the selected array-pulse pair is applied to 

perform STAP so as to detect multiple moving targets in sea-

clutter. As signal model we consider clutter subspace, jammer 

and target signal subspace, where STAP with SSCC intends to 

separate clutter (nearest Fourier basis) and jamming subspace 

from target signal subspace. This process eventually achieves 

optimal small moving target detection in sea clutter without 

employing large temporal and spatial subspace information. It 

reduces computational overheads significantly thus making it 

more suitable for real time applications. The proposed method 

has been tested with multiple (here 3) moving targets in sea 

clutter environment and performance has been assessed. The 

detailed discussion of the proposed method is given in the sub-

sequent section. A snippet of the proposed space-time 

processor used for moving target detection is given in Fig. 1. 

As depicted in Fig. 1, STP takes Doppler information along 

with the target angle (here, Azimuth information) at the 

receiver. Retrieving per snapshot of information containing 

data signal obtained through M pulses from N array elements, 

it estimates output as 𝑍 = 𝑊𝐻𝑋. Thus, obtaining covariance 

matrix for each patch or snapshot, it assesses whether there is 

target available in each patch or snapshot. The detailed 

discussion of the proposed model is given in the sub-sequent 

section.   

Space-Time Processor: W

Threshold Detection 

Post Detection Processing

E E EP P P T T T... ......

Target Angle and Doppler Frequency

Z=W^HX

X

M=18 Pulse 
N=18 

Elements

T-Pulse Repetition 

Interval

Fig. 1 Classical Space-Time processor used for moving target detection 

 

V. OUR CONTRIBUTION  

Considering the inevitable significance of a robust signal 

processing technique for radar signal detection this research 

primarily emphasizes on designing a novel and enhanced 

model, especially designed for moving object detection in sea 

clutter, which often undergoes significant interferences and 

clutter conditions. In addition, realizing the contemporary 

oceanic threats caused due to malicious intruders and 

respective activities such as jamming this research intends to 

design a robust signal processing technique which could 

achieve optimal object detection even under noise, 

interference, clutter and jamming conditions. Literatures reveal 

that unlike classical Fourier transform based approaches, the 

use of STAP can be of great significance to achieve optimal 

object detection even under aforesaid conditions. With this 

motive, in this paper a novel Adaptive STAP (ASTAP) model 

is developed that focuses on achieving optimal detection, 

clutter suppression and jamming resilience. This as a result 

can achieve optimal performance for real-time coastal 

surveillance using Pulse Doppler Radar (PDR) system. In our 

proposed sea-object detection model, we have obtained spatial 

spectrum correlation coefficient (SSCC) that characterizes the 

disparity between the target and the nearest cluster information 

or Fourier basis, also called clutter subspace. In addition, we 

introduce a novel Antenna Pulse Selection (APS) model that 

gives rise to the space time (spatio-temporal) configuration, 

which eventually enhances signal-to-clutter-noise ratio 

(SCNR) for better detection accuracy. The detailed discussion 

of the proposed model is given in the sub-sequent sections.  

Before discussing the proposed Adaptive STAP based object 

detection under sea clutter and jamming conditions, a snippet 

of the signal model is discussed as follows: 
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A. Signal Model 

In our proposed research a side-looking RADAR system has 

been considered possessing 𝑁  antenna, which are placed 

uniformly placed with 𝑑  as inter-element spacing. Consider 

that 𝑃 be the scatterer patch on the RADAR surface level (say, 

RADAR ground level) possessing relative elevation angle 𝜃 

and azimuth angle ∅ (w.r.t the centre of the array). Let, the 

RADAR antenna be of size (or distance) 𝑛𝑑 for 𝑛 = 0,… ,𝑁 −
1 with reference to the array origin. In such cases, the signal 

retrieved by the antenna from 𝑃 would be typically the phase 

shifted with reference to the origin. The phase shift can be 

obtained using (1). 

𝑛2𝜋𝑓𝑠 = 𝑛
2𝜋

𝜆
𝑑𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃 

(1) 

In (1), the parameter 𝑓𝑠 =
𝑑

𝜆
𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃 ∈ [−1

2⁄   1 2⁄  ] 

signifies the normalized spatial frequency provided 𝑑 =
𝜆

2
, 

where 𝜆 states the wavelength. Now, the spatial steering vector 

is (2).  

𝑎𝑠 = [1, 𝑒𝑗2𝜋𝑓𝑠 , … , 𝑒𝑗(𝑁−1)2𝜋𝑓𝑠]
𝑇
 (2) 

Being a PDR system, we estimate the Doppler frequency by 

performing phase comparison in between the echo signals 

obtained with pulse repetition interval �̃� . Noticeably, the 

retrieved echo signal presents the Transmitted Coherent Pulse 

Train (TCPR) which is reflected back to the antenna for 

further processing. Now, the phase shift introduced by the 

object moving with the velocity of 𝑣𝑝is obtained as (3).  

2𝜋𝑓𝑑 = 2𝜋�̃�
2𝑣𝑝

𝜆
𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃 

(3) 

In (3), 𝑓𝑑 = (2𝑣𝑝
�̃�

𝜆
) 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃 states the normalized Doppler 

frequency (NDF). In such condition, the sequential steering 

vector with M consistent pulses can be obtained using (4).  

𝑎𝑡 = [1, 𝑒𝑗2𝜋𝑓𝑑 , … , 𝑒𝑗(𝑁−1)2𝜋𝑓𝑑]
𝑇
 (4) 

Now, the interleaved Spatio-Temporal steering vector can be 

obtained using (5).  

𝑎(𝜃, ∅) = 𝑎𝑠⨂𝑎𝑡 (5) 

Noticeably, in (5), 𝑎(𝜃, ∅) ∈ ℂ𝑁𝑀×1 . Here, ⨂  states the 

Kronecker product. Consider that with an elevation angle 𝜃, 

the total clutter echo signifies the period during the cumulative 

contributions made from the ground scatterers in ∅ (azimuth). 

Mathematically,  

𝑐(𝜃) = ∫ 𝐴𝐷(𝜃, ∅)𝐺
2𝜋

∅=0

(∅, 𝜃)𝑎(𝜃, ∅)𝑑∅ 
(6) 

In (6), the variable 𝐴 states the reflectivity, which in our case 

is hypothesized to be a circular complex Gaussian variable. 

The other variables 𝐷(𝜃, ∅) and 𝐺(∅, 𝜃)  represents the 

retrieved and the transmitted directivity patterns, 

correspondingly.  

Undeniably, in ASTAP model the pattern and allied trajectory 

information pertaining to the clutter spectrum, especially in the 

angle-Doppler (𝑓𝑠 − 𝑓𝑑) plane can be of utmost significance to 

extract the vital information available on the clutter subspace. 

This in the later phase can be significant to suppress the 

clutter. With this motive, in the proposed PDR model, we 

defined the clutter trajectory as (7).  

𝑓𝑑 = 𝑘𝑓𝑠 (7) 

In fact, considering coastal surveillance condition (for moving 

object or ship detection) above stated trajectory model 

signifies a straight line in the 𝑓𝑑 − 𝑓𝑠 plane. In (7), the variable 

𝑘 signifies the slope with value given in (7). 

𝑘 = (2𝑣𝑝

�̃�

𝑑
) 

(8) 

In the proposed moving object detection model, we consider 

detection as the problem of hypothesis test that assess the 

presence of a potential target in certain received reflection 

patch. The received signal model for a unitary range 

augmentation can be defined as 𝑥 ∈ ℂ𝑁𝑀. With respect to the 

retrieved   𝑥, the null hypothesis 𝐻0 can be defined as (9). 

𝐻0: 𝑥 = 𝑐 + 𝑛 (9) 

Simplifying the model, her onwards we assign 𝑐 rather 𝑐(𝑢). 

In (9), the parameter 𝑛  states the Additive Gaussian White 

Noise (AWGN) having power of 𝜎𝑛
2 . Now, we define the 

alternate hypothesis as (10).  

𝐻1: 𝑥 = 𝛼𝑡 + 𝑐 + 𝑛 (10) 

In (10), the variable 𝛼  states the complex amplitude of the 

moving target signal. The space-time (say, spatio-temporal) 

steering vector of the target signal 𝑡 ∈ ℂ𝑁𝑀×1 has been 

obtained using models derived in (2), (4) and (5) provided 

𝑓𝑠 =
𝑑

𝜆
𝑐𝑜𝑠𝜙𝑡𝑐𝑜𝑠𝜃𝑡and 𝑓𝑑 = 2𝑣𝑡

�̃�

𝜆
 for the sea (moving) target 

with 𝜃𝑡  and 𝜙𝑡 , moving with the radial velocity 𝑣𝑡 . In our 

proposed model, we hypothesize that the comprising elements 

of the received signal 𝑥  at antenna array are autonomous. 

Here, we define a matrix called Clutter-Plus-Noise-Covariance 

Matrix (CCM), 𝑄  as the addition of clutter components and 

noise covariance matrices. Mathematically, it is defined in 

(11). 

𝑄 = 𝐸{𝑥𝑥𝐻} = 𝜎𝑛
2𝐼𝑁𝑀 + 𝑄𝑐 (11) 

In (11), the parameter 𝑄𝑐  signifies the clutter covariance 

matrix, which is always rank-deficient. Employing the 

Brennan’s rule [5] we obtain the rank of the clutter component 

𝑁𝑒 as (12).  

𝑁𝑒 = 𝑖𝑛𝑡{𝑁 + 𝑘(𝑀 − 1)} (12) 

In (12), the component 𝑖𝑛𝑡{ } states the sub-sequent integer 

number (say, nearest integer). Let, the clutter rank be 𝑁𝑒, then 

we obtain the clutter covariance matrix as (13). 

𝑄𝑐 = ∑𝜎𝑖
2

𝑁𝑒

𝑖=1

𝑒𝑖𝑒𝑖
𝐻 = ∑𝑃𝑗𝑣𝑗𝑣𝑗

𝐻

𝑁𝑒

𝑗=1

 

(13) 

In (13), the parameters 𝑒𝑖  states the 𝑖 −th Eigenvector, while 

allied Eigenvalue of  𝑄𝑐  is given by and 𝜎𝑖
2. Here onwards, we 

state 𝑒𝑖, 𝑖 = 1, … , 𝑁𝑒 as “Clutter Eigen Basis (CEB). Now, the 

clutter subspace is retrieved by 𝑁𝑒  Fourier basis vectors 
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𝑣𝑗  , 𝑗 = 1,… , 𝑁𝑒  possessing the power coefficients  𝑃𝑗 . 

Practically, the Fourier basis 𝑣𝑗 possesses the same definition 

as the interleaved Spatio-Temporal steering vector 𝑎, defined 

in (5) under spatial and Doppler frequencies conditions. 

Following aforementioned condition, the two sets of the rank 

𝑁𝑒 basis vectors extents the similar clutter subspace. In other 

words 𝑠𝑝𝑎𝑛(𝑒𝑖 , 𝑖 = 1, … , 𝑁𝑒) = 𝑠𝑝𝑎𝑛(𝑣𝑗  , 𝑗 = 1,… , 𝑁𝑒) . 

Now, the individual Fourier basis vector can be defined as a 

linear combination of eigenbasis. Mathematically,  

𝑣𝑗 = ∑ 𝜇𝑖
𝑗

𝑁𝑒

𝑖=1
𝑒𝑖 

(14) 

In our proposed model, we have applied adaptive matched 

filter (AMF) detector as discussed in [58]. Here, we get (15) 

|𝑣𝐻�̂�−1𝑥|
2

𝑣𝐻�̂�−1𝑣

≤
≥

𝒯 
(15) 

In (15), the variable 𝒯 states the threshold value, while 𝑣 

represents the scanning steering vector over 𝑓𝑑 − 𝑓𝑠 (also 

called the angle-Doppler plane). Here, we calculate 𝑄  using 

the equation (16). 

𝑄 =
1

𝐿
∑𝑥(𝑙)𝑥𝐻(𝑙)

𝐿

𝑙=1

 

(16) 

The above model functions with L  coherent (homogeneous) 

training data, by following the hypothesis defined as  H0 . 

Noticeably, the maximum value of (15) is obtained 

 when v = t.  

In our proposed sea-object detection model, we have obtained 

Spatial Spectrum Correlation Coefficient (SSCC) that 

characterizes the disparity between the target and the nearest 

cluster information or Fourier basis, also called clutter 

subspace. The detailed discussion of the proposed SSCC 

model is given in the sub-sequent section.  

 

B. Spatial Spectrum Correlation Coefficient (SSCC) 

In existing approaches, authors [59] have considered merely 

single interference condition to derive SSCC; however such 

methods can’t be applicable for our considered sea-object 

detection under clutter, as it might undergo multiple 

interference conditions. Therefore, in our proposed model, we 

have employed the concept of clutter subspace to make its 

suitable for multiple interference conditions. The detailed 

discussion is given as follows:   

1. CCM Matrix Vector Estimation  

Considering the already retrieved clutter covariance matrix 

(CCM) in (12), in this work we further obtain the 𝑁𝑒 Fourier 

basis vectors and transform it into equivalent matrix form 

called CCM-Matrix. Mathematically, the matrix vector is (17).   

𝑉𝑐 ∈ ℂ𝑀𝑁×𝑁𝑒  

𝑉𝑐 = [𝑣1, 𝑣2, … , 𝑣𝑁𝑒
] 

(17) 

Now, considering the scatterer patch as the diagonal element, 

i.e., 𝑃 = 𝑑𝑖𝑎𝑔[𝑃1, … , 𝑃𝑁𝑒
], CCM can be redefined as (11). 

𝑄 = 𝜎𝑛
2𝐼𝑁𝑀 + 𝑉𝑐𝑃𝑉𝑐

𝐻 (18) 

Now, implementing the Woodbury Matrix Identity [] to the 

inverse of CCM,  we get (19).  

𝑄−1 =
1

𝜎𝑛
2
(𝐼𝑁𝑀 − 𝑉𝑐(𝜎𝑛

2𝑃−1 + 𝑉𝑐
𝐻𝑉𝑐)

−1𝑉𝑐
𝐻) 

(19) 

Realizing the fact that in coastal surveillance there can be the 

situation where sea clutter might be stronger than the noise 

components (i.e., 𝑃1 > ⋯ > 𝑃𝑁𝑒
≫ 𝜎𝑛

2), redefine (19) as (20). 

𝑄−1 ⋍
1

𝜎𝑛
2
(𝐼𝑁𝑀 − 𝑉𝑐(𝑉𝑐

𝐻𝑉𝑐)
−1𝑉𝑐

𝐻) 
(20) 

Observing (20), it can be found with high clutter-to-noise ratio 

(CNR), inverse CCM 𝑄−1  can approximate the clutter null-

space and therefore the ASTAP weight vector is obtained 

using (21).  

𝑤𝑜𝑝𝑡 = 𝜂𝑄−1𝑡 ⋍
𝜂

𝜎𝑛
2
(𝐼𝑁𝑀 − 𝑉𝑐(𝑉𝑐

𝐻𝑉𝑐)
−1𝑉𝑐

𝐻)𝑡 
(21) 

Factually, it behaves like interference Eigen-canceller [60]. In 

(21), the parameter 𝜂 = (𝑡𝑄−1𝑡)−1/2  is independent of the 

output SCNR or vice versa. Here, we decompose the steering 

vector of the target signal 𝑡  into two distinct perpendicular 

components. These are, the clutter subspace  𝑡𝑐  and the null 

space  𝑡⊥, Noticeably,  

𝑡𝑐 = (𝑉𝑐(𝑉𝑐
𝐻𝑉𝑐)

−1𝑉𝑐
𝐻)𝑡 

 𝑡⊥ = (𝐼𝑁𝑀 − 𝑉𝑐(𝑉𝑐
𝐻𝑉𝑐)

−1𝑉𝑐
𝐻)𝑡 

(22) 

In ASTAP model, the respective weight vector 𝑤𝑜𝑝𝑡  exists 

towards   𝑡⊥ . Now, we derive the SSCC parameter as the 

absolute value of the cosine of the angle between 𝑡 and clutter 

subspace component𝑡𝑐. Mathematically, SSCC is obtained as 

(23). 

|𝛼| = |𝑐𝑜𝑠𝜗| =
𝑡𝐻𝑡𝑐

‖𝑡‖2‖𝑡𝑐‖2

 
(23) 

In our proposed model we limit the length of 𝑡 as ‖𝑡‖2which is 

equivalent to the √𝑀𝑁, providing a condition that the PDR be 

possessing  isotropic antenna elements. Since, the output of the 

signal-to-clutter-noise ratio (SCNR) is always proportional to 

the squared value of the SSCC, in our proposed model we 

replace 𝑡𝑐  in (23) and obtain the output as the squared value 

given in (24). Mathematically,  

|𝛼|2 =
|𝑡𝐻𝑉𝑐(𝑉𝑐

𝐻𝑉𝑐)
−1𝑉𝑐

𝐻𝑡|

𝑀𝑁‖𝑉𝑐(𝑉𝑐
𝐻𝑉𝑐)

−1𝑉𝑐
𝐻𝑡‖2

2 

=
1

𝑀𝑁
𝑡𝐻𝑉𝑐(𝑉𝑐

𝐻𝑉𝑐)
−1𝑉𝑐

𝐻𝑡 

(24) 

Eventually, with (18) and (21), we estimate 𝑆𝐶𝑁𝑅𝑂𝑢𝑡 as (25). 

𝑆𝐶𝑁𝑅𝑂𝑢𝑡 = 𝜎𝑡
2𝑡𝐻𝑄−1𝑡 

⋍
𝜎𝑡

2

𝜎𝑛
2
𝑡𝐻(𝐼𝑁𝑀 − 𝑉𝑐(𝑉𝑐

𝐻𝑉𝑐)
−1𝑉𝑐

𝐻𝑡) 

⋍ 𝑆𝑁𝑅.𝑀𝑁(1 − |𝛼|2) 

(25) 
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In (25), the parameter 𝜎𝑡
2 signifies the signal strength of the 

moving target or the power of the target signal. The respective 

signal to noise ratio SNR is given as 𝑆𝑁𝑅 =
𝜎𝑡

2

𝜎𝑛
2. Observing 

(25), it can be found that the eventual 𝑆𝐶𝑁𝑅𝑂𝑢𝑡 relies on the 

two key factors. First, the degree of freedom or 𝑀𝑁, while 

second factor is |𝛼|2 . In case of MN as fixed value, 

performance can be enhanced by varying the spatio-temporal 

configuration that can reduce the value of SSCC. It signifies 

that SSCC can define the impact of the space-time geometry 

on the adaptive filtering performance. This as a result gives the 

scope to identify optimal metric, which can be achieved by 

means of the optimal antenna-pulse selection provision. The 

detailed discussion of the APS model is given in the next 

section. Before discussing the APS provision, we have derived 

a determinant model so as to assist optimal APS for sea-object 

detection under clutter.  

 

2. Determinant Modelling  

As discussed in the previous section, the matrix–vector model 

obtained in (24) can’t be the optimal one for APS, and 

therefore with this motive, we have formulated a new model 

for SSCC which exploits (24) to obtain the matrix 

determinants. Consider that the clutter cross-correlation matrix 

be 𝐷𝑐 ∈ ℂ𝑁𝑒×𝑁𝑒. Matematically,   

𝐷𝑐 = 𝑉𝑐
𝐻𝑉𝑐 =

[
 
 
 
𝜌11 𝜌12 𝜌1𝑁𝑒

𝜌21 𝜌22 𝜌2𝑁𝑒
⋯

𝜌𝑁𝑒1

⋯
𝜌𝑁𝑒2

⋯ ⋯
𝜌𝑁𝑒𝑁𝑒]

 
 
 

 

(26) 

In (26), the parameter 𝜌11 = 𝑣𝑖
𝐻𝑣𝑗 for 𝑖, 𝑗 =  1, … , 𝑁𝑒.  

Noticeably, the Fourier basis vectors [𝑣�̂�] as defined in (43) 

can’t be universally orthogonal in case of realistic sea clutter 

condition, and therefore there is not need to solve or simplify 

𝐷𝑐  as 𝐼𝑁𝑒
 to achieve generalization. With vector 𝑉𝑡 =

[𝑡, 𝑣1, 𝑣2, … , 𝑣𝑁𝑒
] , the Target Plus Clutter Cross-Correlation 

Matrix (TCCCM) can b obtained as (27), where 𝐷𝑡 ∈

ℂ(𝑁𝑒+1)×(𝑁𝑒+1). 

𝐷𝑡 = 𝑉𝑡𝑉𝑡
𝐻 

𝐷𝑡 = 𝑉𝑡𝑉𝑡
𝐻 = [

𝜌𝑡𝑡 𝜌𝑡1
⋯ 𝜌𝑡𝑁𝑒

𝜌1𝑡 𝜌11
⋯ 𝜌1𝑁𝑒

⋯
𝜌𝑁𝑒𝑡

⋯
𝜌𝑁𝑒1

⋯ ⋯
⋯ 𝜌𝑁𝑒𝑁𝑒

] 

= [
𝑀𝑁 𝑡𝐻𝑉𝑐
𝑉𝑐

𝑇𝑡 𝐷𝑐

] 

(27) 

In equation (27), 𝜌𝑡𝑗 = 𝜌𝑗𝑡
∗ = 𝑡𝐻𝑉𝑗  for 𝑗 = 1,…, 𝑁𝑒  and 𝜌𝑡𝑡 =

𝑡𝐻𝑡 = 𝑀𝑁 , hypothesizing 𝑀𝑁  as the antenna-pulse pairs. 

Now, employing the derived determinant model in (27) we get 

(28).  

|𝐷𝑡| = |𝐷𝑐|(𝑀𝑁 − 𝑡𝐻𝑉𝑐𝐷𝑐
−1𝑉𝑐

𝐻𝑡) (28) 

𝑡𝐻𝑉𝑐𝐷𝑐
−1𝑉𝑐

𝐻𝑡 = 𝑀𝑁 −
|𝐷𝑡|

|𝐷𝑐|
 

(29) 

Now, employing (26) and (29) into (24), the value of SSCC 

can be obtained in the form of the ratio of matrix determinants, 

given in (30).   

|𝛼|2 =
1

𝑀𝑁
𝑡𝐻𝑉𝑐𝐷𝑐

−1𝑉𝑐
𝐻𝑡 = 1 −

|𝐷𝑡|

𝑀𝑁|𝐷𝑐|
 

(30) 

For single interference scenario, 𝑁𝑒 = 1 and hence the CCM 

in (26) and (27) is further derived to 𝐷𝑐 = 𝜌11 = 𝑀𝑁. Thus, 

the TCCCM is obtained as (31). Mathematically,  

𝐷𝑡 = [
𝑀𝑁 𝜌𝑡1

𝜌1𝑡 𝑀𝑁
] 

(31) 

𝑆𝐶𝑁𝑅𝑜𝑢𝑡 ≅ 𝑆𝑁𝑅.𝑀𝑁(1 − |𝛼|2) ⋍ 𝑆𝑁𝑅.
|𝐷𝑡|

|𝐷𝑐|
 

(32) 

Observing (32) and (25), it can be found that the both are 

equivalent; however there exist no distinct linear reliance in 

between the number of selected antenna-pulse pairs and 

eventual performance as depicted in (32). Furthermore, it 

reveals the non-linear relationship between the degree of 

freedom and the eventual output 𝑆𝐶𝑁𝑅𝑜𝑢𝑡. To further enhance 

the clutter suppression for accurate moving object detection, in 

this paper we have introduced a novel APS model that intends 

to optimize or enhance the 𝑆𝐶𝑁𝑅𝑜𝑢𝑡  in (32). The detailed 

discussion of the proposed APS model is given as follows.  

 

3. SSCC assisted Enhanced APS for Sea-Clutter Suppression 

As stated, in our proposed model to achieve better sea-object 

detection we focus on enabling clutter suppression. To achieve 

it, we formulate our model to achieve maximum value for 

𝑆𝐶𝑁𝑅𝑜𝑢𝑡 by introducing APS provision.  

APS can be achieved by means of two distinct methods. These 

are: 

1. Convex Programming  
2. Augmented Correlation Assessment 

A snippet of these methods is given as follows: 

a). Convex Programming  

In this method a binary selection vector 𝑧 ∈ {0,1}𝑀𝑁 is 

introduced where ‘1’ states that the allied antenna-pulse pair is 

selected. On the other hand, the value “0’ signifies that the 

antenna-pulse pair is abandoned. With this condition, we 

obtain the CCMs for the selected sub-array using (33).  

𝐷𝑐(𝑧) = 𝑉𝑐
𝐻𝑑𝑖𝑎𝑔(𝑧)𝑉𝑐 

𝐷𝑡(𝑧) = 𝑉𝑡
𝐻𝑑𝑖𝑎𝑔(𝑧)𝑉𝑡 

(33) 

Noticeably, here we use the two matrices 𝑉𝑐 and 𝑉𝑡, which are 

obtained by means of the equations (17) and (27), respectively. 

𝐷𝑐(𝑧) the one of the CCM doesn’t remain as an identity matrix 

once employing APS selection; though the 𝑁𝑒  clutter basis 

vectors remains orthogonal. Because of this reason we avoided 

simplifying 𝐷𝑐  as 𝐼𝑁𝑒
 in (26). Now, the output 𝑆𝐶𝑁𝑅𝑜𝑢𝑡 of the 

selected configuration is presented as (34). 

𝑆𝐶𝑁𝑅𝑜𝑢𝑡 = 𝑆𝑁𝑅.
|𝐷𝑡(𝑧)|

|𝐷𝑐(𝑧)|
= 𝑆𝑁𝑅.

|𝑉𝑡
𝐻𝑑𝑖𝑎𝑔(𝑧)𝑉𝑡|

|𝑉𝑐
𝐻𝑑𝑖𝑎𝑔(𝑧)𝑉𝑐|

 
(34) 
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As already stated, in our proposed method APS has been 

considered as the problem of enhancing the 𝑆𝐶𝑁𝑅𝑜𝑢𝑡, which 

can be achieved by means of the objective function defined in 

(35).  

𝑚𝑖𝑛
𝑧

|𝐷𝑐(𝑧)|

|𝐷𝑡(𝑧)|
 

s.t. 𝑧 ∈ {0,1}𝑀𝑁 

(35) 

Here, in the proposed convex optimization problem we intend 

to achieve the objective function equal to the 𝑀𝑎𝑥𝑧𝑆𝐶𝑁𝑅𝑜𝑢𝑡. 

It reveals the global minimiser as a vector containing all 1’s, 

provided there is no limit for the number of selected entries. In 

ASTAP based RADAR systems, it is must to match the degree 

of freedom to the training data and therefore in our proposed 

model, we have assigned the total number of selected antenna-

pulse pairs as 𝐾 , where 𝐿  be the total training data. 

Mathematically, 𝐿 = 2𝐾 . Thus, the overall optimization 

problem turns into (36).  

min
𝑧

|𝐷𝑐(𝑧)|

|𝐷𝑡(𝑧)|
 

s.t. 𝑧 ∈ {0,1}𝑀𝑁 

1𝑇𝑧 = 𝐾. 

(36) 

Now, we define 𝑆 = {𝑧: 𝑧 ∈ [0,1]}𝑀𝑁  which embodies the 

extreme points of the polytope defined as 𝐷 = {𝑧: 0 ≼ 𝑧 ≼ 1} 
with 𝑧 ∈ 𝑆  and 𝑧 ∈ 𝐷 . As the components of the objective 

function 𝐷𝑐(𝑧)  and 𝐷𝑡(𝑧)  are non-negative and fixed the 

logarithm function increases monotonically that forces (36) to 

get conserved to the problem defined in (37).  

min
𝑧

𝑙𝑜𝑔(|𝐷𝑐(𝑧)|) − 𝑙𝑜𝑔(|𝐷𝑡(𝑧)|) 

s.t. 1𝑇𝑧 = 𝐾 

𝑧 ∈ 𝐷 

(37) 

The objective function derived in (37) states the disparity in 

between the two concave functions, which can e solved by 

applying certain convex–concave methods that enables the 

function to converge at a fixed point signifying the global 

optimum [61]. In our proposed method we have applied 

convex concave programming concept [62] to perform 

optimization. A snippet of the applied optimization model is 

given as follows. In our proposed model, we define a concave 

function 𝑓(𝑧) = 𝑙𝑜𝑔(|𝐷𝑐(𝑧)|) , which is approximated 

repeatedly by means of corresponding 1st order Taylor 

decomposition. For (𝐾 + 1) th iteration, we get (38). 

Mathematically,  

𝑓(𝑧) ≃ 𝑓(𝑧) = 𝑓(𝑧(𝑘)) + ∇𝑓(𝑧(𝑘))
𝑇
(𝑧 − 𝑧(𝑘)) (38) 

Noticeably, the 𝑗 th entry of ∇𝑓(𝑧(𝑘)) would be (39), where 

𝑡𝑟{. }  employs the trace of the matrix, while 𝑣𝑐,𝑗 ∈ ℂ𝑁1×1 

signifies the 𝑗th raw vector of 𝑣𝑐. 

∇𝑓𝑗(𝑧
(𝑘)) = 𝑡𝑟{𝐷𝑐

−1(𝑧(𝑘))(𝑣𝑐,𝑗𝑣𝑐,𝑗
𝐻 )} (39) 

 Now, replacing the components obtained in (38), (39) 

into (37), while ignoring the constant components, we obtain 

the (𝑘 + 1) th iteration as (40).  

min
𝑧

∇𝑓(𝑧(𝑘))
𝑇

− 𝑙𝑜𝑔(|𝐷𝑡(𝑧)|) 

s.t. 1𝑇𝑧 = 𝐾 

𝑧 ∈ 𝐷 

(40) 

Typically, the global optimum solution of any convex 

programming exists on the edge of the polytope D [63], which 

can be highly sparse and not inevitable to be the binary. In 

addition, it can be slower in nature. To alleviate such issues, 

certain local heuristic models can be applied to obtain the local 

optimum binary solutions. To achieve it, the conventional 

Gaussian randomization model has been modified to achieve a 

binary solution. In this work an arbitrary vector 𝜉 is considered 

which is assumed to have each 

component 𝜉𝑖~𝒩(�̂�, 𝑑𝑖𝑎𝑔(𝜀𝑖)). The average of the �̂� gives the 

optimal solution of (40) and the parameter 𝜀𝑖  states the 

variance of the 𝑖 −th entry 𝜉𝑖 . Retrieving 𝜉, the initial k-largest 

entries can be assigned to 1, while making others as 0 so as to 

generate the feasible points. Furthermore, the sampling can be 

continues in such manner it yields the best objective.  

 

b). Augmented Correlation Assessment 

As discussed in above section, convex concave programming 

needs solving multiple convex optimization problems that 

eventually can impose significantly large computational 

complexity. To alleviate this problem in this paper we have 

proposed an enhanced correlation measurement model using 

recommendation made in [64]. In fact, our proposed 

correlation assessment model behaves as a greedy search 

algorithm which has the well-justified ability to solve 

combinatorial optimization problems. In our considered 

Augmented Correlation Assessment model, at first we 

consider all antenna pulse pairs which is then processed with a 

backward search method that helps discarding the antenna-

pulse pair that results the minimum objective value as defined 

in (36) iteratively for each available antenna-pulse pairs. 

Realizing the sea-clutter condition with multiple targets it 

becomes inevitable to retrieve the sparsest space-time 

configuration. On contrary, as already discussed that 𝑆𝐶𝑁𝑅𝑜𝑢𝑡 

increases monotonically as per increase in the number of 

selected antenna-pulse pairs, the use of our proposed 

augmented correlation assessment can be an effective solution. 

A snippet of the proposed correlation measurement model is 

given as follows: 

Phase-1 Select all antenna-pulse pairs, with 𝑧 = 1 , by 

initialization iteration number k=1. 

Assign 𝛽(1) = [1,… ,𝑀𝑁] 

Phase-2 For each 𝑙 = 1:𝑀𝑁 − 𝑘 + 1 

Assign �̂� = 𝑧 and �̂�(1)(𝑙) = 0, 
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Estimate the value 𝑟(𝑙) =
|𝐷𝑐(�̂�)|

|𝐷𝑡(𝑧)|
 

End  

Phase-3 Estimate the value of 𝑖 = 𝑎𝑟𝑔 min
𝑙=1,…,𝑀𝑁−𝐾+1

𝑟(𝑙) 

Phase-4 Assign 𝑧 (𝛽(1)(𝑙)) = 0, update  

𝛽(𝑘+1) =
𝛽(𝑘)

𝛽(𝑘)(𝑖)
= {𝑛 ∈ 𝛽(𝑘), 𝑛 ≠ 𝛽(𝑘)(𝑖)} 

(41) 

Phase-5 𝑘 = 𝑘 + 1 , if 𝑘 = 𝑀𝑁 − 𝑘 , then stop the process, 

else go back to phase-2. Thus, the stopping criteria considered 

in our method ensures minimization in SCNR output value, 

and hence achieves better detection. Unlike classical methods 

where ASP is done for each of the angle-Doppler bin, the 

correlation analysis model avoids it and ensures 

computationally efficient moving sea-object detection under 

clutter.  In our proposed model, we have applied Eigen basis 

function to characterize the clutter subspace, which given 

better performance than the Fourier analysis methods, which is 

often found suffering due to leakage effect. In this paper we 

perform antenna-pulse selection by performing element-wise 

multiplication. In other words, �̂�𝑗 = 𝑧 ⊙ 𝑣𝑗∈1,2,…,𝑁𝑒
.It states 

that the clutter subspace can be defined as �̂�𝑗 , 𝑗 = 1,2, … , 𝑁𝑒, 

and thus, 𝑉�̂� = [�̂�1, … , �̂�𝑁𝑒
]. Now, replacing the value of (14) 

into �̂�𝑗, we get  

�̂�𝑗 = ∑ 𝜇𝑖
𝑗(𝑧 ⊙ 𝑒𝑖) =

𝑁𝑒

𝑖=1
∑ 𝜇𝑖

𝑗
𝑒�̂�, 𝑗 = 1, … , 𝑁𝑒

𝑁𝑒

𝑖=1
 

(42) 

The selected Eigenbasis �̂�𝑐 = [𝑒�̂�, … , 𝑒𝑁�̂�
] . Thus, 𝑉𝑐  can be 

substituted by 𝐸𝑐  and hence 𝑉𝑐 = [𝐸𝑐 , 𝑡] can be applied to 

perform APS.  Noticeably, the sets of the precise clutter basis 

𝑒𝑖∈1,2,…,𝑁𝑒
 and  𝑣𝑗∈1,2,…,𝑁𝑒

are not known as a prior and therefore 

we have applied Fourier analysis method, which obtains it for 

each cell under test. Mathematically,  

�̂� = 𝑎𝑟𝑔 max
𝑣

|𝑣𝐻𝑥| (43) 

Thus, the power coefficient would be obtained as �̂� = |�̂�𝐻𝑥|2. 

In this model, the steering vector 𝑉 scans overall angle-

Doppler plane, which is often covered by MN resolution grids 

possessing 𝑁  and 𝑀  spatial and Doppler normalized 

frequencies, correspondingly. 

 

VI. RESULTS AND DISCUSSION 

 To assess the efficacy of the proposed system, a 

simulation model for impulse radar system was developed. 

The designed radar system was deployed with multiple arrays 

distributed uniformly. In addition, we considered 𝑀 ×
𝑁configuration where 𝑀  was the number of arrays while 𝑁 

stated the number of pulses and thus for each range the sensor 

obtained 𝑀𝑁 information to be processed for detection. The 

simulation model was designed in such manner that it 

performed detection for each sub-configuration after achieving 

optimization in APS. We considered three different targets for 

which Azimuth and elevation angles, Doppler frequency, 

Spatial Steering Vectors, Doppler Steering Vectors and Space-

Time Steering Vectors were obtained. Noticeably, these 

parameters were measured distinctly for each target. As 

discussed in the previous section, in this paper both clutter as 

well as jamming were taken into consideration for which 

clutter covariance matrix as well as jamming covariance 

matrix are obtained distinctly, which are added with the target 

signal subspace. Thus, with such mixture of the different 

components, our proposed model intends to implement SSCC 

followed by APS to separate clutter Fourier basis and jamming 

subspace from the target signal to perform accurate target 

detection. To perform clutter covariance matrix at first the 

spatial and Doppler Frequencies for k-th clutter patch was 

obtained, which was then followed by normalizing the 

Doppler frequency of the k-th clutter patch. Similarly, Steering 

vector were assigned to the clutter patches. Noticeably, in this 

model steering vectors were assigned to all subspaces 

including spatial steering vector (SSV), temporal steering 

vector (TSV) and space-time steering vector (STSV). 

Noticeably, to generate final clutter covariance matrix of each 

patch or the signal retrieved using Kronecker tensor product 

amongst  𝑆𝑇𝑆𝑉 , STSV transpose and Clutter to Noise Ratio 

(CNR). Similarly, jamming covariance matrix has been 

obtained by processing spatial frequency of the jammer and 

spatial steering vector of that specific jammer for the specific 

azimuth or allied training impulse. Thus, obtaining CCM, 

jamming covariance matrix and target signal a combined 

signal was obtained at the radar sensor, which was further 

processed for SSCC and APS so as to separate target signal 

from the nearest jamming and clutter Fourier basis function. 

Some of the key (simulation) design parameters are given in 

Table 1. 

Table 1. Radar Operating parameters 

Parameters Values 

Radar Operating Frequency 450 MHz 

Peak Transmitter Power  200 kW 

PRF  300 Hz 

Number of pulses per Pulse 

Received Impulse (PRI) or M 

18 

PRI (Hz)  1/300 

Number of Array Antenna N 18 

Speed of light   299792458 m/s. 

Operating wavelength (𝜆) 299792458/Operating 

frequency 

=299792458/4500000000 

=0.06 m 

Inter-element spacing (𝑑) (𝜆/2) 

Noticeably, to generate clutter patch, we considered the 

following key parameters. 
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Table-2. Clutter patch geometry specification 

Parameters Values 

Number of clutter patches uniformly 

distributed in azimuth 

360 

(clutter) range of interest in meters 13000 

Azimuth angle increment in radium 2𝜋
360⁄  

Radar range resolution c/2/B 

Earth radius  6370000 

Effective Earth Radius in meters 4/3*Earth radius  

Grazing angle at the clutter patch in 

radium 

asin(platform 

altitude/ (clutter) 

range of interest) 

Terrain-dependent reflectivity factor 
10(

−3
10

)
 

Depression angle is equal to grazing 

angle for flat earth model 

asin(platform 

altitude/ (clutter) 

range of interest) 

 

As already stated, in the proposed work, three distinct targets 

were deployed to be detected. The target positions and their 

respective relative power (dB) are presented in Fig. 1. The 

relative Doppler Frequencies and corresponding relative power 

can be visualized through Fig. 1. As illustrated in Fig. 1, the 

targets are placed at the Doppler Frequency of 100 Hz, and 50 

Hz, while the azimuth is obtained as 00, -0.50 and 10. It depicts 

that all three targets are located very close to get detected by 

the radar system with low grazing angle. Noticeably, the main 

lobes are at the target positions, while the side-lobe clutters 

have been significantly reduced. Similarly, the other 

interference, noise and jamming components are reduced 

significantly, even below the thermal noise level at the output. 

That makes it efficient in target to clutter separation for better 

detection accuracy. 

The simulation output for the principle cuts at the different 

Azimuth and Doppler frequency is presented in Fig. 2. As 

shown in the simulation output (Fig. 2), the result possesses 

multiple principle cuts, encompassing principle or primary at 

the targets. Noticeably, the side-lobes clutter possesses the 

similar Doppler as the target. On contrary, the secondary cut 

shows Doppler’s response at the target DOA or Azimuth. 

Here, it must be noted that the patterns exhibit the condensed 

side lobe values for both Azimuth as well as Doppler values. It 

exhibits very minute SNR loss. 

 

 

Fig. 1 Target pattern and allied power spectrum 

 

Fig. 3 presents the comparative SINR over TDF. Noticeably, 

unlike Tapered Fully Adaptive STAP model where weight 

vectors are estimated using classical mathematical approach 

for each single target Doppler, our proposed method considers 

total covariance matrix including target signals, clutters, 

jammers and associated noise components, and cumulative 

Space-Time Steering Vector (STSV). It makes computation 

more effective to assist multiple target detection 

simultaneously. 

 

Fig. 2 Depiction of the principle cuts at the different Azimuth 

and Doppler frequency 
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Fig. 3 Depiction of the comparative SINR variation over 

Targets Doppler Frequency (TDF) (received at the radar 

sensor) 

 

Additionally, the proposed method achieves optimal SINR 

performance (curve) as compared to classical Adaptive STAP 

methods (here, called Tapered Fully Adaptive STAP). Fig. 4 

presents SINR losses over varying TDF values for efficient 

multiple target detection under clutter. Simulation result (Fig. 

4) reveals that the Fully Adaptive STAP model undergoes 

SINR losses at Doppler space, which is probable especially at 

0 dB. As depicted the classical Fully Adapted STAP 

undergoes SINR losses, especially under straddling losses. On 

contrary, the employed filter design in the proposed method 

reduces SINR losses even under straddling losses, which is 

common in case of sea-clutter and even airborne conditions. 

Fig. 6 depicts the SINR enhancement by our proposed moving 

target detection system. To assess SINR enhancement using 

proposed model, we derived a parameter named SINR 

Improvement Factor (SIF). Noticeably, we measured SIF as 

the ratio of the SINR obtained by proposed model to the Input 

Interference-to-Noise-Ratio on a single element for a single 

pulse. Noticeably, here for simulation we used input 

interference-to-noise ratio as 48 dB, while CNR was 

maintained at 38 dB and associated jamming –to-noise ratio 

(JMR) was considered 38 dB for each target. 

We estimated SIF with Elevation and Azimuth angle of 00. 

The simulation result (Fig. 6) depicts that the proposed model 

achieves higher SINR of 76 dB which is more than the tapered 

Fully Adaptive STAP. It exhibits that the proposed model can 

be more effective to detect any moving target under sea clutter 

condition, by enabling optimal clutter separation and jamming 

resilience.  

 

 

Fig. 4 Depiction of the comparative SINR losses over TDF 

(received at the radar sensor) 

 

 

Fig. 5 Depiction of the comparative SINR performance over 

TDF (under clutter and Doppler straddling losses) 

 

 

Fig. 6 Depiction of the SINR Improvement Factor (SIF) over 

TDF 
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VII. CONCLUSION 

Considering the significance of a robust and efficient moving 

target detection model under sea-clutter, in this research the 

focus was made on exploiting efficacy of space time adaptive 

processing (STAP) method and impulse radar technologies. 

However, realizing the fact that the conventional STAP 

method requires high space as well as temporal subspace 

(impulse) information also called training impulse to perform 

detection, in this research at first effort was made on reducing 

time-space subspace dimension. To achieve it, at first spatial 

spectrum correlation coefficient (SSCC) estimation was 

performed that enabled an optimal Array-Pulse Pair Selection 

(APS). Consequently, it resulted into low dimensional array-

impulse requirements to perform further clutter suppression 

and the target detection. Such value additions enabled 

proposed method to achieve time-efficient multiple targets 

detection under sea-clutter and jamming probability. 

Noticeably, this research employed convex optimization 

concept along with an enhanced clutter covariance matrix 

information which enabled target detection more efficiently. 

The use of SSCC enhanced Signal-to-Clutter-Noise Ratio 

(SCNR) output which eventually strengthened clutter 

suppression and hence more effective target detection under 

clutter and jamming conditions. The proposed moving 

(oceanic) small target detection model can be well suited for 

pulse radar system with strategically defined sensors or 

receiving arrays. The inclusion of SSCC assisted ASP 

followed by clutter suppression and, noise and jamming 

resilience ability make proposed model suitable for real-time 

coastal surveillance where radar has to deal with 

heterogeneous clutter conditions. The MATLAB based 

simulation has affirmed robustness of the proposed system 

towards multiple moving target detection in sea-clutter 

environment.    
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