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Abstract 

There’s a surge in the usage of wired and wireless network, 

and they’ve become more and more complex, such that the 

fundamental assumptions made by the existing TCP variants 

is not true anymore. Efforts on optimizing the performance of 

TCP by modifying the core congestion-control technique 

depending on specific network architectures or apps do not 

generalize well under a wide variety of network scenarios. 

This limitation arises from the rule-based design principle, 

wherever the performance is connected to a pre-decided 

mapping between the observed state of the network to the 

corresponding actions. Therefore, these protocols are unable 

to adapt their behavior in new environments or learn from 

experience for higher performance. In this paper, we will 

survey on different techniques of congestion control which is 

based on reinforcement learning for making decisions and 

conclude which method is better. 

 

1. INTRODUCTION 

With the growth of the internet and mobile networks, the 

network traffic is an area of major concern today.Even with 

the increase in capacities of wired as well as wireless links, 

the gap between what the user demands and what the internet 

offers is getting wider. 

Rapid advancements in wired and wireless technologies have 

triggered the emergence of new network architectures. With 

the rapid increase in the number of new applications such as 

video streaming, cloud storage, on-line gaming, it tends to 

creates higher performance requirements for the data 

transmission environment and thereby poses new challenges 

on the design of congestion control protocols. These online 

applications are based on TCP performance. User experience 

and company revenue is directly affected by the performance 

of TCP which still suffers from an unsatisfactory 

performance. The main problems that TCP suffers from are: 

1. TCP cannot deal with short flows gracefully. 

2. The performance of congestion control (CC) 

algorithms remains far from ideal. 

To overcome these issues, a new method is suggested that is, 

implementation of reinforcement learning methods to 

dynamically configure IW and CC for improving the network 

transmission performance in the Internet. Reinforcement 

learning consists of an agent and an environment, agent is 

trained to find the optimal solution for a problem and it learns 

the same with the help of reward. Congestion control is the 

most important networking function of the transport layer, 

which ensures reliable delivery of application data. Several 

congestion control protocols have been designed in the past 

few years since the advancement in the field of network study 

and research. With the new protocols being developed, there 

is a limitation of not being able to perform well in different 

network sceanrios and hence it is rarely implemented in real 

world. 

 

2. LITERATURE SURVEY 

Author K Xiao et al. [1] suggests a new and a smart 

congestion control algorithm which is based on 

Reinforcement Learning implemented by using Deep Neural 

Networks hence called as Deep Reinforcement Learning. The 

algorithm is named as TCP – Deep ReInforcement learNing – 

based Congestion control a.k.a. TCP-Drinc. It learns from the 

past experience in the form of set of measured features to 

decide how to adjust the Congestion Window Size. This 

algorithm’s performance is compared to 5 benchmark. 

algorithms for Congestion Control namely TCP – NewReno, 

TCP – Cubic, TCP – Hybla, TCP – Vegas, TCP – Illinois. 

TCP – Drinc achieves the Highest Throughput and 2nd 

Lowest Round Trip Time (RTT) for increased propagation 

delay and number of users and bottleneck capacity. 

Author Wei Li et al. [2] proposes a novel approach of 

integrating a reinforcement-based Q-learning framework with 

TCP design called QTCP. QTCP allows the senders to 

gradually learn the optimal congestion control policy in an on-

line manner. It does not need  the hard-coded rules, therefore, 

it generalize to a variety of different networking scenarios. 

Furthermore, the author also proposes to develop a 

generalized Kanerva coding function approximation 

algorithm, which reduces the computation complexity of 

value functions. This QTCP protocol can automatically 

identify the optimal congestion window (cWnd) varying 

strategy, given the observation of the surrounding networking 

environment in an on-line manner. Better throughout and 

delay product than TCP-NewReno (59.5%) and QTCP-

Baseline (35.2%). Slightly better RTT performance than 

NewReno. 
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The author Xiaohui Nie et .al [3] proposes an improvised 

algorithm called TCP-RL, which uses reinforcement learning 

(RL) techniques to dynamically configure IW and CC in order 

to improve the performance of TCP flow transmission. 

According to the current research, TCP-RL dynamically 

configures a suitable IW for short flows through group-based 

RL, and dynamically configures a suitable CC scheme for 

long flows through deep RL. In this paper, the author focus on 

two well-known TCP performance problems: 

 (1) TCP cannot deal with short flows gracefully 

 (2) The performance of congestion control (CC) algorithms 

remains far from ideal. 

TCPRL reduces the TCP response time by 23% to 29%. It’s 

performance ranks top 5 for about 85% of the 288 given static 

network conditions. 

 

3. METHODOLOGY 

In [1], Author uses the general setting of congestion control 

which includes set of remote hosts for serving the mobile 

users. Multiple hops are required from travelling to the mobile 

user from the host. The remote hosts apply a congestion 

window (cWnd) based protocol. They have considered these 

features as the general settings: competitions among different 

flows at bottleneck links and potentially multiple bottlenecks 

along the end-to-end path. 

The agent used for reinforcement learning uses the past 

experience which is stored in the buffer named as experience 

for the learning purpose. The author used the combination of 3 

different methods namely “Feature Selection”, “Clipped 

Rewards”, “Modified Training Process” for tackling the 

problem of multiple agent competition which will lead the 

agent to wrong states and hence decrease the accuracy. 

For simulation purpose, the dropout layer is applied with a 0.2 

dropout probability to provide both regularization and 

ensemble effect. The LSTM layer with 64 units is applied 

after the DCNN layers. One fully connected layer is used with 

activation function ELU. The output layer is a linear 

combination of the previous output with five outputs, one for 

each action. For simulations, the author has assumed there are 

N remote hosts and N wired/wireless users i.e. each host has 

separate agent which do not share information with each 

other. 

The following three testing cases are simulated in this section. 

Case I: The number of user are fixed to four and the 

bottleneck bandwidth to 10 Mbps while the propagation delay 

is varied between 60 – 240 ms inclusive. 

Case II: The number of users is varied in the range of 3-9 

inclusive, while the propagation delay is fixed to 80 ms and 

bottleneck bandwidth to 8 Mbps. 

Case III: Author selected the number of user as four and the 

propagation delay was set to be 100 ms along with that the 

bottleneck bandwidth is varied between 5 – 20 Mbps 

inclusive. 

In [2], the main goal of congestion control is to allow the 

sender to share limited bandwidth, without clogging the 

network. Above function is performed by controlling the 

congestion window (cWnd) which will limit the number of 

packets injected by the sender safely without causing 

clogging. The QTCP model consists of the following 

elements: 

 States: A state is a distinctive profile of the network 

conditions evaluated through 100 performance 

metrics. the choice of actions is the key to the 

QTCP’s performance. 

 Actions: The action is that the decision to increase, 

decrease, or leave unchanged the current cWnd 

 Rewards: It reflects the desirability of the action 

picked. 

 Training Algorithm: Typically, this can be often the 

central module of QTCP because it is responsible for 

developing the congestion control methods. 

QTCP works by checking the values of selected state 

variables and passing these state values to the currently 

trained policy to generate an action to adjust cWnd. Then 

QTCP observes the new state and therefore the reward and 

uses them as an input to the training algorithm that evaluates 

and improves the cWnd changing policies. 

Here, a set of prototype is chosen and used to approximate the 

value functions, where the state or state-action values are 

estimated by a linear combination of values of local 

prototypes. In each time step, only prototypes that are adjacent 

to the input sample data are updated. adaptive Kanerva 

Coding: If the set of prototypes is chosen wisely, Kanerva 

coding works well. If prototypes are not well distributed 

across the appropriate regions of the state space, several input 

sample data, in this case, the visited states, will not be 

adjacent to sufficient prototypes, or maybe worse, they will 

not have any adjacent prototypes at all to estimate their 

values. This scenario is caused by poorly selected prototypes 

and greatly reduces the accuracy valuable selected estimation. 

This approach starts with an initial set of randomly selected 

prototypes and periodically deletes poorly performing/rarely 

utilized prototypes and generates corresponding new 

prototypes to bit by bit adjust the allocation of original set of 

prototypes to cover the region of interest. 

In [3], The implementation of TCP-RL includes 3 main 

modules- 

A. connection Manager 

B. data Collector 

C. Reinforcement Learning 

A. Connection Manager: For the initial window configuration 

for short flow dominated services, the connection Manager 

queries the IW Table with the user’s IP, and therefore the 

result is the IW for this flow. Then it modifies the IW for this 

flow immediately. Before the frontend server starts sending 

data to user, the above mentioned procedures are completed. 

Once the TCP session is closed, the connection Manager logs 

the TCP performance data of this session. 
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For the CC configuration for long flow dominated services, 

the difference is that the connection Manager queries the 

Neural Network with the network state and therefore the result 

is the CC for this flow then, it modifies the CC for this flow. 

The connection Manager repeats these procedures at a 

timescale of seconds till the flow transmission is finished. 

B. Data Collector: each frontend server outputs {the data| the 

info| the information} in a log file and conjointly uses 

hypertext transfer protocol POST to send the data to a 

centralized data storage platform in data Collector. 

Reinforcement Learning takes these performance data as the 

basic input. All the data are collected in real time, and data 

Collector aggregates and monitors the network. One necessary 

point to be noted here is that the TCP response time is the key 

metric for evaluating the performance for short flow. 

C. Reinforcement Learning: once data are collected, TCP-RL 

runs user grouping and RL algorithm. The user grouping 

algorithm runs at a long scale. The RL algorithm runs at a 

timescale of minutes to continuously learn the suitable IW or 

CC scheme for every user group. This module controls all the 

frontend server’s behavior by updating their IW Tables. it is 

implemented with Golang and Python in the control center. 

 

4. CONCLUSIONS 

TCP-Drinc achieves a much lower RTT performance than the 

loss based protocols e.g. at least 46% lower than TCP-

NewReno [1] while QTCP - Generalization outperforms TCP 

– NewReno by 59.5% [2]. Hence, we can conclude that 

QTCP is better than TCP – Drinc. 

TCP-Drinc has much more throughput than TCP-Vega almost 

double i.e. 100% more than TCP – Vegas, while RTT is only 

15% higher for TCP-Drinc [1]. TCP-RL has less throughput 

than TCP – Vegas (TCP – Vegas has approximately 23.4% 

more than TCP - RL), although, but it has a very low RTT as 

compared it, TCP - RL is approximately 11% of TCP – 

Vegas.  

So now, we can find out the Threshold for TCP – Drinc, i.e. 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝐷𝑟𝑖𝑛𝑐)
= 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑉𝑒𝑔𝑎𝑠) + 100%
∗ 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑉𝑒𝑔𝑎𝑠) 

                 = 2 ∗ 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑉𝑒𝑔𝑎𝑠)  

               = 2 ∗ 71.97 

                 = 143.94 𝑀𝑏𝑝𝑠 

So, we can say that, Throughput of TCP Drinc i.e. 143.94 

Mbps is more than Throughput of TCP- RL i.e. 58.31 Mbps 

𝑅𝑇𝑇(𝐷𝑟𝑖𝑛𝑐) = 𝑅𝑇𝑇(𝑉𝑒𝑔𝑎𝑠) + 15% ∗ 𝑅𝑇𝑇(𝑉𝑒𝑔𝑎𝑠) 

           = 1.15 ∗ 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑉𝑒𝑔𝑎𝑠) 

                     = 1.15 ∗ 110.7 

                     = 127.305 𝑚𝑠 

So, we can say that, RTT of TCP Drinc i.e. 127.305ms is 

more than RTT of TCP- RL i.e. 12.16ms 

TCP – RL sacrifices Throughput for getting a better RTT, 

hence we can conclude that TCP – Drinc is better than 

TCP – RL. 

 

Fig 1. CDF vs Real Time Throughput and Real Time RTT [2] 

 

 

Fig 2. CDF% vs Throughput and RTT [3] 

 

As seen from the graph in Fig.1 QTCP – Generalization 

achieves 100% CDF at the throughput of 19 Mbps with the 

RTT as 128ms and from Fig.2 TCP-RL achieves 100% CDF 

at 1.2 Mbps with RTT as 55ms. We actually cannot compare 

these values because they are carried out in different 

conditions. So, for comparing we can find out the ratio of 

Throughput/RTT for each model. Hence, for QTCP – 

Generalization, we get the ratio as: 

19

128
∗ 1000 = 148.43 𝑀𝑏/𝑠2 

 and for TCP-RL, we get the ratio as: 

1.2

5500
∗ 1000 = 21.81 𝑀𝑏/𝑠2  

From above we prove, QTCP is better than TCP – RL as the 

ratio is higher, and we want the throughput to be higher and 

RTT to be lower. 

Hence we can give the following order of Congestion Control 

Algorithms: 

𝑄𝑇𝐶𝑃 > 𝑇𝐶𝑃 − 𝐷𝑟𝑖𝑛𝑐 > 𝑇𝐶𝑃 − 𝑅𝐿 
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