
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 2269-2272

© International Research Publication House. http://www.irphouse.com

2269

Comparing Different Algorithms based on Reinforcement Learning

for Congestion Control

Dr. Mythiliboopathi

Professor,

Vellore Institute of Technology,

Vellore, India.

Rushali Agrawal

Student,

Vellore Institute of Technology,

Vellore, India.

Tanay Arpit Shah

Student,

Vellore Institute of Technology,

Vellore, India.

 ORCID: 0000-0001-5957-9860

Abstract

There’s a surge in the usage of wired and wireless network,

and they’ve become more and more complex, such that the

fundamental assumptions made by the existing TCP variants

is not true anymore. Efforts on optimizing the performance of

TCP by modifying the core congestion-control technique

depending on specific network architectures or apps do not

generalize well under a wide variety of network scenarios.

This limitation arises from the rule-based design principle,

wherever the performance is connected to a pre-decided

mapping between the observed state of the network to the

corresponding actions. Therefore, these protocols are unable

to adapt their behavior in new environments or learn from

experience for higher performance. In this paper, we will

survey on different techniques of congestion control which is

based on reinforcement learning for making decisions and

conclude which method is better.

1. INTRODUCTION

With the growth of the internet and mobile networks, the

network traffic is an area of major concern today.Even with

the increase in capacities of wired as well as wireless links,

the gap between what the user demands and what the internet

offers is getting wider.

Rapid advancements in wired and wireless technologies have

triggered the emergence of new network architectures. With

the rapid increase in the number of new applications such as

video streaming, cloud storage, on-line gaming, it tends to

creates higher performance requirements for the data

transmission environment and thereby poses new challenges

on the design of congestion control protocols. These online

applications are based on TCP performance. User experience

and company revenue is directly affected by the performance

of TCP which still suffers from an unsatisfactory

performance. The main problems that TCP suffers from are:

1. TCP cannot deal with short flows gracefully.

2. The performance of congestion control (CC)

algorithms remains far from ideal.

To overcome these issues, a new method is suggested that is,

implementation of reinforcement learning methods to

dynamically configure IW and CC for improving the network

transmission performance in the Internet. Reinforcement

learning consists of an agent and an environment, agent is

trained to find the optimal solution for a problem and it learns

the same with the help of reward. Congestion control is the

most important networking function of the transport layer,

which ensures reliable delivery of application data. Several

congestion control protocols have been designed in the past

few years since the advancement in the field of network study

and research. With the new protocols being developed, there

is a limitation of not being able to perform well in different

network sceanrios and hence it is rarely implemented in real

world.

2. LITERATURE SURVEY

Author K Xiao et al. [1] suggests a new and a smart

congestion control algorithm which is based on

Reinforcement Learning implemented by using Deep Neural

Networks hence called as Deep Reinforcement Learning. The

algorithm is named as TCP – Deep ReInforcement learNing –

based Congestion control a.k.a. TCP-Drinc. It learns from the

past experience in the form of set of measured features to

decide how to adjust the Congestion Window Size. This

algorithm’s performance is compared to 5 benchmark.

algorithms for Congestion Control namely TCP – NewReno,

TCP – Cubic, TCP – Hybla, TCP – Vegas, TCP – Illinois.

TCP – Drinc achieves the Highest Throughput and 2nd

Lowest Round Trip Time (RTT) for increased propagation

delay and number of users and bottleneck capacity.

Author Wei Li et al. [2] proposes a novel approach of

integrating a reinforcement-based Q-learning framework with

TCP design called QTCP. QTCP allows the senders to

gradually learn the optimal congestion control policy in an on-

line manner. It does not need the hard-coded rules, therefore,

it generalize to a variety of different networking scenarios.

Furthermore, the author also proposes to develop a

generalized Kanerva coding function approximation

algorithm, which reduces the computation complexity of

value functions. This QTCP protocol can automatically

identify the optimal congestion window (cWnd) varying

strategy, given the observation of the surrounding networking

environment in an on-line manner. Better throughout and

delay product than TCP-NewReno (59.5%) and QTCP-

Baseline (35.2%). Slightly better RTT performance than

NewReno.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 2269-2272

© International Research Publication House. http://www.irphouse.com

2270

The author Xiaohui Nie et .al [3] proposes an improvised

algorithm called TCP-RL, which uses reinforcement learning

(RL) techniques to dynamically configure IW and CC in order

to improve the performance of TCP flow transmission.

According to the current research, TCP-RL dynamically

configures a suitable IW for short flows through group-based

RL, and dynamically configures a suitable CC scheme for

long flows through deep RL. In this paper, the author focus on

two well-known TCP performance problems:

 (1) TCP cannot deal with short flows gracefully

 (2) The performance of congestion control (CC) algorithms

remains far from ideal.

TCPRL reduces the TCP response time by 23% to 29%. It’s

performance ranks top 5 for about 85% of the 288 given static

network conditions.

3. METHODOLOGY

In [1], Author uses the general setting of congestion control

which includes set of remote hosts for serving the mobile

users. Multiple hops are required from travelling to the mobile

user from the host. The remote hosts apply a congestion

window (cWnd) based protocol. They have considered these

features as the general settings: competitions among different

flows at bottleneck links and potentially multiple bottlenecks

along the end-to-end path.

The agent used for reinforcement learning uses the past

experience which is stored in the buffer named as experience

for the learning purpose. The author used the combination of 3

different methods namely “Feature Selection”, “Clipped

Rewards”, “Modified Training Process” for tackling the

problem of multiple agent competition which will lead the

agent to wrong states and hence decrease the accuracy.

For simulation purpose, the dropout layer is applied with a 0.2

dropout probability to provide both regularization and

ensemble effect. The LSTM layer with 64 units is applied

after the DCNN layers. One fully connected layer is used with

activation function ELU. The output layer is a linear

combination of the previous output with five outputs, one for

each action. For simulations, the author has assumed there are

N remote hosts and N wired/wireless users i.e. each host has

separate agent which do not share information with each

other.

The following three testing cases are simulated in this section.

Case I: The number of user are fixed to four and the

bottleneck bandwidth to 10 Mbps while the propagation delay

is varied between 60 – 240 ms inclusive.

Case II: The number of users is varied in the range of 3-9

inclusive, while the propagation delay is fixed to 80 ms and

bottleneck bandwidth to 8 Mbps.

Case III: Author selected the number of user as four and the

propagation delay was set to be 100 ms along with that the

bottleneck bandwidth is varied between 5 – 20 Mbps

inclusive.

In [2], the main goal of congestion control is to allow the

sender to share limited bandwidth, without clogging the

network. Above function is performed by controlling the

congestion window (cWnd) which will limit the number of

packets injected by the sender safely without causing

clogging. The QTCP model consists of the following

elements:

 States: A state is a distinctive profile of the network

conditions evaluated through 100 performance

metrics. the choice of actions is the key to the

QTCP’s performance.

 Actions: The action is that the decision to increase,

decrease, or leave unchanged the current cWnd

 Rewards: It reflects the desirability of the action

picked.

 Training Algorithm: Typically, this can be often the

central module of QTCP because it is responsible for

developing the congestion control methods.

QTCP works by checking the values of selected state

variables and passing these state values to the currently

trained policy to generate an action to adjust cWnd. Then

QTCP observes the new state and therefore the reward and

uses them as an input to the training algorithm that evaluates

and improves the cWnd changing policies.

Here, a set of prototype is chosen and used to approximate the

value functions, where the state or state-action values are

estimated by a linear combination of values of local

prototypes. In each time step, only prototypes that are adjacent

to the input sample data are updated. adaptive Kanerva

Coding: If the set of prototypes is chosen wisely, Kanerva

coding works well. If prototypes are not well distributed

across the appropriate regions of the state space, several input

sample data, in this case, the visited states, will not be

adjacent to sufficient prototypes, or maybe worse, they will

not have any adjacent prototypes at all to estimate their

values. This scenario is caused by poorly selected prototypes

and greatly reduces the accuracy valuable selected estimation.

This approach starts with an initial set of randomly selected

prototypes and periodically deletes poorly performing/rarely

utilized prototypes and generates corresponding new

prototypes to bit by bit adjust the allocation of original set of

prototypes to cover the region of interest.

In [3], The implementation of TCP-RL includes 3 main

modules-

A. connection Manager

B. data Collector

C. Reinforcement Learning

A. Connection Manager: For the initial window configuration

for short flow dominated services, the connection Manager

queries the IW Table with the user’s IP, and therefore the

result is the IW for this flow. Then it modifies the IW for this

flow immediately. Before the frontend server starts sending

data to user, the above mentioned procedures are completed.

Once the TCP session is closed, the connection Manager logs

the TCP performance data of this session.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 2269-2272

© International Research Publication House. http://www.irphouse.com

2271

For the CC configuration for long flow dominated services,

the difference is that the connection Manager queries the

Neural Network with the network state and therefore the result

is the CC for this flow then, it modifies the CC for this flow.

The connection Manager repeats these procedures at a

timescale of seconds till the flow transmission is finished.

B. Data Collector: each frontend server outputs {the data| the

info| the information} in a log file and conjointly uses

hypertext transfer protocol POST to send the data to a

centralized data storage platform in data Collector.

Reinforcement Learning takes these performance data as the

basic input. All the data are collected in real time, and data

Collector aggregates and monitors the network. One necessary

point to be noted here is that the TCP response time is the key

metric for evaluating the performance for short flow.

C. Reinforcement Learning: once data are collected, TCP-RL

runs user grouping and RL algorithm. The user grouping

algorithm runs at a long scale. The RL algorithm runs at a

timescale of minutes to continuously learn the suitable IW or

CC scheme for every user group. This module controls all the

frontend server’s behavior by updating their IW Tables. it is

implemented with Golang and Python in the control center.

4. CONCLUSIONS

TCP-Drinc achieves a much lower RTT performance than the

loss based protocols e.g. at least 46% lower than TCP-

NewReno [1] while QTCP - Generalization outperforms TCP

– NewReno by 59.5% [2]. Hence, we can conclude that

QTCP is better than TCP – Drinc.

TCP-Drinc has much more throughput than TCP-Vega almost

double i.e. 100% more than TCP – Vegas, while RTT is only

15% higher for TCP-Drinc [1]. TCP-RL has less throughput

than TCP – Vegas (TCP – Vegas has approximately 23.4%

more than TCP - RL), although, but it has a very low RTT as

compared it, TCP - RL is approximately 11% of TCP –

Vegas.

So now, we can find out the Threshold for TCP – Drinc, i.e.

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝐷𝑟𝑖𝑛𝑐)
= 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑉𝑒𝑔𝑎𝑠) + 100%
∗ 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑉𝑒𝑔𝑎𝑠)

 = 2 ∗ 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑉𝑒𝑔𝑎𝑠)

 = 2 ∗ 71.97

 = 143.94 𝑀𝑏𝑝𝑠

So, we can say that, Throughput of TCP Drinc i.e. 143.94

Mbps is more than Throughput of TCP- RL i.e. 58.31 Mbps

𝑅𝑇𝑇(𝐷𝑟𝑖𝑛𝑐) = 𝑅𝑇𝑇(𝑉𝑒𝑔𝑎𝑠) + 15% ∗ 𝑅𝑇𝑇(𝑉𝑒𝑔𝑎𝑠)

 = 1.15 ∗ 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑉𝑒𝑔𝑎𝑠)

 = 1.15 ∗ 110.7

 = 127.305 𝑚𝑠

So, we can say that, RTT of TCP Drinc i.e. 127.305ms is

more than RTT of TCP- RL i.e. 12.16ms

TCP – RL sacrifices Throughput for getting a better RTT,

hence we can conclude that TCP – Drinc is better than

TCP – RL.

Fig 1. CDF vs Real Time Throughput and Real Time RTT [2]

Fig 2. CDF% vs Throughput and RTT [3]

As seen from the graph in Fig.1 QTCP – Generalization

achieves 100% CDF at the throughput of 19 Mbps with the

RTT as 128ms and from Fig.2 TCP-RL achieves 100% CDF

at 1.2 Mbps with RTT as 55ms. We actually cannot compare

these values because they are carried out in different

conditions. So, for comparing we can find out the ratio of

Throughput/RTT for each model. Hence, for QTCP –

Generalization, we get the ratio as:

19

128
∗ 1000 = 148.43 𝑀𝑏/𝑠2

 and for TCP-RL, we get the ratio as:

1.2

5500
∗ 1000 = 21.81 𝑀𝑏/𝑠2

From above we prove, QTCP is better than TCP – RL as the

ratio is higher, and we want the throughput to be higher and

RTT to be lower.

Hence we can give the following order of Congestion Control

Algorithms:

𝑄𝑇𝐶𝑃 > 𝑇𝐶𝑃 − 𝐷𝑟𝑖𝑛𝑐 > 𝑇𝐶𝑃 − 𝑅𝐿

REFERENCES

[1] Xiao, K., Mao, S., & Tugnait, J. K. (2019). TCP-Drinc:

Smart Congestion Control Based on Deep

Reinforcement Learning. IEEE Access, 7, 11892-

11904.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 2269-2272

© International Research Publication House. http://www.irphouse.com

2272

[2] Li, W., Zhou, F., Chowdhury, K. R., & Meleis, W. M.

(2018). QTCP: Adaptive congestion control with

reinforcement learning. IEEE Transactions on Network

Science and Engineering.

[3] Nie, X., Zhao, Y., Li, Z., Chen, G., Sui, K., Zhang, J.,

... & Pei, D. (2019). Dynamic TCP initial windows and

congestion control schemes through reinforcement

learning. IEEE Journal on Selected Areas in

Communications, 37(6), 1231-1247.

