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Abstract: 

Mountain ranges are affected not only by physical and chemical 

processes but also by tectonic forces. This results in rock 

discontinuity, including the appearance of various small cracks 

and fissures that grow into large fault lines. The mechanical and 

mathematical models typically consider small fissures as 

parallel and periodic (or doubly periodic) and take into account 

their effect on the physical-mechanical properties of the mass. 

Local fissures are assessed using several parameters, and their 

length and depth can stretch for many kilometers, potentially 

breaking the Earth’s surface. Geologic fissures are measured on 

a global scale and, riving the whole layer of the lithosphere; 

they reach the Earth’s mantle. Some aspects of the stability of 

underground workings in difficult mountain ranges remain 

unexplored or require more comprehensive study. These 

include regularities of stress concentrations around the 

boarding gate, cross-drift, and cut-offs, which we address here 

using new mechanical models that also take into account the 

properties of the isotropic, transverse, and inclined anisotropic 

layers. However, in nature, mountain ranges are composed of 

multiple layers. Therefore, stress concentrations can appear at 

the boundaries of heterogeneous layers or in the vicinity of 

tectonic fissures and fault lines, even before conducting 

underground work. The interactions between these layers and 

stress concentration succoring around mine workings require 

further research. 

Keywords - Complex Fault Line, Plane, Generalized-Plane, 

Volumetric Settings, Stress Concentrations. 

 

I. INTRODUCTION 

The pressure forces above mine working sarising from the 

geostatic field in the layers up to the Earth’s surface have only 

been addressed using Dinnik’s hypothesis [1]. Since tectonic 

forces are changing slowly over geological time and resources 

are limited, studies often fail to account for their effect. Data 

from multipled eposits Khibiny in Europe, and Bayzhan say 

and Myrgalym say in Asia shows that the values and directions 

of tectonic forces measured at different depths are not subject 

to the linear laws, as proposed in Dinnik’s hypothesis [1]. Thus, 

it can be concluded that the initial mechanical stress state of the 

integral mass will be diverse at different depths under the action 

of tectonic forces. Therefore, the regularities of the stress 

concentration distribution in the vicinity of mine workings 

occurring under its effect will be distinct (both in value and 

direction) from the established regularities only under the 

geostatic field effect. The study of such issues is further 

complicated by the influence of man-made explosions or 

moderate earth quakes. By ignoring such factors, the forecast 

of critical stresses around mine working might be erroneous. 

Also, adiabatic processes of sudden gas outbursts in the 

deposits, which consistently result in the loss of human life, 

arise from large stress concentrations. 

Addressing the anisotropic mass’s elasticity theory, the work of 

multiple authors over many decades has demonstrated that the 

elasticity properties of samples differ across various directions 

[2-4]. A sample’s elasticity can be defined by the pressure on 

the sample’s layers by parallel or perpendicular forces; 

however, this approach is limited to the qualitative aspect. To 

define the degree of anisotropic elasticity for plane problems, 

Lekhnitskiy proposed a method of defining parameters of 

anisotropy strength. 

Defining the stability of underground structures depends upon 

finding stress-deformed conditions around it. Fotiyeva, 

Bulychev, Firsаnоv, Dееv [5] and others made progress in 

understanding the plane stability of underground structures, 

whereas the Kazakh scientific school under the guidance of 

Aytaliyev [6], Masanov [7] and Baymakhan [8], principally 

addressed the plane, generalized-plane, and spatial stability of 

some types of workings of the anisotropic mass, such as 

boarding gates, cut-offs, and cross-drifts, widely spread in 

mining and ore deposits. In recent years, much attention has 

also been paid to the dynamical stability of underground 

structures, mechanisms of the mass’s destruction in its vicinity, 

and accounting for the effect of gravitation and tectonic forces. 

Currently, there is a need to investigate the stability of 

underground workings in the vicinity of various geologic 

fissures. 

When FEMs (finite element methods) are used, the main tasks 

are to choose the boundaries of the investigated computational 

region and to define the accuracy of the calculations. There is 

no available computational method that can be applied to 

investigations of the working’s stability on the geostatic field 

located around the geologic fault. To do this, it is necessary to 

define how the lengths of three parameters (OX, OY, and OZ) 

can be set and to substantiate their accuracy. Here, the accuracy 

of the calculations is confirmed by the condition of equality of 

the vertical stress component around the fault and the geostatic 

field stress H on removal from it. The unknown quantity is 

defined by multivariate numerical calculations with the purpose 

of selecting different geometric parameters for components of 
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the three-dimensional field. The general plan of the new 

computational region is shown in Fig. 1.  

 

Fig. 1. Underground workings around a geologic fault in an 

inclined transversely isotropic mass in the case of gravity. (a) 

Boarding gate; (b)cross-drift; (c) inclined working; and(d) 

uneven relief of the Earth’s surface. 

Here, a is the boarding gate and b is the cross-drift. The cut-off 

not shown in the Fig. is between these two sections (i.e.,
0900  ). Carrying out digs is shown in the Fig., where 

c is the inclined working in the inclined transversely isotropic 

mass, and d is the relief roughness (i.e., mountain peaks). The 

given computational region closely characterizes the mines of 

Kadamzhay, Tekeli, and Khaidarkent, where underground 

studies have measured geostatic and tectonic forces [9]. As 

each separate mine is characterized by a wide diversity of large 

and local geologic faults of the mass, filled with coarse clastic 

and sedimentary materials, to get a general picture, we 

identified that mine workings were located in two directions. 

We shall further calculate the mechanic-mathematical model 

for the field of finite elements in the half-space, as represented 

in Fig. 2. 

 

Fig. 2. The computational region of interest, including the 

mine working 

Here, height (H) defines the depth from the Earth’s surface, and

0H means the Earth’s surface. The task consists in pointing 

lengths to the sides H , L  and N . If for some chosen depth of 

the working in the half-space small length values are set, then 

solving the system of finite elements equations (by the 

definition of displacement, deformation, and stress 

components) might lead to incorrect solutions. However, even 

when larger values are set, thesolution might still be erroneous. 

Therefore, the setting of these parameters should be clearly 

substantiated. For example, it has been shown that, for the 

finite-element model, the working in the unbroken mass 

without taking into account the weight of boundaries should be 

set as the ratio rHL 3 . Here r  is the radius of the 

working’s arch. However, for substantiation of boundaries in 

the working’s computational region under the influence of 

gravity and tectonic forces, this condition does not work. The 

value of the stress component
z , calculated from the region 

of stress concentrations around the mine working, will not be 

equal to the value H  of Dinnik’s hypothesis [1]. First, 

computer-based numerical calculations have been used to 

define the ratio of H  and L  for the plane case. Based on 

experimental calculations for cases with and without mine 

workings, the following condition for defining ratios was 

obtained: 

rL 600 , 



L
H 

, (1) 

2

H
h 

, 

LN  , 

3.22.2   , 1r  

Only such a selection of boundaries of the computational region 

helps obtain the value of the vertical stress component equal to 

H  for zones out of stress concentrations. 

The calculation models thus far proposed are insufficient for 

investigating the stability of the geostatic field of underground 

workings near the geologic fault in the half-space. The 

accuracy of the given model is confirmed by the equality of the 

horizontal stress component 
Z to the geostatic field stress H  

in the unbroken mass at depth H  for any zone far from the 

geologic fault and mine working. The methods used to test the 

accuracy of the solved task are shownin Fig. 3.  

Fig. 3. The fragment of discretization by finite elements of the 

mass, including amine working and a geologic fault 

Here, the depth H equals 300 m, and the mass’s volumetric 

weight is
3/0025.0 mMH

, so that
MPaH 75

. 

HZ   is required for the calculation to be considered 

accurate. By the results of the calculations

MPaZ )6.742.74(   for zones with a distance of (8–

10) r  from the working’s arch in the transverse direction and 

farther. Above the working’s arch, at its foundation, and in the 
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points on the surface MPaZ )01.0002.0(   or 0.2–

1%. Moreover, in other points of the working’s contour, the 

greatest inaccuracy is 3–5%. 

As can be seen from Fig. 3, in conditions of weightlessness, the 

substantiation of boundaries of the computational region with 

mine workings cut out from infinity under the condition 

rHL 3  is different from our condition. According to our 

condition, when 0r (i.e., under the absence of mine 

workings)the boundary conditions are defined as HL  . The 

spatial task requires the third component to be LN  .Under 

the absence of mine workings, L is any number,


L
H  , and in 

the context of the model with mine workings


L
H   but

rL 600 , and the depth is
2

H
h  . 

 

II. MATERIAL AND METHODS 

II.I General Part 

Here we use the FEM to solve three-dimensional tasks [10]. For 

the computational region, we developed a FEM-based system 

of algebraic equations, as follows:  

         PTHUK   ,  (2) 

where  K is the stiffness matrix,  U is the displacement 

vector,  H is the vector of geostatic forces, increasing 

proportionally to depth Н,  T is the vector of tectonic forces, 

and P is the vector of relief (mountain slopes) gravity. At 

generalized-plane deformation, the measurement of the 

stiffness matrix and all vectors is equal to 3 × n. Here n is the 

number of nodal points of the region, modeled by finite 

elements. There are three stress components and three 

deformation components in the plane task, zxzx  ,, and

zxzx  ,, respectively, as well as six in the spatial task

xyzxyzzyx  ,,,,, , xyzxyzzyx  ,,,,, and 

five in the generalized-plane task xyzxyzzx  ,,,, , 

xyzxyzzx  ,,,, . In all three cases, the values of 

isoperimetric elements are defined by the internal points of 

integration of every element. If the finite element dimension is 

relatively small, the mean values of stress components at those 

points are used, and when the sizes of elements are larger, the 

values of integral points are used. The displacement 

components wu ,, are calculated for general vertices of 

elements. 

Now we shall set the boundary conditions for the spatial 

computational region of Fig. 1. The displacement components 

were located along the OY axis: on the ABCD plane 0V ; 

on the EFGH plane 0V ;along the OZ axis: on the AEHD 

plane 0U ;on the BFGC plane 0U ; the foundation on 

DHGC 0W ; and the Earth’s surface AEFB  

0,0  nn  .    (3) 

For solving the system of algebraic equations (2) by the defined 

boundary conditions, we used an iteration method. The 

iteration method was divided into Jacobi, Seidel, Richardson, 

and successive over-relaxation types. The most accurate and 

reliable method is the Gauss-Seidel method, using the Young’s 

coefficient [11, 12]. 

For the n  of the nodal points of the spatial task, a system of 

equations with dimensions of nxn 33  is formed. A peculiarity 

of the FEM is that the dimension of the stiffness matrix does 

not exceed (2) for the hexahedral element 45, and for the 

element in the form of a volumetric prism of the second order 

81, as every point is only connected to closely located points. 

Proceeding from the above boundary conditions, the 

displacements at the point of p*3 equal zero and cannot be 

included in the system. Thus, the number of equations will be 

reduced from nxn 33
 
to mxpn *3)(*3  . Each point in the 

elastic spatial mass, in conjunction with the points located in 

the immediate neighborhood, forms a set of spatial "stars", each 

of which has m points. As for the system of equations (2) with 

dimensions of pnq  , we have: 

        )*3()*3()*3()*3()*3,*3( qPqTqHqUmqK  

      (4) 

If we solve the last set of equations using the Gauss method, we 

will perform mxq *3*3  actions for the upper triangular 

matrix and mxq *3*3  
actions for back substitution. In the 

context of the iteration method, mxq *3*3  actions are 

performed for each iteration only once, and it only remains to 

multiply a vector by a matrix. As a result, according to the 

Gauss method, the number of actions is proportional to
3t , and 

according to the iteration method, 
2t actions are carried out. 

Thus, it follows that to solve spatial problems with tens of 

thousands of indeterminates, the iteration method is more 

efficient. Furthermore, the errors that occur due to rounding 

sare spontaneously adjusted with respect to the predetermined 

accuracy c10 . According to the Jacobi method, in order for 

the selection of the displacement component in the n -line (4) 

of the system of equations to be transformed into the iterative 

form, the following algorithm should be used: 

}
1

1

1
{

1












N

ni
i

u
ni

K
n

i
i

u
ni

KnFnnKnu . (5) 

Let us determine the Gauss-Zeidel algorithm: 

}.{
1

1 1

11  


 

 
n

i

N

ni

m

ini

m

ininnn

m

n uKuKFKu   (6) 
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The algorithm of the successive over-relaxation method with 

acceleration factor 


is given in the following form: 

.)(
1*1 


m

n

m

n

m

n

m

n
uuuu    (7) 

Since this method is used, let us give its brief algorithm. 

Here

m

nu
is the solution obtained from formula (6). According 

to Young [12], 
21  

. The computational tests have shown 

that, for elasticity problems, 88.1 is the most appropriate 

value. Other researchers have proposed a value of  

90.185.1    [7, 6, 8];. F from the above equations (5) and 

(6) is the sum of forces from the right side of the system of 

equations (2),
       PTHF  

, while m  and 
m  are 

the iteration numbers with the values of the displacements 

specific for pre-diagonal and off-diagonal elements of the n  

line and m*3  column of equations. To reduce computer random 

access memory and time required for the calculations, using 

symmetric and band properties towards the diagonal of the 

stiffness matrix, iteration is applied only to 2/*3 m  pre-

diagonal elements. Fig. 3 through k  presents m  of the lengths 

of numbers that are not equal to zero around the diagonal of the
n line (circled with two slanting lines). 

 





































k

kkk

kkkkk

kkkkk

kkkkk

kkkk

kkkk

kkk

k

K

0000000

0000000

0000000

0000000

000000

000000

000000

0000000

0000000

      (8)

 

For the remaining numbers that equal 0, iterations are not 

performed (i.e., they are not taken into account). The k , kkk , 

kkkk  in proximity with the diagonal denote the set of "stars" 

mentioned above. The dotted line is the line of symmetry on the 

diagonal, and the number of elements before it equals 2/*3 m . 

Drawing the stiffness matrix in such a way is one of the basic 

properties of the FEM. 

 

II.II Computational Regions Compiling for Multivariate 

Calculations 

Fig. 4 shows the computational region of the task in most 

common view. To make research area sin Fig. 1 and Fig. 2 

clearer, let us give the image of the cross sections parallel to 

ABCD on the ZOX plane, which is perpendicular to the OY 

axis.  

 

Fig. 4. The general computational region of interest, including 

the mine working’s compression strength, passed through a 

complex system of tectonic faults in the dipping layer of the 

anisotropic mass, taking into account ground mountain slopes 

and the effect of geostatic, tectonic and seismic forces.  

(1) Tectonic faults;(2) geostatic forces;(3) tectonic forces;  

(4) seismic forces from transient seismic waves;(5) soils and 

mantle; and (6) rock mass of the dipping-layered anisotropic 

structure 

In Fig. 5, we give the finite element computational region of 

the mass with an arched mine working and a vertical fault to its 

right.  

 

Fig. 5. The mine working around a vertical fault and the 

direction of the horizontal components of geostatic and tectonic 

forces. (1) The geologic fault; (2) the direction of the geostatic 

force field; and (3) the direction of the vertical component of 

tectonic forces 

In the calculation of the stress-deformed state, the distance 

between the mine working and the fault will vary. The 

geometrical parameters H , L , and h  are set according to the 

conditions: 

 
 

































333231

232221

131211

1

det

1

aaa

aaa

aaa

J
J  

(9) 

The dimensions of the working are not indicated as they might 

be different. The directions of force components are indicated 

as follows: geostatistical components are directed downward, 

tectonic – from right to left. Although the geologic fault might 
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reach the Earth’s surface, this might not happen; therefore, one 

variant is given. 

Fig. 6 shows the computational region of the mine working an 

adjacent to a complex geological fault (two vertical parallel 

faults). 

 

Fig. 6. The mine working driven alongside vertical faults, 

parallel to each other, and tectonic force directions. (1) The 

geologic fault; (2) the direction of the geostatic force field; and 

(3) the direction of the horizontal component of tectonic forces 

 

The location of the mine working driven towards 

perpendicularly crossed faults is shown in Fig. 7. 

 

Fig. 7. The mine working driven alongside crossing faults, 

perpendicular to each other. (1) The geologic fault; (2) the 

geostatic force direction; (3) the direction of the horizontal 

component of tectonic forces 

Finally, the variations of paths driven by the mine working 

alongside almost parallel horizontal and inclined faults in the 

hanging are shown in Fig. 8 and Fig. 9. 

 

Fig. 8. The computational region of the mine working around 

faults (from the left top and the right bottom). (1)The geologic 

fault; (2) the direction of the geostatic force field; and (3) the 

direction of the horizontal component of tectonic forces 

 

Fig. 9. The computational region of the mine working driven 

alongside an inclined fault. (1) The geologic fault; (2) the 

direction of the geostatic force field; and (3) the direction of the 

horizontal component of tectonic forces 

 

III.III Algorithm development for multivariate calculations 

Let us define the parameters of the forces that are included in 

the system of equations featuring the balanced condition of 

theisotropic and anisotropic mass withfaults andunderground 

workings: 

          
kji

kjikji

T

kjikjikji

е
JBDBtК

,,

,,,,,,,,,, det   (1), 

The formula of elastic forces on the left side of the equation 

includes the stiffness matrix  К . In determining  D , this 

matrix is defined by equations (10), (11), and (12): 
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          (10) 

The matrix  B  for eight points can be written as follows: 

 
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If we write this down for all 20 points, the matrix elements will 

be as follows: 

 
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      (12) 

III.IVAnalysis of elasticity matrix components 

Let us define a matrix for transversely isotropic masses in the 

half-space. The matrix dimensionis equal to  66xD . For 

inclined workings in the inclined transversely isotropic mass, 

the 
'

ijd  elements are calculated using the formulas 

,98.25.9 Hyx    

,86.15 Hx    

,12.15.4 Hy       (13) 

 

,14.25 Hyx    

,14.13 Hx    

,2 Hy        

       (14) 

For (13) and (14), the general view of the elasticity matrix is 

set in the following way: 
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      (15) 

If we take that  =0 from expression 

1,2...6)ji,χ,ψ,,,ν,ν,G,E,(Ed 21221

'

ij  or from equation 

(14), we obtain the elements of the elasticity matrix for the 

cross-drift and cut-off. If we take that 0   from 

equation (14), we get the elasticity matrix for the boarding gate 

in any inclined transversely isotropic mass. If 0   

and
21 EE  ,

21   , )1(2/ 112  EG , then we obtain the 

elasticity matrix for investigating the working’s stability in the 

isotropic spatial mass. For the generalized plane problem, the 

elasticity matrix dimension equals  55xD , whereas for the 

plane problem this would be  33xD . 

III.IV.I Determination of the stiffness matrix of the  

system  К  

When using a quadrangular, hexahedral element or an element 

in the form of a second-order prism, the stiffness matrix of each 

element is made by one of the following expressions: 





4

1i

iihuu  



4

1i

iih
   

      

(16) 
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iihww  
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232221
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1

aaa

aaa
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J
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      (17)

 

   dddJdzdydxdV  det   

      (18)
 

The stiffness matrix  К  of the entire computational region 

consists of the sum of the stiffness matrices of elements at 

points with single apexes. When using isoperimetric elements, 

the stiffness matrices of each element are composed of the 

values of the internal integration points and summed. 

   



p

e

e
kК

1

,      

      (19) 

here p  is the total number of finite elements in the research 

area. 

III.IV.II Determination of geostatic force parameters H  

To determine the value of geostatic forces from the right side 

of equation (20), we multiply the specific weight of the 

structure  by the area size when it is a quadrangular element 

or by the volume when it is an element in the form of a 

hexahedra on or a second order prism. 

3223332211 aaaaa 


, 

)( 3123332112 aaaaa 


, 
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3122322113 aaaaa 


,   

)( 1332331221 aaaaa 


, 

1331331122 aaaaa 


,    

      (20) 

)( 1213321123 aaaaa 


, 

1322231231 aaaaa 


, 

)( 1321231132 aaaaa 


, 

2112221133 aaaaa 


. 

Then, by dividing by the number of vertices, we set these values 

to each point. At the common points, gravity forces are simply 

summed. Alternatively, we can multiply by the appropriate 

function-form of the element and assign to each point though 

Jacobian, while instead of H  we use the z  coordinates for 

each point. 

ii

e

i zhH   ,     

      (21) 

here i is the computational points on the vertices and sides 

of the element e . For an isotropic medium, horizontal 

components are equal to H . Here








1

,  is Poisson’s 

ratio. In conditions of the plane problem for transversely 

isotropic masses, as defined by Yerzhanov, Aytaliyev, and 

Masanov, lateral thrust coefficients in two horizontal directions 

are different and equal [7]: 

2
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3315351315133511

2
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)())((
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   (22) 

here ijb  is calculated by equation (4). Ifwe take the slope 

angle 0
 
in this expression, we obtain the expression of 

Lekhnitskiy for planes of horizontally layered isotropy: 

 1

2

1 





x

, 0xz ,   

      (23) 

here 
21, are Poisson’s ratios for transversely isotropic 

masses. 

III.IV.III Determination of tectonic forcesT  

The nature of tectonic forces has been studied by Aytmatov for 

the mines at Kadamzhai, Tekeli, and Haydarkent, which are 

located in the northern part of the Tien-Shan Mountains, where 

measurements have been made. On the basis of Hast’s semi-

empirical formulas, the following expressions have been 

proposed (24): 

xzzyxx bbbb  15131211  , 

,25232212 xzzyxy bbbb    

,35332313 xzzyxz bbbb    

xyyzyz bb  4644  ,    

    (24)  

xzzyxxz bbbb  55352515  , 

xyyzxy bb  6646  . 

The same expressions were used by Turchaninov [13] who 

studied the influence of tectonic forces nan underground 

working in the isotropic mass; its values are shown in Fig. 10.  

Fig. 10. The principal stress components of tectonic forces 
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Here we show the directions of tectonic forces that affect the 

elementary unit prism at any depth H from the Earth’s surface. 

Here 
HT  is the value of tectonic forces at depth H . 

Conventionally, its precise value is determined by 

measurements in vertical mines at various depths. Let us 

consider the anisotropic nature of tectonic forces from equation 

(8). First, 
HT3 ; 

HT
 
and 2  are defined through 1

 
and 

2 . According to the investigations of Kropotkin (1996) [14] 

and Turchaninov (1978) [13], among others, we obtain

01   (i.e., the effect of this coefficient is quite 

insignificant) and 12  . For those are as not measured 

empirically, we can take 75.02  . 

III.IV.IV The strength of relief roughness 

Practically, this force again equals H , but it is necessary to 

take into account the volume and weight of the slopes and 

mountains. When applying the FEM,for these to be taken into 

account, we only need to set the correct coordinates and further 

calculate this force by expression H . 

After determining the displacement vectors  U by solving the 

system of algebraic equations (9), stress components were 

determined using the following expressions: 
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det
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      (25) 

i.e.   
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The values JJ can be written as follows[(25), (26), (27), (28) 

or (29), (30)]: 

12212211 ** JJJJDet     (28) 
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Stress components are calculated through defined displacement 

components in the inner points of integration of each 

isoperimetric element, as follows:  

     
ijij D      (31) 

III.IV.V Physical-mechanical properties of transversely 

isotropic masses 

Two modules ofelasticity, 21 , EE , two Poisson’s ratios,

21, , and a module of displacement,
2G ,of transversely 

isotropic material in two perpendicular directions are defined 

byexperimental calculations. These values have not yet been 

entirely defined for all materials in nature. 

Mountain layers on the seacoast in the town of Actau situated 

in the eastern part of the Caspian Sea in Kazakhstan are fully 

formed of sedimentary rocks. Their anisotropic properties were 

defined by Sivolapov [15]. We take the mean values for the 

mines given by Mikhlin [16] : MPaE 4

1 10074.1  ,

MPaE 4

2 10523.0  , 413.01  , 198.02  ,

МPaG 4

2 1012.0  , 
32 /105.2 mMN . 

III.IV.VI Physical-mechanical properties of isotropic masses 

If the rock mass is isotropic, we take the following values for 

physical-mechanical properties: MPaE 4102  , 27.0 ,
32 /105.2 mМN . As geologic faults in nature are filled 

with detrital and sedimentary rocks, their deformation values 

are high; therefore, for their characteristics, we use the 

following values: МPaE 2102  ,  35.0 ,

.  

III.IV.VI Geometric dimensions of the computational region 

The dimensions of the computational region, shown in Figs.3–

8, were setusing the following conditions (9): mH 600 , 

mh 300 , mL 1200 , mH 660 , mh 330 , mL 1500

, mH 660 , mh 330 , mL 1500 . The height and 

length of the foundation of the arched working is 5 m, and the 

radius of the archis 2.5 m. 

 

III. RESULTS AND DISCUSSION 

Results of research addressing the mine working’s stress state 

in the isotropic mass with complex tectonic faults are as 

follows. 

We shall present the epures of stress concentrations and values 

in the vicinity of the geologic fissure and mine working for the 

plane problem, located in the isotropic mass at a distance of 5 

m from the working shown in Fig.3. 

Taking into account the fissure and working, the computational 

region is divided by 81 vertical and 51 horizontal lines, into 

4000 four-vertex isoperimetric elements, conditionally forming 

4131 points. The following values are taken for the length and 

width (2) of the computational region under the condition 

beginning from the mass’s surface (the Earth’s surface): 

mH 600 , mh 300 , mL 1200 . The physical-

mechanical properties of the mass are left unchanged in Figs. 

4–7. According to the regional condition (1), the horizontal 

displacement component is 0U in point 81 on the left side 

and point 81 on the right side of the region, shown in Fig.3, and 

0WU at the foundation. Considering the above, the 

order of the system of linear algebraic equilibrium equations 

made by expression (2) would be equal to 8000. The mass is 

supposed to be in an elastic state under the action of its gravity 

and the field of tectonic forces, the horizontal component of 

which is directed to the left. For the apexes of every element, 

the values of geostatic forces are given by expression (1) with 

an account of the lateral coefficient of compression. The 

composed system is solved by the algorithms (5)–(7). 

Deformation components in the internal points of integration 

are set by expression (25), and stress components have been 

calculated by expression (31).  

The usage of a direct tangential component in the form of 


for the analysis of stress concentrations at the boundaries of the 

mine working and fissure makes the task easier. Here   is the 

polar angle between the perpendicular straight directions drawn 

to the boundaries of the working and the Cartesian horizontal 

OX axis. Let us present some known expressions from the 

elasticity theory of tangential components [17].  

,cossin2sincos 22  xzyxr   

).sin(coscossin)( 22    xzxyr

      (32) 

For analysis, it is more important to set displacement 

components in polar coordinates rather than deformation 

values.    

32 /100.2 mMN
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If the value of stress concentrations on the ends of the working 

exceeds the breaking point of the rock, this place turns into 

plastic zone or a dangerous zone with the possibility of 

breaking. Such zones are defined by comparing the breaking 

point of the mass with stress intensity σi , which is the condition 

of transition of the border. Its expression in the spatial case is 

given below:  

)(6)()()(
2

1 222222

zxyzxyxzzyyxi  

      (33) 

Table 1 provides data on the physical-mechanical properties 

and compression strengths of soils and mountain rocks at 

various depths h [18, 8].  

 

 

Table 1. Physical-mechanical properties and compression strengths of soils and mountain rocks at various depths 

Types Soils and mountain rocks  ,h  

km 

 ,10 4E

МPa 

  ,  

102 

MH/m3 

,с  

MPa 

,р  

MPa 

с , 

MPa 

1 Bluestone 1.0  1.00 0.28 2.35 12.0 1.0 2.5 

2 Clay, lime rock  1.0  1.23 0.25 2.35 14.5 1.0 2.5 

3 Siltstone 0.6  2.0–4.0 0.27 2.43 60.0 3.0 6.0 

4 Argillite 1.0  1.42 0.32 2.31 41.0 2.5 7.5 

5 Quartz rock, pyrites 3.2  5.20 0.18 4.45 38.0 3.0 6.0 

6 Crystalline limestone  2.8  2.10 0.27 3.06 47.0 3.0 8.0 

7 Granitoid 4.0  10.60 0.28 2.87 46.5 7.0 11.0 

8 Stone lime rock  6.0  83.00 0.24 2.50 285.0 12.5 60.0 

9 Labradoritic basalt 10.0  141.00 0.25 3.40 396.0 16.5 66.0 

10 Tholeiitic basalt  1.0  1.42 0.32 2.31 41.0 2.5 7.5 

11 Picrite-basalt 1.0  1.35 0.31 2.43 24.0 3.0 6.0 

12 Taxite basalt  1.0  1.82 0.26 2.33 32.5 1.5 6.0 

13 Calcareous rock 1.0  1.23 0.25 2.35 14.5 1.0 2.5 

14 Malmrock 3.2  1.00 0.27 2.35 12.0 1.0 2.5 

Here σc is the vertical compression of the sample, σP is the 

vertical tension, and с  are the values received by 

experimental tangent compression.  ,,E  are the Young’s 

modulus, Poisson’s ratio, and volumetric weight respectively. 

Fig. 11 presents the epures of the vertical tangential component 

H / calculated by expression (31), for stresses in the 

computational region shown in Fig.3.  

 

Fig. 11. The stress concentration on the ends of the mine 

working and around a fissure. (1) The effect of geostatic 

forces; and (2) the effect of tectonic forces 

The physical-mechanical properties of the mass are close to 

siltstone, as described in Table 1. Here the displacement 

between the upper and lower fissures is 8 m. Consequently, the 

integrity of the mass around the working is left unbroken. The 

analysis of stresses is more optimally represented through 

portion H , since the value of stress concentrations in 

distinction to H
 
is easier to be seen on the epures [19-25]. 

Based on the influence of geostatic forces alone, and 

considering tectonic forces ( Т ) directed to the left side of the 

plane in the vicinity of the working’s arch, especially on the 

side directed to the fissure, the value ofthe tangential stress 

component increases by 20–25% and, as we move closer to the 

right side of the lower foundation, decreases. Potential breaking 

regions appear because stress concentrations exceed the mass’s 

stability value on the ends of the upper and lower geologic 

fissures [26-31]. 
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In Fig.12, the epures of stress concentrations in the vicinity of 

the fissures are shown on two sides of the mine working at a 

distance of 5 m, with one located higher and the other – lower. 

In this case, symmetry is not observed as tectonic forces are 

directed only to the left side.  

 

Fig. 12.  The stress concentration on the ends of the mine 

working and in the vicinity of the direct fissures on either side 

of the working. (1) The effect of geostatic forces; and (2) the 

effect of tectonic forces 

 

Fig. 13 and Fig. 14 show the stress epures occurring under the 

action of tectonic and geostatic stress fields. 

 

Fig. 13. The stress concentration on the ends of the mine 

working and in the vicinity of the direct fissures on either side 

of the working, under the action of geostatic forces 

 

 

Fig. 14. The stress concentration on the ends of the mine 

working and in the vicinity of the direct fissures on either side 

of the working, under the action of tectonic forces 

 

Fig. 15 and Fig. 16 show stresses in the vicinity of the 

horizontal fissures, appearing under the action of gravity and 

fields of tectonic forces, respectively. If tectonic forces act 

along with geostatic forces in the vicinity of the fissures located 

in the direction of mine workings, breaking is possible. 

 

Fig. 15. The stress concentration occurring under the action of 

gravity in the mine working and an inclined fissure located at a 

distance of 15 m to the left. (1) Tectonic force directed to the 

left; (2) tectonic force directed to the right 

 

As can be seen from Fig. 15, when no geologic fissure is found, 

the epure is symmetric. Its numerical value coincides with the 

above-calculated results of Baymakhan [8]. This comparison 

shows the correctness of the computational region and its 

calculating accuracy. In the presence of a geologic fissure, the 

value of stress concentrations on the left side of the mine 

working increases sharply and the epure’ssymmetry is broken. 

In this computational variant, the integrity of the mass in the 

vicinity of the mine working is preserved.  

Fig.16 shows the effects of the direction of tectonic forces on 

stress concentrations. To more clearly understand these cases, 

in Fig.16, their directions are shown by arrows directed to the 

right and left. There are 14 m between the upper and lower 

fissures. In contradistinction to the epures given, Fig. 16 

presents the exact values of stresses. 

 

Fig. 16. The stress concentration occurring under the action of 

tectonic forces in the mine working and at the ends of an 

inclined fissure, located at a distance of 15 m to the left 

 

Analyzing the epures of Fig.14, we can see that the epure of 

tectonic forces is represented by the first line directed to the 

left. The value of stresses is reduced with in the boundaries of 

the mine working and increased when approaching the fissure. 

In the lower part of the upper fissure, only at one point, the 

value of stability to compression is H =2,5х300= 75 МPa, 

which is higher than the calculated stress value. If tectonic 

forces are directed to the right side, they will compress the mine 

working, and its value will increase sharply. 

The numerical value of the epure will exceed the value of the 

mass’s stability by approximately two-fold. Also, potential 

breaking zones may appear in the upper right corner of the mine 

working’s arch and its lower left part. The form of the epure is 
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parallel to the inclined geologic fissure. The possible breaking 

zone appears in the lower part of the upper fissure and the upper 

part of the lower fissure in the left part of the mine working.  

Fig.17 shows the stress states of the mine working in the 

vicinity of the geologic fissures, the ends of which are located 

in layers on the left and both sides of the working.  

 
 

Fig. 17. The stress concentration occurring under the action of 

tectonic forces, directed to the right, in the mine working and 

various inclined fissures located to the left side of the working 

at a distance of 15 m. (1) Inclined and horizontally bifurcated 

fissures; (2) inclined fissures with embedded ends; (3) inclined 

fissures with embedded ends located in the upper and lower 

parts of the mine working 

 

The strength of tectonic forces is directed to the right. From the 

analysis of these samples, we can see that the working is stable 

both on the screen of the bifurcated fissures and on the screen 

of two fissures located in layers. In the third case, if one of the 

geologic fissures ends in the upper left part of the mine working 

and the other fissure ends in the lower right part of the mine 

working, the stress concentration increases sharply and 

breaking becomes possible both on the working’s arch and at 

its foundation. The same case is noted at the ends of the 

fissures. 

 

IV. CONCLUSIONS 

Here, using deformable solid mechanics methods, we 

investigated the stability of mine workings in a broken geologic 

mass under the action of tectonic forces. In recent years, 

multiple reviews have addressed urgent problems associated 

with the theory of underground structures, their mechanic-

mathematical models, analytical and numerical techniques. 

New computational methods have been proposed based on the 

numerical method of stability in cases of underground 

workings in the mass, the integrity of which is subjected to 

geologic breaking. New criteria have been proposed for 

determining the finite element field of the working’s stability 

in the half-space.  

Also, using FEMs, new computational types of hexahedral 

elements for spatial modeling of the transversely isotropic area, 

including geologic fissures and underground workings, 

together with their complete algorithms, have been developed.   

If the mine working, under the effect of geologic fissures is also 

affected by geostatic and tectonic forces, the stress 

concentration in the transversely isotropic mass is generally 

gathered in the vicinity of two lateral sides of the mine working 

under the condition that the epures of the vertical tangential 

stress component in the isotropic massare directed along the 

length of the fissure or close to it. 

In anisotropic medium, stress concentrations at the ends of the 

mine working, located under the inclined fissure, are much 

larger than under the vertical fissure. 

In contradistinction to mine workings located near vertical and 

horizontal fissures, potential breaking regions appear on the 

corners of the working’s foundations located closer to the 

inclined fissures. 

For the mine workings of transversely isotropic masses, a larger 

stress concentration was detected on the sides, located closer to 

the fissure. The epures on the side of the geologic fissure, 

located closer to the mine working, are subjected to more 

significant changes. The father the fissure is located from the 

mine working, the lesser the concentration of stresses that 

accumulate in their walls. The various inclinations of the 

isotropic planes of the transversely isotropic mass affect the 

values and forms of stress concentrations. The epures of 

displacement components are subjected to changes along their 

vertical axis, in which the vicinity of the arch is compressed, 

and the vicinity of the foundation is stretched. The working 

does not affect the value of stresses on the left side of the fissure 

located closer to it. 

We also found that the mountain’s height affects the stress 

concentration at the ends of the working, located at a depth of 

300 m to the left. When passing through the transverse geologic 

fissure occurring in the transversely isotropic mass in the 

direction of the mine working’s digging, the stress 

concentration increases sharply in the vicinity of the fissure’s 

walls. 

Thus, here we propose a novel approach for addressing the 

mine working’s stability in the broken anisotropic mass in the 

half-space. Optimal algorithms associated with this approach 

are presented, and the method has been validated using test 

cases. We established the design parameters for anisotropic and 

isotropic masses in the vicinity of the mine working and 

investigated the stress-deformed state of the mine working, first 

for an isotropic mass and then for an inclined transversely 

isotropic mass(plane deformation and spatial cases).We also 

presented a number of epures and analyzed the main 

computational results, namely the stress concentration and the 

radial displacement component on the lateral sides of mine 

workings and geologic fissures.  

As a result of this research work, the following patterns were 

determined for calculating the stress concentration around an 

underground mine: 

1. The greatest concentration of stresses near the mining output 

accumulates near the geological fault, the values and shapes of 

the stress concentrations are affected by the angle of inclination 

of the isotropy plane in the anisotropic massif. 

2. The height of the mountain is directly proportional to the 

magnitude of stress concentration near the underground mine 

workings. 
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3. When a transverse geological crack occurs in a transversely 

isotropic mass in the direction of digging, the stress 

concentration increases sharply near the walls of the crack. 
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