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Abstract  

The efficient (m, 3)-adder circuits (4  m  7) are presented in 

this paper. An (m, 3)-adder adds m bits of the same weight 

simultaneously and produces 3 outputs: S, C1, C2 such that the 

binary number (C2 C1 S) represents the number of 1s in the m 

bits. The (m, 3)-adders are designed to implement a high 

performance (7, 3)-adder based multiplier. Using (7, 3)-adders, 

a multiplier can reduce partial products in fewer number of 

stages than using (3, 2)-adders. The new (m, 3)-adders are faster, 

smaller, and consume less power than the existing (m, 3)-adder 

circuits. A 64-bit radix-4 Booth multiplier is designed with the 

new (m, 3)-adders to estimate the efficiency of the (m, 3)-adders. 

The multiplier reduces 33 partial products into two 128-bit 

binary numbers in three (7, 3)-adder-stages and one (3, 2)-

adder-stage while the Wallace-tree requires eight stages. In 

addition, the number of (m, 3)-adders used in the reduction 

stages is about 1/3 that of (3, 2)-adders used in the Wallace-tree 

multiplier. Although the (7, 3)-adder has delay 1.7 times larger 

and consumes power 1.3 times more than a (3, 2)-adder, 

reduction of the partial products with the (7, 3)-adders is about 

24% faster and consumes power  50% less than reducing by the 

(3, 2)-adders. Through the design of a 64-bit radix-4 Booth 

multiplier with the new (m, 3)-adders, it is verified that a fast 

and low-power multiplier can be designed with the efficient (7, 

3)-adder. 

Keywords: High-Speed multiplier, (7, 3)-adder, Multiplier 

design, Wallace-tree multiplier, (m, 3)-adder circuit.  

 

I. INTRODUCTION  

Binary multiplier is a widely used building block in the design 

of microprocessors, digital signal processors, and graphic 

processors so that it is one of the key hardware in most digital 

signal processing systems.  Therefore, various studies have 

been conducted to implement a high speed multiplier [1]-[6].  

The operation of N-bit multipliers consists of three main steps: 

1) generation of partial products; 2) reduction of the partial 

products to obtain two 2N-bit binary numbers; 3) carry-

propagate addition of the two numbers to obtain the final result. 

Usually, the step-3 is not a big concern in multiplier design 

because it can be solved by using today’s highly energy-delay 

optimized carry propagation adders (CPA). Therefore, most 

research on the multiplier design is focused on the step-1 and 

the step-2.   

The generation scheme employed in step-1 determines the 

number of partial products. Since the number of partial 

products affects delay, power, and size of multipliers, most of 

studies try to reduce the number of partial products.  

The radix-r (r =2k) modified Booth encoding [4][5] is widely 

used to reduce the number of partial products. While ordinary 

NN multipliers generate N partial products, the radix-r 

modified Booth multipliers generate ⌈(𝑁 + 1)/𝑘⌉  partial 

products. Radix-4 modified Booth is the most widely used 

Booth encoding scheme since it can reduce half of the partial 

products with little overhead for encoding. Higher radix Booth 

encoding is less popular because generation of partial products 

requires odd multiples of the multiplicand which requires 

carry-propagation additions. Although the requirement of 

CPAs increases delay of the multiplier, higher radix such as 

radix-8 [7][8] or radix-16 [9] Booth multiplier is used for the 

purpose of speed-power optimization.  

When the number of partial products is determined, the next 

issue is how to add all the partial products to get the result. 

Generally, summation of partial products is reduced to a carry-

propagation addition of two binary numbers through the 

reduction step. Wallace-tree [2] is a widely used reduction 

scheme. Although many reduction schemes are developed so 

far, most of multipliers use a (3, 2)-adder, usually called full-

adder, as the basic unit for addition. Some wide-input adders, 

called adder compressor [10], are used for multiplier design, 

but the structure of most adder compressors is basically 

cascades of (3, 2)-adders.  

Recently, the (7, 3)-adder based multiplier design is proposed 

[11].  An (m, 3)-adder (4  m  7) adds m bits of the same 

weight simultaneously and produces 3 outputs: S (sum), C1 

(carry-1), and C2 (carry-2).  S has the same weight with the 

inputs while the weights of C1 and C2 are 2 and 4 times greater 

than the weight of inputs respectively.  A (7, 3)-adder based 

multiplier uses a (7, 3)-adder as the basic unit for the reduction 

step, and other (m, 3)-adders, (3, 2)-adder and (2, 2)-adder, as 

auxiliary units. While a stage with (3, 2)-adders reduces 1/3 of 

bits, a stage with (7, 3)-adders can reduce 4/7 of bits so that the 

partial products are reduced into two binary numbers with 

much fewer stages.  
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Fig. 1. Critical path for the reduction step of a 64-bit radix-4 

unsigned Booth multiplier with Wallace-tree structure. 

 

One of the main problems of the (7, 3)-adder based multiplier 

is the complexity of (m, 3)-adder circuits. A set of (m, 3)-adders 

are presented in [11], and it is shown that the multiplier built 

with those adders can faster than the (3, 2)-adders based 

multiplier. However those (m, 3)-adders are bulky so that the 

size and the power consumption of the multiplier become much 

larger than that.  

In this paper, new (m, 3)-adder (4  m  7) circuits are presented. 

The new (m, 3)-adders are smaller, faster, and consume less 

power than the (m, 3)-adders in [11]. A 64-bit radix-4 Booth 

multiplier is designed to verify their efficiency.  The multiplier 

built with the new (m, 3)-adders is faster and consumes less 

power than the (3, 2)-adder based multiplier.  

In Section II, the advantages and disadvantages of the (7, 3)-

adder based multiplier are compared with high radix Booth 

multipliers. The newly designed (m, 3)-adder circuits are 

described in Section III. Simulations results for the circuits are 

presented in Section IV, and Section V concludes this paper. 

 

II. THE (7, 3)-ADDER BASED MULTIPLIER vs. THE 

BOOTH MULTIPLIER 

Recently the (7, 3)-adder based multiplier is suggested as an 

alternative to the (3, 2)-adder based multipliers. The main 

advantage of using (7, 3)-adders is that it can reduce the partial 

products more rapidly than the (3, 2)-adder. In the reduction 

step, one stage with (3, 2)-adder reduces 1/3 of the number of 

bits in the same digit while a stage with (7, 3)-adders can reduce 

4/7 of them, therefore, the reduction rate of (7, 3)-adder is about 

double the (3, 2)-adder’s. The critical path of the reduction step 

for the 64-bit radix-4 Booth unsigned multiplier employing the 

Wallace tree and a (7, 3)-adder based tree are shown in Fig. 1 

and Fig. 2 respectively. As we can see in Fig. 1 and Fig. 2, 33 

partial products can be reduced by three (7, 3)-adder stages and 

 

Fig. 2. Critical path for the reduction step of a 64-bit radix-4 

unsigned Booth multiplier with (7, 3)-adder based structure. 

 

 one (3, 2)-adder stage while 8 stages are required when only 

(3, 2)-adders are used.  

As in Fig. 2, the number of bits in a digit is reduced by half with 

one stage of (7, 3)-adders, of which the effect is the same as 

quadrupling the radix of Booth multiplier. Therefore, inserting 

one (7, 3)-adder stage results in almost the same effect of 

employing 4 times higher radix Booth algorithm. This property 

can be used for the speed-power or the speed-size optimization 

in (7, 3)-adder based Booth multiplier design. The delay and 

complexity of the circuit for generating partial products 

increase rapidly along the radix of the Booth algorithm. The 

speed-size optimized multiplier can be designed by comparing 

the delay and hardware overheads for a stage of (7, 3)-adder  to 

those in quadrupling the radix of a Booth multiplier.  

Radix-4 Booth multiplier is the most effective because it 

removes a stage of (7, 3)-adders with little overhead in delay 

and hardware. A radix-16 Booth multiplier requires to produce 

3, 5 and 7 multiples of the multiplicand which requires 

carry propagation adders (CPAs). Since the speed of a (7, 3)-

adder is much faster than that of the CPA, a radix-16 Booth 

multiplier is slower than a (7, 3)-adder based radix-4 Booth 

multiplier. Therefore, the (7, 3)-adder based radix-4 Booth 

multiplier is the best option for the speed-oriented multiplier 

design. 

 

III. DESIGN OF A 64-BIT RADIX-4 BOOTH 

MULTIPLIER WITH EFFICIENT (m, 3)-ADDER 

CIRCUITS  

The most critical part in the (7, 3)-adder based multiplier is the 

design of efficient (m, 3)-adders. Because the delay, power, and 

size of an adder increase rapidly with the number of inputs and 

most of the adders used in (7, 3)-adder based multipliers are the 
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Fig. 3.  Circuit diagram of the new (m, 3)-adders. (a) Common structure of the (m, 3)-adder circuit. (b) The Early-Signal Follower 

(ESF) circuit. (c) The tree circuit of (4, 3)-adder. (d) The tree circuit of (5, 3)-adder. (e) The tree circuit of (6, 3)-adder. (f) The tree 

circuit of (7, 3)-adder. 
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Table 1. Comparison of the number of components used to 

build a radix-4 64-bit unsigned number Booth multiplier 

with Wallace-tree and (7, 3)-adder based design 

    Wallace-Tree (7, 3) based 

# of adders 

(2, 2) 67 26 

(3 ,2) 2021 218 

(4, 3) - 95 

(5 ,3) - 100 

(6, 3) - 102 

(7, 3) - 378 

CPA 119-bit 120-bit 

# of stages 

(7, 3)   3 

(3 ,2) 8 1 

CPA 1 1 

 

(7, 3)-adder, the design of the (7, 3)-adder determines the speed, 

power, and size of the multiplier.  

It is natural that a (7, 3)-adder is slower, larger, and consumes 

more power than a (3, 2)-adder. However, the number of (7, 3)-

adders used to build a multiplier is much less than the number 

of (3, 2)-adders in a Wallace-tree multiplier, so that a (7, 3)-

adder based multiplier could be faster, smaller, and lower 

power than a (3, 2)-adder based multiplier.  

The possibility of a faster (7, 3)-adder based multiplier is 

verified   in [11]. However the (7, 3)-adder presented in  [11] is 

bulky and consumes large power so that  the multiplier built 

with the adders is bigger and consumes more power than the 

Wallace multiplier, though the number of (7,3)-adders in the 

multiplier is 1/4 the number of (3, 2)-adders required to build a 

Wallace multiplier.  

A lower-power, smaller, and faster (m, 3)-adder than the (m, 3)-

adders in [11]  is designed. The newly designed (m, 3)-adders 

are drawn in Fig. 3. The basic structure for the new (m, 3)-

adders is a binary tree made with simple NMOS multiplexers. 

The 0 signal at the vertex of the tree propagates to a leaf of the 

tree according to the inputs. The position of a leaf stands for the 

number of 1’s in the inputs. A problem of this structure is that 

propagation speeds of the 0-signal and the 1-signal differ by the 

property of NMOS transistor which results in the difference in 

the rising delay and the falling delay at the leaves. The 

difference increases rapidly along the number of inputs. To 

solve this problem, the newly designed (m, 3)-adder circuits 

employ a dual tree structure. The one tree is used to increase 

the falling speed while the other tree is to boost the rising speed. 

A 64-bit radix-4 Booth multiplier is designed by using the new 

(m, 3)-adders. The radix-4 Booth multiplier is chosen because 

it can reduce 1/2 of the number of partial products with little 

overhead in speed and hardware. The components required to 

build a 64-bit radix-4 Booth multiplier with the Wallace-tree 

structure and with the (7, 3)-adder based tree structure is given 

in Table 1. Only a half number of reduction stages is required  

 

Table 2. Comparison of (m, 3)-adder circuits  

      (m, 3)-adder 

  (3, 2) (4, 3) (5, 3) (6, 3) (7, 3) 

  Ref. 26 -  -  -  -  

# of  Tr. In [11]  -  54 82 154 216 

 New  -  116 138 163 188 

Delay 

(ps) 

Ref. 280 -  -  -  -  

In [11]   -  315 381 422 528 

New  -  335 373 405 477 

Power  

(W)  

Ref. 107     

In [11]  - 130 343 297 826 

New  -  105 109 116 140 

* Power is measure at 100 MHz frequency. 

 

for the (7, 3)-adder based multiplier, and the number of (m, 3)-

adders is about 1/3 of the number of (3, 2) adders in the 

Wallace-tree multiplier. These ratios can be the guideline for 

the (m, 3)-adder design. The delay of a (7, 3)-adder should be 

less than twice of a (3, 2)-adder’s, and its power and size are 

less than triple of the (3, 2)-adder’s.  

After the reduction step, the two 128-bit binary numbers should 

be added by a CPA to obtain the final result. Among 128 bits, 

some bits in the lowest digits can be obtained during the 

reduction steps. The Wallace tree multiplier can reach at the 

final value up to the 9 lowest digits (two digits in the first stage 

and one digit per stage in the other stages). While one digit can 

reach the final value in a (3, 2)-adder stage, two digits per one 

(7, 3)-adder stage are possible to get the final values, because 

the carry propagation addition of (2, 2) - (3, 2) or (2, 2) - (4, 3) 

adders can be done in the delay of a (7, 3)-adder stage.  

 

IV. EXPERIMENTS  

The characteristics of newly designed (m, 3)-adders are 

estimated by simulations and they are compared with those of 

the existing (m, 3)-adder circuits in [11]. The simulation is 

performed by HSPICE with 1.2V-0.13m model parameter. 

Comparisons of the newly designed circuits and the circuits in 

[11] are summarized in Table 2. The delay of an adder is 

measured by cascading ten identical adders (fanout=1). The 

delays and power of the circuits are measured for various 

combination of input changes.  The delay and power are taken 

as the worst case values in the simulations. 

It can be  found in Table 2 that the newly designed (m, 3)-adder 

circuits are smaller, faster and consume less power than the 

adders in [11]. Although (4, 3)-adder in [11] is smaller and 

faster than the new (4, 3)-adder, the number of (4, 3)-adder is 

only 14 % of the number of all (m, 3)-adders and the delay of 

(4, 3)-adder is not important since the speed of a multiplier is 

determined by the delay of the (7, 3)-adder. Therefore the 

characteristics of the (7, 3)-adder are the most critical features.  
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Fig. 4.  A circuit of the reference (3, 2)-adder (full-adder) 

 

Although the number of transistors in the new (6, 3) and (7, 3)-

adder is comparable to that in [11], the size of these new adders 

is smaller than that in [11] due to the difference in the transistor 

sizes. While the (6, 3) and (7, 3)-adders in [11] are needed to 

use large size transistors to reduces their delay, the size of 

NMOS used in the new adders is just 1.5 times of the minimum 

size transistor.  

Although the size of the (7, 3)-adder based multiplier with the 

new (m, 3)-adders is smaller than the multiplier with the adders 

in [11], it is still bigger than the (3, 2)-adder based multipliers. 

Compared to the reference (3, 2)-adder [12] as in Fig. 4, about 

7 times more transistors are used to build a (7, 3)-adder circuit. 

Although the number of (m, 3)-adders needs to build the 

multiplier is about 1/3 of the number of (3, 2)-adders in the 

Wallace-multiplier, it cannot avoid increasing the size of 

multiplier due to the large discrepancy of the transistor count.   

Despite of the disadvantage in the multiplier size, the (7, 3)-

adder based multiplier with the new circuits has advantages in 

speed and power. Compared with the (3, 2)-adder, the delay of 

the new (7, 3)-adder is 1.7 times larger than that of the (3, 2)-

adder. Although the delay of a stage is increases 70%, its effect 

is overwhelmed by the reduced number of stages. As the result, 

the reduction process becomes 22% faster by using the new (7, 

3)-adder circuits.. Furthermore, the power of the (7, 3)-adder is 

1.3 times larger than that of the (3, 2)-adder. Since the number 

of (m, 3)-adders used in the (7, 3)-adder based 64-bit radix-4 

Booth multiplier is about 1/3 of the number of (3, 2)-adders in 

the Wallace multiplier, a (7, 3)-adder based multiplier with the 

new (m, 3)-circuits can greatly reduce the power of the 

multiplier. Considering the numbers in Table 1, using the new 

(m, 3)-adders saves about 50% of the power consumed in the 

eight (3, 2)-adder reduction stages. 

Consequently, the (m,3)-adder circuits presented in this paper 

are very efficient in reducing the power and the delay of 

multipliers.   

 

V. CONCLUSION  

A set of (m, 3)-adder circuits are presented in this paper. The 

newly designed (m, 3)-adders are smaller, faster, and consume 

less power than existing (m, 3)-adder circuits. The (m, 3)-

adders are useful in the reduction step of a multiplier which 

reduces the summation of many partial products into an 

addition of two binary numbers.  A 64-bit radix-4 Booth 

multiplier is designed by employing (7, 3)-adder based design 

and it is compared with the (3, 2)-adder based Wallace 

multiplier. By the new (m, 3)-adders, the (7, 3)-adder based 

design performs the reduction step 24% faster with 50% less 

power than the Wallace tree implementation. However, the size 

of the (7, 3)-adder is much bigger than a (3, 2)-adder so that the 

(7, 3)-based multiplier is larger than Wallace multipliers.  

Through the design of a 64-bit radix-4 Booth multiplier with 

the newly designed (m, 3)-adders, we show that the (7, 3)-adder 

based multiplier can be faster and consume less power than (3, 

2)-adder based multipliers.  
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