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Abstract 

The utilization of artificial neural networks (ANN) for the 

prediction of biofuel properties, engine performance 

parameters, and emission of gases within statutory regulations 

in engine research has been topical in recent times and is 

predicted to replace the cumbersome and highly technical 

requirements of real-time engine testing. This study developed 

an ANN model to predict the engine performance and emission 

parameters of an unmodified compression ignition (CI) engine 

fueled with biodiesel using two fatty acid compositions as 

inputs. The ANN model adopted the backpropagation with 

Levenberg-Marquardt algorithm, tangent-sigmoid transfer 

function comprising two, eight, and eight nodes as input, 

hidden, and output layers respectively. The overall regression 

coefficient (R) was found to be 0.9998 while the R-value for 

predicted outputs ranged between 0.9966 and 0.9997, the root 

mean square error varied between 0.01834 and 0.1725, and the 

mean absolute percentage error was reported to be between 

1.6243 % and 4.546 % showing an acceptable prediction 

accuracy. It was found that the MATLAB NNTool is a reliable 

and effective tool for the prediction of engine performance 

parameters and emission of CI engines using two fatty acid 

compositions as inputs thereby minimize the time, cost, and 

infrastructural requirements of real-time engine test.     

Keywords: ANN, engine performance, emission, FAME, 

prediction 

 

I. INTRODUCTION AND BACKGROUND  

The rise in population, growing depletion of crude oil deposits, 

constrained refining infrastructure, and environmental 

pollution, especially emissions from transport vehicles, has 

placed enormous pressure on stakeholders to develop 

renewable and biodegradable alternatives. This has increased 

research for affordable, renewable, biodegradable, and 

environmentally amenable options which include biofuel, 

hydrogen, electric cars, and vegetable oil-based fuels. Various 

researchers [1-5] have, in their investigations, enumerated the 

damaging effects of the application of petroleum-based diesel 

(PBD) fuel in internal combustion engines to include 

environmental, performance, combustion, emissions, and 

health effects.  

According to the researchers, the environmental effects include 

the greenhouse effect, increased global temperature, and rapid 

climate change. Infection and inflammation of airways, risk of 

asthma, bronchitis, eye irritation, and lung cancer and 

carcinogenic effects on humans and animals’ health are some 

of the health effects of the use of PBD fuel. In terms of 

performance, PBD fuel provides incomplete combustion 

resulting in the emission of high volumes of carbon monoxide. 

Biodiesel, as an alternative fuel, has been found to offer 

enormous advantages such as non-toxicity, renewability, 

biodegradability, higher lubricity, high cetane number, high 

flash point, positive energy balance, low to zero sulphur, and 

safer handling compared to PBD fuel. However, biodiesel 

suffers from certain demerits including poor cold flow 

properties, lower volatility, higher kinematic viscosity, higher 

NOx emission, more prone to corrosion, damaging effects on 

automobile parts and concrete and auto-oxidation 

characteristics [6-9]. The initial challenge of high production 

cost is being overcome by the application of waste vegetable 

oil and waste animal fats as feedstock. The adaptation of waste 

cooking oil (WCO) has been reported to cause a 60 % to 90 % 

reduction in the production cost of biodiesel [10, 11].    

Available statistics from the International Energy Agency [12] 

reveal that the current global biofuel production is not 

increasing rapidly enough to meet the transport biofuel 

consumption required as specified by the Sustainable 

Development Scenario (SDS). Biofuel demand in shipping and 

aviation has continued to increase and it is projected to triple 

by 2030 as shown in Fig. 1. Deliberate investment and targeted 

research are required in the areas of feedstock development, 

production infrastructure, deployment of numerical and 

optimization techniques in the production process, and 

improvement of performance and emission indices towards 

meeting the SDS. Meeting optimal engine performance and 

stringent emission requirements for compression ignition (CI) 

engines prescribed by regulatory bodies for CI engines fueled 

with fatty acid methyl ester (FAME) requires testing the fuels 

at various engine speeds and loads, among other parameters. 

This entails enormous resources, time, technicality, and 

personnel. One of the ways to deal with these challenges is the 

application of high-speed computers in numerical simulation 

and optimization of the production, process and utilization 

parameters to explore and discover optimal scenarios.     
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Fig. 1. Biofuel consumption breakdown in the SDS 

 

In order to overcome the strenuous, time consuming, costly and 

intricate engine test experimentation involved in the 

determination of performance and emission parameters, 

researchers have adopted various numerical prediction tools to 

execute these important tasks. Linear prediction models have 

been widely used in predicting FAME properties but have been 

deficient in estimating engine performance and emission 

parameters because of their nonlinearity orientation. Artificial 

neural networks (ANN) have found wide application in 

business, medicine, engineering, image and voice recognition, 

with appreciable success, particularly where the traditional 

modeling techniques proved ineffective. ANN has been 

deployed for the purpose of predicting engine performance and 

emission of internal combustion engines [13]. An ANN uses 

the information presented to it to learn, relearn, and understand 

the correlation between the input and the output data. Using 

those established relationships, the ANN can predict responses 

from a new set of independent variables, drawing from its 

learning experience. A properly trained ANN possesses a high 

predictive capability and the ability to learn, unlearn, and 

relearn to improve the quality and integrity of the output if a 

different array of data is made available The preference of the 

ANN model over other prediction techniques is due to its 

adaptability and capability to learn then relearn nonlinear 

progressions and its uncomplicated adaptation to real-time data 

fluctuations. A well-trained ANN is faster, simpler, and more 

accurate than other conventional simulation techniques or 

mathematical models which require extensive computations, 

long iterations, and complex differential equations [14]. Major 

advantages of ANNs include high processing speed, ability to 

capture nonlinearities between predictors and outcomes as well 

as capability to learn and model linear, nonlinear, and complex 

correlations. Though ANNs are trained on a case by case basis 

which cannot be transferred for usage to other applications, this 

approach has continued to find applications in pattern 

classification, scheduling, intrusion detection, financial 

analysis as well as in control and optimization [15-20]. 

Due to its obvious benefits, researchers have employed well-

trained ANN models to forecast and estimate engine 

performance parameters and release of emission gases on CI 

engines including torque, engine power, brake specific fuel 

consumption (BSFC), brake thermal efficiency (BTE), exhaust 

gas temperature (EGT), thermal efficiency, carbon dioxide 

(CO2), nitric oxide (NO), nitrogen oxides (NOx), unburnt 

hydrocarbon (UHC), and smoke intensity under different 

engine speed and loading situations. The outcomes of the 

prediction exercises have agreed with real-time experimental 

engine test results, thereby meeting the primary purpose of its 

deployment.  

Bearing in mind the importance of fatty acid (FA) composition 

in the handling, storage, performance, combustion, properties, 

and emissions of biodiesel fuel, a lot of resources and efforts 

are being deployed for the prediction of engine performance 

parameters as well as the emission based on its FA 

compositions. These efforts need to be improved upon and 

strengthened, hence the present intervention. In this research, 

the pertinent question to ask, and which forms the motivation 

for this research, is whether the numerically determined 

optimal FAME candidate can advance engine performance and 

tone down the emission characteristics of an unmodified of CI 

engine.   

The object of the present effort, therefore, is to develop and 

train an ANN model with the capacity to predict the engine 

performance parameters and emission characteristics of an 

unmodified CI engine fueled with an optimal FAME candidate 

determined in terms of two FA compositions with the aim of 

unearthing an appropriate biodiesel fuel that will advance 

engine performance and mitigate emission characteristics. This 

investigation is limited to the use of C16:0 and C18:1 

percentage concentrations as input variables to develop an 

ANN model capable of training, testing and predicting the 

BSFC, BMEP, BTE, EGT, CO, smoke intensity, UHC, and 

NOx of an unmodified CI engine fueled by unblended FAME.   

The application of ANN in biofuel study has been well 

documented owing to the obvious derivable advantages, which 

include simplicity, adaptability, and maneuverability [21]. 

ANN has been applied on many occasions to predict biodiesel 
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properties, engine performance, fuel mixing and combustion 

parameters, and emission characteristics. Filho et al. [22], 

Hosseinpour et al. [23], Oliveira et al. [24], and Rocabruno-

Valdes et al. [25] utilized a well-trained ANN model to predict 

some properties of FAME. The outcome of their investigations 

revealed that the predicted data agreed with the experimental 

data. Taghavifar et al. [26] engaged ANN to predict the heat 

flux of a CI engine using spray characteristics such as crank 

angle, temperature, and pressure as inputs with acceptable 

output. Rao et al. [27], Javed et al. [28], and Kshirsagar and 

Anad [29] used ANN prediction modeling to predict BTE, 

BSFC, EGT, CO, CO2, UHC, NOx, and soot using blending 

ratios as inputs with reasonable outputs. Çay et al. [30], and 

Kumar et al. [31] developed standard backpropagation 

algorithms on a MATLAB platform to predict the engine 

performance of a CI engine powered with biodiesel and 

compared the predicted results with experimental results. 

Bietresato et al. [32] evaluated the effectiveness of ANN 

models of sigmoidal and Gaussian algorithms to demonstrate 

their predictive capabilities for engine performance and 

emission characteristics in a farm tractor.    

Other researchers have used various parameters, including 

temperature, number of carbon and hydrogen atoms as inputs 

for the prediction of properties, engine performance and 

emission parameters of a conventional CI engine. The use of 

fatty acid (FA) compositions have not been widely and 

adequately exploited. Ramadhas et al. [33], Filho et al. [22], 

Piloto-Rodriguez et al. [34], and Sara et al. [35] have at various 

times used FA composition as input variables to predict the 

properties, engine performance and emission characteristics of 

FAME. A painstaking and exhaustive search of literature, 

comprising over 120 biodiesel samples, revealed that palmitic 

acid (C16:0), stearic (C18:0), oleic acid (C18:1), linoleic acid 

(C18:2), and linolenic acid (C18:3) are the most popular FAs 

in biodiesel among the 13 FAs [22, 36-38]. Myristic acid 

(C14:0), C16:0, C18:0, C18:1, and C18:2 were adopted by 

Menon et al. [39] as input variables to predict various 

parameters of CI engine fueled with biodiesel using ANN, 

thereby developing an optimal biodiesel fuel candidate based 

of FA composition and degree of saturation/unsaturation of the 

fuel.  

 

II. MATERIAL AND METHODS 

In this section, we discuss the experimental and the numerical 

methods employed in carrying out the research. The 

experimental method involves the production of an optimal 

FAME candidate through the transesterification of waste palm 

oil (WPO) and the GCMS analysis of the samples to reveal the 

FA composition. The development and training of an ANN 

model to predict the engine performance and emission 

characteristics parameters of unmodified CI engine fueled with 

FAME is categorized by means of numerical techniques using 

advances in software computing.      

II.I. Production of Optimal FAME Biodiesel from WPO 

and Determination of FA Composition 

The WPO sample was collected from a local owner-operated 

restaurant at the point of disposal near the university campus 

while waste chicken eggshells were obtained from eateries at 

the University of KwaZulu-Natal, Durban, cafeteria. The waste 

chicken eggshells were converted to a CaO catalyst through 

high-temperature calcination at 900 ⁰ C as described by our 

earlier work [40]. The WPO was pretreated by removing food 

debris and moisture before subjecting it to a one stage 

transesterification process since the acid value was found to be 

0.66 mgKOH/g.  

The clean feedstock was mixed with methanol and calcined 

CaO catalyst in a flat-bottomed flask in the required quantity 

and heated on an electric cooker with a magnetic stirrer 

maintained at 1200 rpm while a digital thermocouple was used 

to authenticate the reaction temperature throughout the process. 

A reaction temperature of 60 ⁰ C, methanol to oil ratio of 6:1, 

the catalyst particle size of 75 µm, 1 % w/w catalyst: oil ratio, 

and total reaction time of 90 min were selected as process 

parameters. The ensuing mixture was subsequently filtered in a 

Buchner funnel filtration system assembled to retrieve the 

catalyst. The filtered mixture was transmitted to a separating 

funnel for the glycerol to coagulate at the base of the separating 

funnel where it was tapped off. The crude biodiesel was 

purified using magnesol. The purified FAME was subjected to 

FA characterization in a GCMS. 

II.II. Development of ANN Model 

ANN, available on MATLAB platform, is a parallel distributed 

processing computer system modeled on the functioning of the 

human brain with the capacity to generate, form and discover 

new knowledge without any help, based on the information 

presented to it. It comprises a number of linked and 

interconnected processing elements known as neutrons or 

nodes. The neutrons are linked with each other by synaptic 

weights through which signals are passed from one neuron to 

the other in accordance with the connecting weights. The 

weight of the signal is determined by the knowledge acquired 

in the course of the training, testing, and validation. The 

neutron processes information presented to it based on its 

dynamic state. The neuron receives input from external 

sources, analyzes such information, and executes non-linear 

operations based on it and generates an output [41, 42]. Figure 

2 shows the network configuration of a typical ANN model 

used for this study. 

 

Fig. 2. The ANN structure  

In order to develop and improve an ANN model, the network 

is exposed to the training or learning phase and the testing or 

validation stage. During the learning phase, the network studies 
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the input data and estimates the output variables. In the test 

stage, the network stops learning and estimates the output data 

using the knowledge gained during the training stage. Training 

is programmed to terminate when the testing error attains the 

previously set tolerance and the preferred epoch number is 

reached in relation to the error value [43].  

 

II.III. Determination of the Model Parameters  

For the present research, a MATLAB R2017b NNTool was 

used to develop the model [44]. The back-propagation (BP) 

algorithm with a Levenberg-Marquardt (LM) learning 

algorithm was applied because of its high robustness, fault 

tolerance, self-learning, self-adaptability and reputation for 

good prediction accuracy [45, 46]. Despite this advantage, BPA 

has been found to be susceptible to slow convergence, 

fluctuations, and severe oscillations particularly during the 

training stage [47, 48]. Tangent-sigmoid (TANSIG) is adopted 

as the transfer function.  

The number of nodes at the input and output layers were 

selected as stated on the research objective which is to use 

C16:0 and C18:1 as inputs to estimate the engine performance 

and emission characteristics of an unmodified CI engine. For 

this research, the selected engine performance output 

parameters were BSFC, BMEP, BTE, and EGT, while the 

emission characteristics were CO, smoke intensity, UHC, and 

NOx. Hence, two nodes were selected for input layers while 

eight nodes were selected for output layers. 

A single hidden layer can sufficiently predict any non-linear 

relations or functions using the BPA neural network. Since 

there are few nodes in the input layer in the proposed model, 

the network did not require any complex arrangement. Hence 

one hidden layer was adopted for the model. The number of 

nodes in the hidden layer (p) was selected based on the 

Kolmogorov theorem and neural network theory [49]. p was 

estimated by Eq. 1 [50].  

 𝑝 < √𝑛 + 𝑚 + 𝑎                 (1) 

Where 𝑛 is the total number of nodes in the input layer, 𝑚 is 

the total number of nodes in the output layer and 𝑎 is a positive 

integer (𝑎 < 10). The 𝑎 must be strategically chosen to get a 

reasonable 𝑝. An excessively low 𝑝 will reduce the accuracy of 

the network approximation of the model thereby leading to 

increased prediction error, while an excessively large 𝑝 will 

make the network unnecessarily complex requiring longer 

training time [51]. With 𝑛 𝑣𝑎𝑙𝑢𝑒 of 2, 𝑚 𝑣𝑎𝑙𝑢𝑒 of 3, and 

𝑎 𝑣𝑎𝑙𝑢𝑒 of 7, 𝑝 was set to 10. The learning rate and target error 

were both set at 0.01 based on the experience of continuous 

testing.  

The minimum gradient of 10−7was set as part of the stopping 

criteria. Other factors to be considered for the design of the 

ANN model are depicted in Table 1. Also, as shown in Table 

2, there were 125 experimental datasets mined from the 

literature. The FA compositions were obtained from GCMS 

analysis while the engine performance and emission 

characteristics were gotten from real-time engine tests [52-55]. 

70 % (95 patterns) of the data were chosen for training the 

model, 15 % (15 patterns) for validation while 15 % (15 

patterns) were used for testing the prediction capability of the 

trained network. The developed, trained, and validated model 

was used to predict the engine performance and emission 

characteristics of FAME candidates with C16:0 and C18:1 

concentration of 36.4 % and 59.8 % respectively. The flow 

chart representing the developed ANN algorithm is shown in 

Fig. 3. The performance of the developed ANN model was 

examined by correlation coefficient (R), while the errors were 

evaluated using statistical error parameters, namely, Mean 

Square Error (MSE), Root Mean Square Error (RMSE), and the 

Mean Absolute Percentage Error (MAPE). The R, MSE, 

RMSE, and MAPE were calculated using the Eqs. 2-5 [41, 56, 

57].  

 

Table 1. Details of the neural network model 

Factors Value 

Input layer 2 

Hidden Layer 1 

Output layer 8 

Number of neutrons in the hidden layer 10 

Number of epoch 10000 

Number of iterations 69 

 

 R = 1 − {
∑ (𝐴𝑡−𝐹𝑡)2𝑛

𝑖=1

∑ (𝐹𝑡)2𝑛
𝑖=1

}    (2) 

MSE =   
∑ (𝐴𝑡−𝐹𝑡)2𝑛

𝑖=1

𝑛
     (3) 

RMSE = √
∑ (𝐴𝑡−𝐹𝑡)2𝑛

𝑖=1

𝑛
     (4) 

𝑀𝐴𝑃𝐸 =  
∑ |

𝐴𝑡−𝐹𝑡
𝐴𝑡

|𝑛
𝑖=1

𝑛
 × 100 %   (5) 

Where ‘𝑛’ is the number of the patterns in the dataset, ‘𝐴𝑡’ is 

the actual output, and ‘𝐹𝑡’ is the predicted output value. 

The R, MSE, RMSE, and MAPE were applied to measure the 

accuracy of the model. The ANN model was set to terminate 

the iteration when 𝑅 > 98, 𝑀𝑆𝐸 < 0.001, 𝑎𝑛𝑑 𝑀𝐴𝑃𝐸 < 5 %. 

The RMSE measures the variation between the predicted data 

and the experimental data while the MSE denotes the standard 

deviation of the difference between the predicted value and the 

experimental value for the data. A smaller RMSE symbolizes 

accurate outputs and model. 
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Table 2. Datasets for the ANN model 

S/N C16:0 C18:1 BSFC 

(g/kWhr) 

BTE (%) EGT 

(⁰ C) 

BMEP 

(bar) 

CO (%) Smoke 

intensity 

NOx 

(ppm) 

UHC 

(ppm) 

1 20.8 58.4 266.13 33.8 408 11.92 0.07 40 451 43 

2 24.5 62.6 233.31 38.58 398 12.31 0.058 43 750 55 

3 31.4 58.4 325.67 27.62 466 8.91 0.026 50 543 40 

4 30.6 60.3 285.14 31.55 483 9.27 0.023 56 723 35 

5 21.9 57.4 280.47 32.08 449 11.15 0.21 60 468 20 

6 36.3 58.4 252.18 35.68 468 11.79 0.21 54 483 34 

7 23.4 70.3 231.96 38.79 400 12.17 0.069 55 459 40 

8 34.5 68.4 310.43 28.98 477 9.22 0.21 58 425 50 

9 36.5 57.6 272.59 33.12 459 11.64 0.049 49 471 55 

10 35.6 62.4 294.53 30.55 497 10.08 0.018 42 455 53 

11 34.8 60.7 257.24 34.97 430 11.38 0.04 54 460 45 

12 35.8 59.3 229.81 39.15 396 12 0.07 62 446 43 

13 28.5 70.6 278.83 32.27 437 10.62 0.16 66 465 50 

14 43.6 56.2 255.79 35.17 431 12.17 0.032 43 675 32 

15 34.8 55.9 230.03 39.11 389 12.31 0.07 45 447 34 

16 26.4 65.4 279.63 32.17 494 10.9 0.13 56 456 18 

17 23.6 65.3 242.07 37.17 434 12.25 0.032 48 467 32 

18 26.1 65.8 226.24 39.77 388 12.39 0.01 39 478 28 

19 26.7 56.5 246.55 32.43 380 12.67 0.06 30 290 34 

20 34.6 54.2 246.78 40.43 342 10.56 0.05 58 875 32 

21 34.3 51.6 355.74 32.76 250 9.65 0.03 62 650 28 

22 24.5 49.5 290.52 43.24 245 11.89 0.04 54 473 28 

23 23.6 60.5 270.74 40.21 370 10.45 0.18 48 478 19 

24 29.5 61.7 355.61 32.65 290 16.32 0.07 54 660 25 

25 23.5 55.8 322.79 31.35 287 11.04 0.03 50 456 28 

26 22.5 54.7 250.62 33.65 370 12.76 0.12 61 476 26 

27 23.6 44.7 261.78 32.67 400 10.45 0.16 34 821 43 

28 29.4 58.4 276.85 23.65 468 9.43 0.04 38 448 50 

29 43.48 41.13 280.54 27.43 280 10.45 0.02 43 650 51 

30 42.45 40.32 278.54 23.54 460 12.03 0.03 41 720 40 

31 40.21 50.35 300.45 30.78 380 9.32 0.12 40 459 39 
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S/N C16:0 C18:1 BSFC 

(g/kWhr) 

BTE (%) EGT 

(⁰ C) 

BMEP 

(bar) 

CO (%) Smoke 

intensity 

NOx 

(ppm) 

UHC 

(ppm) 

32 39.43 55.43 285.05 32.76 380 10.45 0.21 42 700 52 

33 42.56 50.45 260.45 22.09 410 15.23 0.07 60 710 48 

34 37.16 46.93 290.54 35.05 420 9.05 0.04 57 651 27 

35 35.76 50.43 315.85 35.87 410 10.45 0.12 43 552 40 

36 40.42 49.32 250.45 34.53 358 10.25 0.08 38 460 48 

37 43.56 42.46 260.48 22.87 330 11.35 0.15 28 570 28 

38 35.32 50.32 270.41 28.54 450 11.21 0.21 40 592 28 

39 38.43 39.45 301.45 27.91 510 10.35 0.05 50 702 34 

40 45.21 55.32 310.65 32.56 350 9.25 0.13 61 810 28 

41 42.75 45.55 317.23 38.21 420 12.25 0.17 52 830 54 

42 34.52 42.59 260.54 28.45 470 10.27 0.13 58 750 43 

43 53.7 22.8 270.4 23.54 400 11.45 0.12 42 453 40 

44 52.9 22.2 230.2 30.43 398 12.43 0.089 45 650 52 

45 51.83 24.13 332.4 26.54 453 9.43 0.012 51 542 43 

46 53 23.3 280.4 32.54 498 8.56 0.032 54 732 51 

47 22.19 48.2 276.1 32.65 453 10.43 0.22 52 487 43 

48 53.3 25 321.3 34.67 487 11.76 0.21 52 505 56 

49 13.31 50.76 324.8 40.32 421 11.43 0.045 48 476 34 

50 55.53 23.26 265.3 28.43 487 10.21 0.27 51 432 45 

51 52.5 24.8 234.5 32.54 462 10.43 0.047 47 480 48 

52 54.1 22.6 301.2 29.56 487 10.04 0.012 41 440 47 

53 48.9 23.18 261.4 33.06 442 11.25 0.05 51 455 51 

54 73.73 16.93 230 39.54 398 11.54 0.081 60 475 48 

55 66.02 20.43 265.1 33.65 436 10.56 0.127 53 432 53 

56 69 23.87 223.5 35.91 429 12.15 0.034 56 624 46 

57 67.7 20.5 230.03 39.23 387 12.23 0.068 45 654 32 

58 63.29 23.68 267.3 33.09 492 10.45 0.014 51 562 27 

59 77.89 32.78 243.1 37.43 431 12.56 0.043 49 467 54 

60 63.5 24 276.3 37.89 342 12.54 0.015 46 480 34 

61 42.8 40.5 254.3 31.65 380 13.21 0.06 41 431 43 

62 42.6 40.5 265.3 39.02 371 11.54 0.08 61 657 30 

63 42.7 40.9 342.1 32.94 278 10.41 0.043 57 567 36 
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S/N C16:0 C18:1 BSFC 

(g/kWhr) 

BTE (%) EGT 

(⁰ C) 

BMEP 

(bar) 

CO (%) Smoke 

intensity 

NOx 

(ppm) 

UHC 

(ppm) 

64 44.81 39.99 287.3 43 263 11.54 0.023 52 680 25 

65 43.32 40.57 276.3 40.43 381 9.43 0.143 52 623 20 

66 40.2 43.3 344.9 32.65 301 12.54 0.043 58 560 27 

67 47.9 37 312.4 31.54 297 11.27 0.078 56 467 30 

68 43.9 39 265.1 33.89 385 12.54 0.17 59 651 24 

69 39.5 43.2 253.87 32.76 402 11.48 0.042 37 605 40 

70 23.3 42.4 265.32 24.5 458 10.21 0.054 31 458 42 

71 25.2 48.9 276.21 28.54 320 11.24 0.027 45 620 35 

72 23.1 45.8 265.32 23.87 430 12.38 0.04 53 680 43 

73 23.9 43.9 299.3 31.5 341 10.34 0.014 48 461 47 

74 24.34 42.23 300 31.65 374 10.5 0.043 54 680 41 

75 20.1 55.2 267.3 24.65 403 13.78 0.052 61 520 56 

76 28.7 57.4 297 35.78 415 10.54 0.05 54 670 43 

77 11.67 57.51 312.34 33.87 407 10.68 0.14 48 550 40 

78 28.33 57.51 243.43 35.05 372 9.98 0.065 35 535 41 

79 20.6 52.5 260.45 23.55 350 12.21 0.18 30 555 32 

80 22.9 54.2 265.43 28.94 448 11.12 0.27 38 610 28 

81 11.38 48.28 300.2 27.54 471 10.58 0.052 47 700 43 

82 11.4 48.3 312.45 33.56 378 10.76 0.076 60 750 26 

83 11.2 45.5 317.43 39.84 425 11.35 0.17 54 652 44 

84 10.4 47.1 276.4 29.4 446 10.46 0.173 51 690 32 

85 23.6 44.2 265.43 34 400 10.57 0.045 49 475 24 

86 25.5 47.1 235.53 37.98 389 12.89 0.072 40 705 32 

87 24.49 38.32 321.54 28.54 476 10.54 0.045 45 530 38 

88 20.6 64 287.43 32.04 473 10.43 0.043 59 710 43 

89 22.3 64.1 280.11 33.41 450 11.28 0.28 61 480 25 

90 22.3 64.4 250.12 34.14 470 11.54 0.32 57 503 36 

91 20.6 61.6 231.07 35.8 405 12.05 0.076 61 470 43 

92 20.6 61.5 308.05 28.98 465 10.21 0.32 53 443 56 

93 46.36 32.38 278.5 34.65 450 11.56 0.045 52 472 45 

94 69.07 18.97 298.32 30.55 475 10 0.048 48 485 51 

95 43.08 40.55 254.43 34 420 11.35 0.064 52 605 60 
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S/N C16:0 C18:1 BSFC 

(g/kWhr) 

BTE (%) EGT 

(⁰ C) 

BMEP 

(bar) 

CO (%) Smoke 

intensity 

NOx 

(ppm) 

UHC 

(ppm) 

96 23.88 45.25 228.57 38.45 400 12.58 0.023 60 621 42 

97 55.72 40.23 278.43 31 435 11.43 0.182 54 710 38 

98 32.14 47.23 254.65 36.41 420 12.56 0.132 47 540 54 

99 26.03 45.43 234.61 38.5 385 11.67 0.126 48 462 32 

100 21.28 63.12 276.54 32.81 490 11.68 0.023 55 440 26 

101 23.1 63.2 234.54 37 441 10.43 0.043 45 445 55 

102 20.43 61.9 234.78 40.33 398 18.45 0.05 46 465 43 

103 10.12 79.4 200.54 31.56 379 12.5 0.06 47 367 56 

104 24.32 62.05 220.56 40.34 337 11.65 0.056 35 761 34 

105 15.05 75.32 340.54 24 248 10.03 0.132 37 658 37 

106 34.54 50.3 300 51 271 11.32 0.231 41 456 54 

107 35.65 50.5 267.05 40.05 375 10.76 0.16 42 571 39 

108 23.67 58.23 340.54 36.02 271 13.28 0.17 40 665 28 

109 26.76 46.55 342 38.87 300 10.43 0.034 55 456 34 

110 30.65 53.3 256.54 33.13 362 11.32 0.172 42 467 53 

111 27.54 58.43 270 33.76 389 9.47 0.166 48 749 48 

112 34.32 46.5 256.43 30.19 465 11.78 0.074 41 450 65 

113 20.43 46.3 278.54 28.78 300 9.68 0.023 50 630 31 

114 26.43 57.84 260 24.67 487 13.43 0.056 44 726 27 

115 54.32 26.89 310.65 30.56 381 15.32 0.183 54 471 41 

116 46.32 34.54 290.5 33.81 345 18.01 0.124 60 704 28 

117 20.56 60.33 267.54 26.5 389 16.55 0.23 46 723 44 

118 43.65 34.59 284.65 33.89 400 13.65 0.124 59 456 47 

119 32.65 50.05 312.54 33.71 421 11.45 0.043 44 443 34 

120 25.21 52.65 260.67 37.2 430 9.67 0.012 51 506 49 

121 42.39 34.56 239.05 24.54 327 10.32 0.043 39 561 28 

122 41.65 50.05 289.12 29.55 437 10.43 0.312 45 604 38 

123 44.54 45.5 310.32 28.57 505 11.59 0.043 50 673 43 

124 32.89 44.65 309.65 33.65 355 10.54 0.23 48 782 26 

125 27.35 56.43 278.09 35.18 430 9.26 0.176 51 774 41 
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III. RESULTS AND DISCUSSION 

We developed an ANN model to predict the engine performance 

and emission characteristics of an unmodified CI engine with 

C16:0 and C18:1 as inputs using the BP-LM algorithm. The 

predicted engine performance was BSFC, BMEP, BTE, and 

EGT, while four emission characteristics, namely CO, smoke 

intensity, UHC, and NOx were predicted. The two input 

parameters were palmitic and oleic acids. Figure 4 shows the 

structure of ANN consisting of input, hidden, and output layers 

and their respective number of nodes generated by the ANN 

model developed on a MATLAB R2017b NNTool. Data were 

sourced from literature for the training and validation of the 

model while the engine performance and emission 

characteristics of optimal FAME candidate produced by the 

transesterification of WPO and analyzed by GCMS were 

predicted by the trained ANN model. The overall correlation 

coefficient of the ANN model is shown in Fig. 5. The regression 

coefficient of the training, validation, and test data gave 

satisfactory value, an indication of high predictive proficiency 

of the established model. The outcome of the overall correlation 

coefficient for the present model is an improvement on the 

outcome of similar efforts [58-60]. 

The performance indices of the trained ANN model using 

regression and other statistical error parameters as well as 

comparison of the predicted data with experimental data for 15 

different test cases are presented in Fig. 5–14. The prediction of 

output parameters yielded impressive outcomes for BSFC, 

BMEP, BTE, CO, EGT, UHC, NOx, and smoke intensity with 

commendable and reliable values of R, MSE, RMSE, and 

MAPE for each parameter. This indicates the accuracy, 

sensitivity, capacity, and capability of the developed model to 

simultaneously predict important engine performance and 

emission parameters that can be relied upon.

 

Fig. 3. Flow chart of ANN model 

 

 

Fig. 4. Neural network model created using NNTool box [44] 

 

Fig. 5. The overall correlation coefficient of the ANN model. 

 

Figure 6a compares the ANN predicted data with the 

experimentally measured data. With R-value of 0.9984, MSE, 

RMSE, and MAPE values of 0.009906, 0.09953 g/kWh, and 

1.729 % respectively, the model performed acceptably. The 

model was also applied to predict the BSFC of some FAME 

samples. This result is comparable to the correlation coefficient 

of 0.9968, and MSE of 0.0177 reported by Syed et al. [61]. The 

outcome, as shown in Fig. 6b, was commendable and can be 

relied upon to arrive at a sound decision on the fuel. Bearing in 

mind the importance of BSFC as an engine performance 

parameter, and the relationship between fuel consumption, 

power output and efficiency of an oxygenated fuel like FAME, 

this model will be useful to determine the behavior of FAME 

from its palmitic and oleic acid concentrations. Figures 7a and 

7b illustrate  
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Fig. 6. (a) Regression plot for BSFC (b) Comparison of experimental and ANN predicted BSFC 

 
 

Fig. 7. (a) Regression plot for BTE (b) Comparison of experimental and ANN predicted BTE 

  

the ANN predicted BTE versus experimental BTE and the 

outcome of the predicted data for 15 experimental test cases. 

With R of 0.9982, MSE of 0.0003363, RMSE of 0.09953 % and 

MAPE of 1.729 %, the developed ANN model was satisfactory 

and acceptable. These results were comparable with the 

outcome of similar investigations reported in the literature [59, 

62]. 

The correlation coefficient and other statistical errors of the 

developed ANN model for BMEP were found to be within 

acceptable levels throughout the investigation despite the 

nonlinear relationship between BMEP and the FA composition 

of biodiesel. As shown in Fig. 8a and 8b, the model provided a 

satisfactory outcome with statistical errors within acceptable 

limits. The R-value of 0.9991, MSE value of 0.001032, RMSE 

value of 0.03212 bar and MAPE value of 2.674 % showed good 

predictive capabilities of the model. Figure 9a and 9b show the 

relationship between the experimental and ANN predicted data 

of EGT. The performance index of the model indicates an R of 

0.999 and RMSE of 0.03212. This result is comparable with the 

R-values of 0.9995 reported by Syed et al. [61] and 0.99754 

reported by Javed et al. [28].  

 

 

Fig. 8 (a) Regression plot for BMEP (b) Comparison of experimental and ANN predicted BMEP 
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Fig. 9. (a) Regression plot for EGT (b) Comparison of experimental and ANN predicted EGT

The developed model predicted CO and NOx within acceptable 

limits. The predicted CO and NOx were close to the 

experimentally measured values. This is shown by the R-value 

near 1. The value of MSE, RMSE, and MAPE show the high 

prediction accuracy of the model. As shown in Fig. 10a and b, 

and 11a and b the gap between the experimentally determined 

and ANN predicted values are negligible for CO and NOx 

emissions. Due to the effects of CO emission on humans and the 

environment the parameters need to be accurately predicted so 

as to be able to drastically reduce CO emissions. High emissions 

of NOx in a CI engine remains one of the drawbacks for the 

application of FAME as a CI engine fuel. Researchers are still 

working on lowering the NOx emission in line with standards. 

This model accurately predicts the emissions of CO and NOx 

gases thereby making real-time engine tests unnecessary. This 

result is an improvement on the outcome of similar studies 

available in the literature [62, 63].  

 

Fig. 10. (a) Regression plot for CO (b) Comparison of experimental and ANN predicted CO 

 

Fig. 11. (a) Regression plot for NOx (b) Comparison of experimental and ANN predicted NOx 

 

It can be deduced from the outcomes of the model prediction 

that the ANN predicted values agree well with the 

experimentally measured values. This reveals that the 

developed ANN model has satisfactorily determined the 

UHC and smoke intensity of CI engine fueled with FAME. 

The R-value was found to be 0.9995 and 0.9966 for UHC and 
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smoke intensity, respectively. The closeness of these R values 

to 1 signifies the high accuracy of the prediction. For the UHC 

emissions the RMSE value is 0.1135 and MAPE value is 

2.503 % (Fig. 12a and 12b) and for the smoke intensity the 

RMSE is 0.02154 and the MAPE is 2.294 % (Figure 13a and 

13b). These small RMSE and MAPE values are indicative of 

the high accuracy of the developed model [41, 61, 63].  

 
 

Fig. 12. (a) Regression plot for UHC (b) Comparison of experimental and ANN predicted UHC 

 

Fig. 13. (a) Regression plot for Smoke intensity (b) Comparison of experimental and ANN predicted Smoke intensity 

 

III.I. Prediction of Engine Performance and Emissions of 

Optimal FAME 

A well-trained ANN model was deployed to predict the BSFC, 

BMEP, BTE, CO, EGT, UHC, NOx, and smoke intensity of CI 

engine fueled with the optimal FAME candidate produced to 

certain configurations. The two most important FA composition 

identified were C16:0 and C18:1 and these were used as inputs. 

The outcomes of the ANN predictions were compared with the 

outcomes of real-time CI engine tests from the literature as 

shown in Table 3. In terms of engine performance, the optimal 

candidates delivered encouraging performance parameters when 

compared with similar research outcomes. The BSFC was lower 

whereas the BTE was relatively high but at a lower EGT. The 

CO, NOx, UHC and smoke opacity emissions were found to be 

lower than all the outcomes of comparable investigations. The 

oxygenated fingerprint of the FAME candidate ensured better 

combustion which was reflected in the low CO emission. The 

low EGT also resulted in the low NOx emissions. These 

outcomes show that the computed optimal FAME candidates 

yielded better engine performance and emitted less regulated 

gases, thereby meeting the objective of developing a new fuel.  

Table 3. Datasets for the ANN model 

Parameter unit Present 

research 

Arunkumar et 

al. [64] 

Sanli et al. [65] Subramaniam 

et al. [66] 

Singh et al. 

[67] 

BSFC g/kWh 205 750 230 to 247 400 to 460 300 to 500 

BTE % 30 28 - 24 to 26 0 to 30 

BMEP bar 45 - 38 to 42 - - 

EGT ⁰ C 260 300 - - 150 to 380 

CO % 0.05 0.07 700 to 6000(ppm) - 0.05 to 0.09 

NOx ppm 400 470 1400 to 1550 300 to 900 350 to 980 

UHC ppm 18 35 22 to 26 - 70 to 110 

Smoke intensity - 50 55 - 72 to 102 9 to 50 
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III.I. Prediction of Engine Performance and Emissions of 

Optimal FAME 

A well-trained ANN model was deployed to predict the BSFC, 

BMEP, BTE, CO, EGT, UHC, NOx, and smoke intensity of CI 

engine fueled with the optimal FAME candidate produced to 

certain configurations. The two most important FA composition 

identified were C16:0 and C18:1 and these were used as inputs. 

The outcomes of the ANN predictions were compared with the 

outcomes of real-time CI engine tests from the literature as 

shown in Table 3. In terms of engine performance, the optimal 

candidates delivered encouraging performance parameters when 

compared with similar research outcomes. The BSFC was lower 

whereas the BTE was relatively high but at a lower EGT. The 

CO, NOx, UHC and smoke opacity emissions were found to be 

lower than all the outcomes of comparable investigations. The 

oxygenated fingerprint of the FAME candidate ensured better 

combustion which was reflected in the low CO emission. The 

low EGT also resulted in the low NOx emissions. These 

outcomes show that the computed optimal FAME candidates 

yielded better engine performance and emitted less regulated 

gases, thereby meeting the objective of developing a new fuel. 

 

IV. CONCLUSION  

In this study ANN was developed and trained using secondary 

data mined from literature for the simulation and prediction of 

engine performance and emission characteristics. The validated 

model was used to predict the engine performance and emission 

of a computed optimal FAME mix. The MATLAB ANN model 

based on BP-LM algorithms with tangent-sigmoid transfer 

function was developed to predict engine performance and 

emission parameters of an unmodified CI engine fueled with 

FAME. We employed two input layers, one hidden layer with 

ten neutrons, and eight output layers using NNTool techniques 

to determine the BSFC, BMEP, BTE, CO, EGT, UHC, NOx, 

and smoke intensity.  

The outcomes of the developed ANN model were evaluated 

using regression coefficient and other statistical error platforms 

as well as other performance metrics to compare the 

experimental data with ANN predicted data. A total of 749 data 

were mined from literature and used to train the model while the 

FA composition of the optimal FAME candidates were 

produced through the transesterification of WPO. Going by the 

results, the model performed very well with the experimental 

data matching the ANN predicted data with an overall 

regression coefficient (R) of 0.9998. For the engine performance 

parameters, R varied between 0.9982 and 0.9991 while the 

RMSE and MAPE ranged between 0.01834 and 0.09953, and 

1.729 % and 2.674 % respectively. The R, RMSE, and MAPE 

for the emission parameters varied from 0.9966 to 0.9997, 

0.02154 to 0.1725, and 1.6443 % to 4.546 % respectively. 

From the foregoing, the optimal FAME candidates, namely, 

C16:0 with results of 36.4 % and C18:1 with 59.8 % 

demonstrated better engine performance and mitigated emission 

characteristics. The developed model accurately and reliably 

predicted the performance and emission parameters within 

acceptable limits. Thus, these two FAs are sufficient to 

accurately predict the engine performance and emission 

characteristics of a conventional and unmodified CI engine. 

Thus, FAME with concentrations of C16:0 and C18:1 can be 

trusted to perform optimally and generate mitigated emissions. 

It is thus safe to conclude that the developed ANN model has 

been able to reliably and conveniently imitate real engine 

performance and emission characteristics within satisfactory 

prediction accuracy and efficiency.  

Going forward, this narrative should be stretched further to 

include the use of FA compositions of various feedstocks to 

predict, within reasonable accuracy, combustion, fuel mixing, 

and heat release rate with a view to evaluating their influence on 

engine performance, combustion, and emission characteristics 

of an unmodified CI engine.  
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