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Abstract 

Computer viruses and related malware are major problems for 

personal and corporate computers and for computer networks. 

A common approach to prevent the destructive effects of 

viruses on computers is to install anti-virus programs on 

individual computers. An alternative approach to prevent the 

propagation of viruses in computer networks is to use 

mathematical models similar to those developed for 

understanding and preventing the spread of epidemics in 

human, animal or plant populations. In this paper, we focus on 

the fully susceptible, partially susceptible, infectious, 

protected (FSSIP) model including Caputo fractional 

derivative to study the effect of anti-virus software on 

infection in computer networks.  We apply the shifted 

Chebyshev collocation method to obtain analytical solutions 

(series solutions) of the FSSIP model with the virus input into 

each group which is time-dependent function due to the 

appearance of new viruses and updating of the installed anti-

virus software. This method is simple, efficiency, and accurate 

when comparing the numerical results to Runge-Kutta-

Fehlberg method (RKF45) and Cash-Karp method (CK45). 

Keywords: Computer viruses, anti-virus programs, Caputo 

fractional differential equations, FSSIP model, shifted 

Chebyshev collocation method. 

 

I. INTRODUCTION  

With the widespread use of the internet, systems running on 

networked computers become more vulnerable to digital 

threats such as computer viruses, ILOVEYOU, Redcode, 

Melissa and Sasser.  These threats pose a serious challenge to 

information security. Many programmers and anti-virus 

software companies currently develop and update anti-virus 

programs against the new viruses, but more computer viruses 

are continuously created. However, most anti-virus software 

currently installed in computers can only offer a temporary 

immunity against viruses because of the rapid development of 

new viruses and the time lag between the dissemination of the 

new virus and the dissemination of updated anti-virus 

software.  Due to the fact that the development of anti-virus 

software often lags behind the appearance of new viruses, 

many computers are only partially protected and can be 

susceptible to attacks that can cause the loss of millions of 

dollars worth of data and loss of productivity. It is therefore 

important to understand the way that computer viruses spread 

through computer networks and to work out effective defense 

measures [1, 2]. 

In the past several decades, many researchers have used 

mathematical models for determining the transmission of 

disease as models to study the spread of computer viruses 

through computer networks.  For example, the SIR classical 

epidemic model[3, 4] has been used to develop models for the 

spreading and attacking behaviour of computer viruses in 

many different phenomena, including virus propagation [1-6], 

time delay [2], fuzziness [3], effect of anti-virus software [7, 

8], virus immunization [9], vaccination [10], quarantine [11, 

12], etc.  May et al. [13] studied the dynamical behaviour of 

viruses on scale-free networks, and T. Chen et al. [12] studied 

the fast quarantining of proactive worms in peer-to-peer (P2P) 

computer networks.  Z. Wang et al. [14, 15] studied the 

robustness of filtering on non-linearities in packet losses, 

sensors. 

The spread of computer virus phenomenon is unusual and 

some computer viruses can spread to ten million computers in 

a short time period. These spreads (revolutions) led to use of 

mathematical tools based on the derivative and integrals with 

integer order, and the differential and difference equations. 

Actually, the present moment new spread changes are actually 

taking place in modern computer viruses. These changes can 

be called a revolution of memory and non-locality. It is 

increasingly obvious in computer viruses when their 

behaviour may depend on the history of previous changes in 

computer viruses. Many researchers try to propose fractional 

generalization models which include Riemann–Liouville, 

Caputo, Hadamard, Riesz and Grünwald–Letnikov fractional 

derivative that improved the computer virus models for 

researching processes with memory or history. The suggested 

factional models are realized by considering non-integer 

fractional order 0 1   instead of positive integer values of 
.  Fractional modelling is a more advantageous approach 
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which has been used to study the behaviour of diseases or 

viruses than the integer derivative model which is local in 

nature, while the fractional derivative is global (non-local). In 

addition, the fractional derivative is used to increase the 

stability region of the system. 

In 2014, C.M. A. Pinto and J. A. T. Machado [16] proposed a 

fractional model for computer virus propagation which 

includes the interaction between computers and removable 

devices by numerically simulating the model for distinct 

values of the order of the fractional derivative and for two sets 

of initial conditions. In 2015, A. H. Handam and A. A. 

Freihat [17] modified the epidemiological model for computer 

viruses (SAIR) proposed by J. R. C. Piqueira and V. O. 

Araujo by fractional derivatives described in the Caputo sense. 

In 2016, A. M. A. El-Sayed, A. A. M. Arafa, M. Khalil and A. 

Hassan [18] proposed numerical simulations that are used to 

show the behaviour of a fractional-order mathematical model 

with memory for the propagation of computer virus under 

human intervention. In 2017, E. Bonyah, A. Atangana and M. 

Khan [19] investigated the analytical solutions of modeling 

the spread of computer virus via Caputo fractional derivative 

and the Beta‑ derivative solved by the Laplace perturbation 

method and the homotopy decomposition technique. In 2018, 

J. Singh, D. Kumar, Z. Hammouch and A. Atangana [20] 

analyzed a moderate fractional epidemiological model to 

describe computer viruses with an arbitrary order derivative 

having a non-singular kernel. 

Chebyshev method which is a relatively power tool and an 

emerging area in mathematical researches is greatly useful for 

solving differential equations, fractional differential equations, 

integro-differential equations and fractional Volterra integro-

differential equations.  The properties of Chebyshev are used 

to make the operational matrix which eventually leads to the 

coefficient matrix of obtained system. In 2007, G.C. 

Malachowski, R.M. Clegg and G.I. Redford [21] proposed 

analytic solutions to model exponential and harmonic 

functions by using Chebyshev polynomials. In 2015 A. Rivaz, 

S. J. Ara and F. Yousef [22] studied two-dimensional 

Chebyshev polynomials for solving two-dimensional integro-

differential equations. In 2016, O. B. Arushanyan and S. F. 

Zaletkin [23] applied Chebyshev series to approximate 

analytic solution of ordinary differential equations. In 2017,  

N. Razmjooy and M. Ramezani [24] proposed analytical 

solution for optimal control by the second kind Chebyshev 

polynomials expansion. Moreover, many mathematical 

methods have been proposed for finding analytical solutions 

based on transform methods or perturbation methods or 

expansions as series of orthogonal functions. The 

transformation methods that have been used include Laplace, 

Fourier and Mellin transforms [25], the Tau method [26]. The 

perturbation methods include the Adomian decomposition 

method [27], the variational iteration method [28, 29] and the 

Sumudu decomposition method [30]. The methods based on 

expansions in orthogonal functions include expansions in 

blockpulse functions [31], shifted Chebyshev polynomials 

[32], shifted Legendre polynomials [33], Chebyshev wavelets 

[34], Legendre wavelets [35] etc. 

 

II. MODEL FORMULATION 

In this paper, we propose a fully and partially susceptible, 

infectious, protected computer virus propagation model 

(FSSIP) in Caputo fractional order- derivative sense, which 

was originally studied by B. K. Mishra and S. K.  Pandey [36] 

(1 )

(1 )

(1 )

.

dS
p b SI S dS S P

dt

dS
pb S S dS S S I

dt

dI
b SI S I dI I I

dt
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S I dP P

dt





   





   

    

     

  

      

      

      

   

   (1) 

In this model, computers can be divided into four groups: 

fully susceptible (no anti-virus software), partially susceptible 

(partially effective anti-virus software), infected (infected by 

virus), and protected (100% effective anti-virus software). 

Moreover, the connecting network as a function depends on 

the time between to the appearance of new viruses and 

updating of the installed anti-virus software. The flow chart of 

the generalized FSSIP model is shown in Fig. 1.   

 
Fig. 1. Flow chart for the generalized FSSIP computer 

network model. 

The model (1) can be extended by the Caputo fractional 

derivatives of orders (0,1]  , so the resulting equations still 

have the problem in which the units of the left-hand side and 

the right-hand side of the resulting system mismatch, the units 

of the left-hand side are time    while the units of the right-

hand side of the system have the dimension 1time . Therefore, 

we must preserve units as described in [37, 38] on both sides 

of each equation in the resulting system by changing some of 

the original parameters. 

The propagation of computer virus can be determined and 

modelled by the system of non-linear Caputo fractional 

differential equations 

( ) ( ) ( ) ( ) ( ) ( )
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with initial conditions (0), (0), (0) and (0),S S I P where ( )tD   

is Caputo fractional derivative operator, the value of (0,1]   

represents fractional order of Caputo fractional derivative and 

the definitions of the variables, parameters, and functions in 

the model are given in Table 1. 

 

Table 1. Definitions of parameters and functions in the generalized FSSIP model 

Parameter Explanation Units 

 Sf t  Rate of attachment of new fully susceptible S nodes to the network 1minite  

( )Sf t


 Rate of attachment of new partially susceptible S nodes to the network 1minite  

 If t  Rate of attachment of new infected I nodes to the network 1minite  

 Pf t  Rate of attachment of new fully protected P nodes to the network 1minite  

0d   Rate at which internal nodes are detached from the network 1minite  

0   Rate at which S nodes move to the S group due to installation of anti-virus software 1minite  

0   Rate at which S nodes move to the S group due to out-of-date anti-virus software 1minite  

0   Rate at which S nodes become infected and move to I group 1minite  

0 1   Effectiveness factor of anti-virus software in reducing rate at which S nodes become infected  

0   Rate at which S nodes move to P group due to installation of anti-virus software 1minite  

0   Rate at which virus is removed from I nodes by anti-virus software and they move to P group 1minite  

0   Rate at which I nodes crash due to infection by virus 1minite  

0   Rate at which P nodes lose protection and move to S group due to out-of-date anti-virus software 1minite  

 

III. PRELIMINARIES 

III.I Caputo fractional Derivative 

In this section we introduce some necessary definitions of 

Caputo fractional derivative [39]. 

 

Definition 1. Let ,n      and [ , ]nu C a b . Then the 

Caputo fractional derivative of ( )u t  is defined by 

( )

1

1 ( )
( ) ,

( ) ( )

n
t

a na

u x
D u t dx

n t x



  

    

with some properties of Caputo fractional derivatives; 

 0  is a constant = aD C C  (3) 

 

0,

( 1)
,

(

 

1 )

aD t
t
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 

 
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 



    


  
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 (4) 

where 0   .     denotes the largest integer less than 

or equal to   and     is the smallest integer greater than or 

equal to  . 

III.II Existence of solutions for Caputo fractional 

differential equation 

Theorem 2. Assuming a function f  in the initial value 

problem of fractional order with (0,1]   

     0( ) , ( ) , , n

aD u t f t u t u a u u     (5) 

is continuous and bounded. Then there exists a solution [40]. 

Theorem 3. The function ( ) [ , ]u t C a b  is a solution of the 

initial value problem in (5) if and only if it is a solution of the 

nonlinear Volterra integral equation 

 
1

( ) 1

0
0

0

1
( ) ( ) ( , ( )) ,

! ( )

km t
k

k

t
u t u t f u d

k
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






  


   (6) 

where m      [40]. 

III.III Shifted Chebyshev polynomials 

Definition 4. Chebyshev polynomials ( )nT s  of the first kind 

are polynomials in s  of degree 0,1,2,3, ,n   which are 

defined by the relation [41, 42]: 

( ) cos( ),  where cos( ).nT s n s    
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This leads to shifted Chebyshev polynomials (of the first kind) 
*( )nT t   of degree n  for [0,1]t  given by 

*( ) ( ) (2 1),n n nT t T s T t    

where * *

0 1( ) 1, ( ) 2 1T t T t t    and the shifted Chebyshev 

polynomials *

1( )nT t
 

 * * *

1 1( ) 2(2 1) ( ) ( ), 1,2,3,n n nT t t T t T t n      (7) 

The zeros of the shifted Chebyshev polynomials *

1( )NT t
 are 

given by 

 
1 [4( ) 3]

1 cos , 0,1,2, , .
2 4( 1)

n

N n
t n N

N

   
     

  
 (8) 

By shifted Chebyshev method, the solution ( )u t  can be 

expressed in terms of shifted Chebyshev polynomials as 

 *

0

( ) ( )n n

n

u t a T t




  (9) 

where the coefficients 
na  are given by 

 

*
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0 2
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,
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n
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In practice, the first (N+1)-terms of shifted Chebyshev 

polynomials are only  considered, so we have an approximate 

analytical solution as: 

 *

0

( ) ( ).
N

N

n n

n

u t a T t


  (11) 

Theorem 5. Let ( )Nu t  be approximated by Chebyshev 

polynomials as (11) and 0 1  ; then the Caputo fractional 

derivative of ( )Nu t  is obtained by [43] 
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,n kw 
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III.IV Shifted Chebyshev analytical solution 

In the shifted Chebyshev method, the approximate analytical 

solution of the FSSIP model can be written as a sum of shifted 

Chebyshev polynomials as the form: 

 

(1) * (2) *
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0 0
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N N
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where the real-numbers ( ) , 1,2,3,4, 0k

na k n N    are 

unknown coefficients which can be determined later. By 

constructing some matrices in (14), we have 

 

( ) * ( ) *

( ) * ( ) *
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( ) ( ), ( ) ( ),
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S t t S t t
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 (15) 

where the shifted Chebyshev column vector 
* * * *

0 1( ) [ ( ) ( ) ... ( )]T

Nt T t T t T tT and the coefficient row 

vectors , , ,
1 2 3 4

A A A A  are  defined by 

 

(1) (1) (1) (2) (2) (2)

0 1 0 1

(3) (3) (3) (4) (4) (4)
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



1 2

3 4

A A

A A
(16) 

From (7), each term , 1,2,3,...,it i N  can be rewritten as the 

combination of the shifted Chebyshev functions. 
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Define ,( ) [1 ... ]N Tt t tY  then it obtains 

 * * 1( ) ( ), or ( ) ( ),t t t t Y CT T C Y  (18) 

where the coefficient shifted Chebyshev matrix C  is given as 

[44] 
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and 22 Nk  . Therefore, the solutions in (15) can be rewritten 

in terms of the product of matrices as 
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Applying the Caputo fractional derivative in (20), we also 

construct the operational matrix for the Caputo fractional 

derivative of ( )tY  as 

( ) ( ) ( ),tD t t t

Y B Y  

where the Caputo Chebyshev fractional derivative matrix 

( )t
α

B  is given by 
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Now, the Caputo fractional derivatives of each solution are 

given by the ( 1) ( 1)N N    matrices 
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Substituting these results into Eq. (2), we have the following 

system 
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A C Y A C Y

A C Y A C Y A C Y

A C Y
1 1

1 1

1 1

) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

I

P

t t t f t

t t d t

t t f t



 

 

 

 

 

 

 

  

3 3

4 4

2 3

A C Y A C B Y

A C B Y A C Y

A C Y A C Y

(23) 

with the following initial conditions : 

 

1 1

1 1

(0) (0), (0) (0),

(0) (0), (0) (0),

S S

I P



 

 

 

 

1 2

3 4

A C Y A C Y

A C Y A C Y
 (24) 

where the matrices , 1,2,3,4i i A in (16),

( ) [1 ... ]N Tt t tY in (18) and the matrix C in (19). The 

system in Eq. (23) and initial conditions (24) can be evaluated 

at the specific 
it  of the 1N   roots 

0 1( , , , )Nt t t  in Eq. (8). 

We next define the ( 1) ( 1)N N   matrix , the 1 ( 1)N   

matrices  ,, , ,S S I P
F F F F and an 1 4( 1)N  matrix F defined 

as follows: 

( )

1

( )

1

( )

1

( )

1

( )

1

( ) ( ) ( ) ( ) (

( ) [ (0) ( ) ... ( )],

( ) [ (0), ( ), , ( )],

( ) [ (0), ( ), , ( )],

( ) [ (0), ( ), , ( )],

( ) [ (0), ( ), , ( )],

( ) [ ( ) ( ) ( ) ( =

N

N

N

S S S N

N

S S S N

N

I I I N

N

P P P N

N N N N

S S I P

t t t

t S f t f t

t S f t f t

t I f t f t

t P f t f t

t t t t t

  







 

 

 

 

Y Y Y

F

F

F

F

F F F F F
) )],N

 

and we also construct the 4( 1) 4( 1)N N    matrices 

, ,B C  and *
T  

, ,









  
  
   
  
  

   

B 0 0 00 0 0

0 B 0 00 0 0
B

0 0 B 00 0 0

0 0 0 B0 0 0

 

1 *

1 *

*

1 *

1

= , 









   
   
   
   
   
      

3

3

3

C 0 0 0 T A 0 0 0

0 C 0 0 0 T A 0 0
C T

0 0 C 0 0 0 T A 0

0 0 0 C 0 0 0 0

and 1 4( 1)N   matrix [ ]
1 2 3 4

A A A A A , finally the 

system in Eq. (23) can be rewritten in the matrix form as 

  *

0 1  ,  A C B T C C F  (25) 

where I  is identity matrix and the matrices 
0

 and 
1

 are 

given by 

0

1

(1 ) (1 )
,

( )

( )
.

(

(

=
)

)

d

d

d

d

 

   

 

   

  

 

 
 

  
 
 
 
 

  
 

   
 
   


 






I 0 I 0

0 I I 0

0 0 0 0

0 0 0 0

I I 0 0

I I 0 I

0 0 I I

I 0 0 I

 

Taking transpose, the equation (25) becomes 

 *

0 1  ,    
 

TT T T T T
T T T T

B C C T C A F  (26) 

which can be solved the matrix T
A and then determine the 

coefficient matrices , 1,2,3,4i i A  in Eq. (16). 

 

IV. SHIFTED CHEBYSHEV APPROXIMATE 

ANALYTICAL SOLUTIONS 

In this section we applied Shifted Chebyshev method to solve 

analytical solutions of the FSSIP model in Eq. (20) with some 

fractional orders 0.6,0.8,1   and several types of functions 

for connecting network:  ( )Sf t ,  ( )Sf t



, ( )If t , ( )Pf t  and 

using some parameters in Table 2.  

Table 2. Values of parameters used in the numerical 

simulations 

Parameter Value Parameter Value Parameter Value 

b  0.05 p  0.03 d  0.02 

  0.09 
  0.07 

  0 

  0.03   0   0 

  0 
  0.0005   0.5 
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Case 1. Functions for connecting network are given by

( ) (1 )Sf t p b   , ( )Sf t pb


  ,   ( )If t b  , ( ) 0Pf t   [36] 

which mean that the new fully ( )S  and partially susceptible

( )S , and infected nodes ( )I  connected to the network with 

constant rates. Assuming the shifted Chebyshev analytical 

solutions ( 6)N   of the FSSIP model (2) as 

 

6 6
(1) * (2) *

0 0

6 6
(3) * (4) *

0 0

( ) ( ), ( ) ( ),

( ) ( ), ( ) ( ).

r r r r

r r

r r r r

r r

S t a T t S t a T t

I t a T t P t a T t


 

 

 

 

 

 
 (27) 

By shifted Chebyshev method, the zeros of *

6 ( )T t  in Eq. (8) 

can be calculated as 

 0 1 2 3

4 5 6

0.0125, 0.1091, 0.2831, 0.5000,

0.7169, 0.8909, 0.9875.

t t t t

t t t

   

  
 (28) 

Calculating 1
C  in Eqs. (19)–( 21) and the shifted Chebyshev 

matrices ( )itY , ( )itB , 0,1, ,6i   as 

1.0 1.0 1.0 1.0

0.0125 0.1091 0.2831 0.9875

0.0002 0.0119 0.0801 0.9751

,1.9 6 0.0013 0.0227 0.9629

2.5 8 0.0001 0.0064 0.9508

3.0 10 2.0 5 0.0018 0.9389

3.8 12 1.7 6 0.0005 0.9271

e

e

e e

e e

 
 
 
 
 

  
 
 

  
   

Y  

1

0 0 0 0

(2)
0 0 0

(2 )

(3)
0 0 0( ) ,

(3 )

(7)
0 0 0

(7 )

1 0 0 0

1 2 0 0

.1 8 8 0

1 72 840 2048

i it t 











 
 


 
   
 

 
  
 
 
 
 

  

 
 

 
  
 
 
  

α
B

C

 

The symbolic computation of the shifted Chebyshev method 

has already developed to compute the coefficients matrices 

i
A  with 1   as 

 

 

 

 

 

10.1410 15.9771 10.7495 6.4387 1.0234 ,

5.4365 6.9952 2.5502 0.6439 1.0339 ,

10.0527 10.0267 1.5776 0.7105 0.0692 ,

5.3473 0.9537 3.1931 2.2911 0.0880 .

T

T

T

T

  

  

  

  

1

2

3

4

A

A

A

A

 

then the shifted Chebyshev approximate analytical solutions 

( 6)N   which provide a finite series are given by 

 

 

   

 

   

 

( ) 2 3 5 4

8 5 10 6

( ) 2 3 5 4

8 5 10 6

( ) 2 3 6 4

( ) 50 3.5049 0.1178 0.0021 2.0 10

9.6575 10 1.8401 10

( ) 10 1.2419 0.0797 0.0018 1.9 10

9.4486 10 1.8590 10

( ) 20 0.1195 0.0126 0.0002 1.8 10

N

N

N

S t t t t t

t t

S t t t t t

t t

I t t t t t





 



 



     

   

     

   

     

   

 

     

9 5 11 6

( ) 10 2 4 3

7 4 9 5 11 6

7.3821 10 1.2447 10

( ) 6.6521 10 0.5949 0.0102 2.2 10

7.5 10 6.5 10 1.6 10 .

N

t t

P t t t t

t t t

 

 

  

   

     

     

(29) 

All graphs of their solutions are shown in Fig 2. 
 

 

Fig. 2. Shifted Chebyshev solutions with 1  ,   00 ,5S   

(0) 10,S    0 20,I     00 .P   

 

In Fig. 2, the solution of anti-virus susceptible nodes ( S ) and 

protected nodes ( P ) are increasing during short time period 

after that decreasing and approaching the equilibrium point 

which is an asymptotically stable. 

 

 



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 3006-3017 

© International Research Publication House.  http://www.irphouse.com 

3012 

 

Fig. 3. Shifted Chebyshev solutions for (a) 8,   

(b) 15,  where   00 ,5S  (0) 10,S   0 20,I    00 .P   

 

In Fig. 3, if the function of connecting new infected I  nodes 

to the network ( ( ) )If t b   increases by increasing the value 

of 8   and 15. The numerical results show that increasing 

the value of  will lead to more numbers of computer virus at 

infected nodes ( )I t . 

The system of non-linear Caputo fractional differential 

equations (2) will be used as our model for analysis for order 

1   to find equilibrium points of the system. We set 

( ), ( ), ( ), ( ) 0t t t tD S t D S t D I t D P t   and then solve the obtained 

equations for the disease free equilibrium point 
* * *

0 ( , ,0, ) (0.85869565,0.65652174,0,0.98478261).E S S P 

The local stability of 
0E  determined by modulus of the 

eigenvalues are 
1 20.019406521, 0.020000001,      

3 0.035470131    and 
4 0.194529869.    

 

 

 

 
Fig. 4. Shifted Chebyshev solutions for infected I  where 

change , ,      and  with parameters in Table 2. 

For Fig. 4 we have also observed that as the value of   and 

  increases, the numbers of computer virus at infected 

nodes ( )I t  increases, and the value of   and   increases, 

but the numbers of computer virus at infected nodes ( )I t  

decreases. 

Cases 2: Assume that 
1

( ) 1.5 sin( 1.8 )
1

Sf t t
t

   


 and

1,  so the susceptible nodes connect to network 

periodically. By symbolic shifted Chebyshev program in 
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Maple with 1,   it obtains the approximate analytical 

solutions with 7N   as 

 

( ) 2 3

4 5 6

( ) 2 3

4 5 6

( ) 2

( ) 99 328.9520 186.8663 4606.9740

11411.5371 11049.1621 3798.2528

( ) 10 694.2143 4750.1061 14034.1476

20834.8340 15176.5517 4307.9513

( ) 70 139.9807 139.7558 92.

N

N

N

S t t t t

t t t

S t t t t

t t t

I t t t



   

  

   

  

    3

4 5 6

( ) 2 3

4 5 6

0643

43.2946 13.7305 2.1985

( ) 92.0408 227.1809 1348.8316

2408.7456 1943.9731 598.5447

N

t

t t t

P t t t t

t t t

  

  

  

(30) 

with the graphs of solutions in Fig. 5. 

 

Fig. 5. Shifted Chebyshev solutions when 

1
( ) 1.5 sin( 1.8 ),

1
Sf t t

t

   


( ) ,Sf t pb


   ( ) ,If t b 

( ) 0,Pf t   where  0 99,S   (0) 10,S    0 0,7I   

 0 0P   with parameters in Table 2. 

Cases 3: The susceptible nodes 

2

2
( )

1

S t
f t

e





 
 
 

 

 connect to 

the network as an increasing function with several Caputo 

fractional orders 0.6,0.8,1   and parameters in Table 3. 

Table 3. Values of parameters used in the numerical 

simulations (adapted from [36]) 

Parameter Value Parameter Value Parameter Value 

b  0.05 p  0.01 d  0.05 

  0.09 
  0.07 

  0.02 

  0.06   0.06   0.15 

  0.03 
  0.01   0.02 

 

Fig. 6 shows shifted Chebyshev solutions for ,S ,S ,I P  

where 0.6,0.8   and 1. 

 

 

 

 
Fig. 6. Shifted Chebyshev solutions for ,S  ,S  ,I  P  where 

0.6,0.8  and 1. 
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V. COMPARING NUMERICAL RESULTS 

In addition, we investigate efficiency and accuracy of this 

method by comparing shifted Chebyshev solutions to some 

numerical solutions with different numerical methods; Runge-

Kutta-Fehlberg method (RKF45) [45, 46] and the Cash-Karp 

method (CK45) [47]. The results are shown in these Tables    

4 – 7. 

 
 

Table 4. Comparison between Shifted Chebyshev solutions   ,S t  ( )S t and RKF45, 1.   

time 

susceptible nodes   S t  susceptible nodes with anti-virus  ( )S t  

RKF45 Cheb. | RKF45 Cheb. |  RKF45 Cheb. | RKF45 Cheb. |  

10 22.53172 22.53172 2.75e-06 18.58171 18.58171 5.43e-06 

30 8.97418 8.97418 3.25e-06 9.46600 9.46600 8.51e-06 

50 4.36336 4.36336 8.54e-06 4.48766 4.48766 7.93e-06 

70 2.41071 2.41071 6.45e-06 2.34904 2.34904 7.54e-06 

90 1.55149 1.55149 3.27e-06 1.41209 1.41209 8.51e-06 

110 1.16583 1.16583 7.65e-05 0.99279 0.99279 9.43e-06 

130 0.99138 0.99138 1.27e-06 0.80316 0.80316 1.49e-06 

150 0.91284 0.91284 3.57e-05 0.71754 0.71754 2.74e-05 

 

Table 5. Comparison between Shifted Chebyshev solutions   ,I t  ( )P t and RKF45, 1.   

time 

infected nodes   I t  protected nodes  ( )P t  

RKF45 Cheb. | RKF45 Cheb. |  RKF45 Cheb. | RKF45 Cheb. |  

10 20.17238 20.17238 3.21e-11 4.66581 4.66581 2.43e-06 

30 16.72093 16.72093 2.66e-10 9.87177 9.87177 2.22e-07 

50 12.34355 12.34355 7.44e-09 9.81606 9.81606 1.76e-06 

70 8.68865 8.68865 3.98e-09 8.16285 8.16285 4.69e-06 

90 5.99152 5.99152 3.66e-08 6.35554 6.35554 3.63e-06 

110 4.09413 4.09413 2.18e-08 4.83448 4.83448 9.75e-05 

130 2.78613 2.78613 3.59e-07 3.67552 3.67552 6.77e-05 

150 1.89249 1.89249 3.86e-07 2.83560 2.83560 8.42e-05 
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Table 6. Comparison between Shifted Chebyshev solutions   ,S t  ( )S t and CK45, 1.   

time 

susceptible nodes   S t  susceptible nodes with anti-virus  ( )S t  

CK45 Cheb. | CK45 Cheb. |  CK45 Cheb. | CK45 Cheb. |  

10 22.53172 22.53172 4.02e-06 18.58171 18.58171 5.32e-06 

30 8.97418 8.97418 2.10e-06 9.46600 9.46600 1.36e-06 

50 4.36336 4.36336 4.32e-07 4.48766 4.48766 3.56e-07 

70 2.41071 2.41071 7.43e-06 2.34904 2.34904 5.12e-06 

90 1.55149 1.55149 6.57e-06 1.41209 1.41209 5.11e-06 

110 1.16583 1.16583 9.11e-05 0.99279 0.99279 4.68e-06 

130 0.99138 0.99138 7.54e-06 0.80316 0.80316 6.99e-06 

150 0.91284 0.91284 5.53e-05 0.71754 0.71754 3.11e-05 

 

Table 7. Comparison between Shifted Chebyshev solutions   ,I t  ( )P t and CK45, 1.   

time 

infected nodes   I t  protected nodes  ( )P t  

CK45 Cheb. | CK45 Cheb. |  CK45 Cheb. | CK45 Cheb. |  

10 20.17238 20.17238 3.45e-10 4.66581 4.66581 1.22e-06 

30 16.72093 16.72093 3.18e-10 9.87177 9.87177 3.12e-07 

50 12.34355 12.34355 2.75e-09 9.81606 9.81606 6.37e-08 

70 8.68865 8.68865 4.31e-08 8.16285 8.16285 2.54e-06 

90 5.99152 5.99152 4.87e-08 6.35554 6.35554 3.71e-07 

110 4.09413 4.09413 2.69e-07 4.83448 4.83448 4.92e-05 

130 2.78613 2.78613 2.54e-07 3.67552 3.67552 5.32e-05 

150 1.89249 1.89249 1.86e-07 2.83560 2.83560 5.21e-05 

 

VI. CONCLUSION 

Chebyshev method is firstly proposed to provide 

approximated analytical solutions of the FSSIP model in 

Caputo fractional derivative sense. The method has been 

applied to three types of connection, which are based on each 

node connecting to the network as a function. Approximate 

and analytical solutions of examples are compared. For Case 1, 

where each node connects to the network as a constant and 

when comparing with present results, it is clear that the results 

obtained by the proposed method approaches numerical 

solutions which are computed by Runge-Kutta-Fehlberg 

method (RKF45) in Table 4 – 5 and  Cash-Karp method 

(CK45) in Table 6 – 7 with the maximum absolute errors 

3.21e -11 and 3.45e-10, respectively.  Case 2 presents the 

approximated analytical solutions where each node connects 

to network as the function 
1

1.5 sin( 1.8 ).
1

t
t

 


 Our method 

obtains the solutions in terms of power expansion. Example 3  

presents that applications of this method  are very simple and 

very convenient for solving the Caputo fractional derivative 

SSIP model with order 0.6,0.8,1   and the connecting 

network as the functions 
2

2
.

1
t

e



 The proposed method can 

be applied to solve analytical solutions for various fractional 

derivatives or other problems. 
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